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Abstract— We examine the leader selection problem in multi-
agent dynamical networks where leaders, in addition to relative
information from their neighbors, also have access to their
own states. We are interested in selecting an a priori specified
number of agents as leaders in order to minimize the total
variance of the stochastically forced network. Combinatorial
nature of this optimal control problem makes computation of
the global minimum difficult. We propose a convex relaxation
to obtain a lower bound on the global optimal value, and use
simple but efficient greedy algorithms to obtain an upper bound.
Furthermore, we employ the alternating direction method of
multipliers to search for a local minimum. Two examples are
provided to illustrate the effectiveness of the developed methods.

Index Terms— Alternating direction method of multipliers,
consensus, convex optimization/relaxation, greedy algorithm,
leader selection, performance bounds, variance amplification.

I. INTRODUCTION

The consensus of the multi-agent networks is of funda-
mental interest in the context of distributed control [1]–
[4]. It is desired that agents reach agreement on quantities
such as heading direction, velocity, and inter-agent spacing
in a decentralized fashion. Furthermore, the agents must
maintain the agreements in the presence of uncertainty such
as exogenous noises. In view of this, the robustness of
consensus in networks subject to stochastic disturbances has
recently received considerable attention [5]–[7].

In this paper, we consider the networks where all agents
use relative information exchange with their neighbors while
some agents, leaders, also have access to their own states.
This setting is particularly relevant to vehicular formations
where all vehicles are equipped with ranging devices that
allow them to measure relative distances with respect to their
neighbors while the leaders additionally have GPS devices.

We are interested in selecting a number of agents as
leaders in order to minimize the overall variance in a net-
work subject to stochastic disturbances. This leader selection
problem has a convex objective function, but constraints are
of combinatorial nature, implying the difficulty in computing
the global minimum for large networks. We focus on comput-
ing lower and upper bounds on the global optimal value; in
particular, we solve a convex relaxation of the combinatorial
problem to obtain a lower bound, and develop efficient
greedy algorithms to obtain an upper bound. Furthermore,
we employ the alternating direction method of multipliers
to search for a local minimum of the leader selection
problem. This approach is capable of handling the nonconvex

Financial support from the National Science Foundation under CAREER
Award CMMI-06-44793 and under awards CMMI-09-27720 and CMMI-
0927509 is gratefully acknowledged.

M. Fardad is with the Department of Electrical Engineering and Computer
Science, Syracuse University, NY 13244. F. Lin and M. R. Jovanović
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Boolean constraints explicitly by simple projection. The main
contribution of the paper is the development of these efficient
algorithms that facilitate study of the achievable performance
in large dynamical networks.

In [8], a closely related leader selection problem has been
formulated under the assumption that the leaders are follow-
ing the desired trajectory at all times and are unaffected by
input disturbances. In the companion paper [9], it is shown
that the noise-free leader selection problem formulated in [8]
can be relaxed to a semidefinite program that can be solved
efficiently. This is achieved by linearizing the objective
function and by relaxing combinatorial Boolean constraints.
Furthermore, an interpretation of the leader selection prob-
lems is provided in terms of electrical networks using Kron
reduction theory [9].

The paper is organized as follows. In Section II, we
formulate the leader selection problem and discuss the con-
nection of our formulation with the one considered in [8]
and [9]. In Section III, we obtain a lower bound on the
global optimal value of this combinatorial optimal control
problem by solving a convex relaxation. In Section IV, we
obtain an upper bound on the optimal value using greedy
algorithms. In Section V, we employ the alternating direction
method of multipliers to search for a local minimum of
the leader selection problem. Two examples are provided to
demonstrate the effectiveness of the developed methods in
Section VI. We summarize our results in Section VII.

II. LEADER SELECTION PROBLEM

We consider a connected, undirected network of n single-
integrator nodes

ẋi = ui + wi, i = 1, . . . , n,

where xi is the state, wi is the zero-mean unit-variance white
stochastic disturbance, and ui is the control. A node is a
follower if it uses only the relative information exchange
with its neighbors to compute its control action,

ui = −
∑
j ∈Ni

(xi − xj),

where Ni is the set of neighbors of node i; a node is a leader
if, in addition to the relative information exchange with its
neighbors, it also has access to its own state,

ui = −
∑
j ∈Ni

(xi − xj) − αi xi,

where αi is a positive number.
The state-space representation of the network is given by

ẋ = − (L + DαH)x + w,

where L = LT is the Laplacian matrix of the graph,
α = [α1 · · · αn ]T , h = [h1 · · · hn ]T , Dα = diag{α}, and
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H = diag{h}. Here, the Boolean-valued hi for i = 1, . . . , n
indicates that node i is a leader if hi = 1, and that node i is
a follower if hi = 0.

Following [6], [8], we consider the steady-state variance
of the network

Vss = trace
(

lim
t→∞

E{x(t)xT (t)}
)
,

which quantifies variance amplification of the network sub-
ject to stochastic disturbances. For connected undirected
graphs, the steady-state covariance matrix can be obtained
explicitly from the corresponding Lyapunov equation,

lim
t→∞

E{x(t)xT (t)} = (1/2) (L + DαH)−1,

thereby yielding,

Vss = (1/2) trace
(
(L + DαH)−1

)
.

In the leader selection problem considered in [8], it is
assumed that the leaders are maintaining their desired trajec-
tories at all times and are unaffected by input disturbances.
In the coordinates of deviation from the desired trajectory,
this assumption implies that the state of every leader is
identically equal to zero. Therefore, the rows and columns
corresponding to the leaders can be eliminated from the
state equations, keeping only the dynamics of the follower
nodes [8]

ẋf = −Lhxf + wf .

Here, xf is a vector containing all states of followers, wf
is the vector of disturbances affecting them, and Lh is the
(n− k)× (n− k) submatrix of L obtained by removing the
rows and columns of L that correspond to the leaders. The
steady-state variance of the followers is given by

(1/2) trace
(
L−1h

)
.

As shown in Appendix A,

trace
(
L−1h

)
= lim

αi→∞
trace

(
(L + DαH)−1

)
, (1)

i.e., trace
(
L−1h

)
is equivalent to Vss when the state feedback

gains {αi} of the leaders all grow to infinity.
We are interested in identifying a subset of nodes that are

effective in reducing the variance of the network. Thus, we
consider the problem of choosing k leaders with 1 ≤ k < n
to minimize the steady-state variance

minimize J(h) = trace
(
(L + DαH)−1

)
subject to hi ∈ {0, 1}, i = 1, . . . , n,

n∑
i=1

hi = k.
(LS)

The objective function J(h) in (LS) is convex for positive
definite matrix L + DαH and the summation constraint
in (LS) is linear. The difficulty of this problem comes from
the Boolean constraints hi ∈ {0, 1}, which are not convex.
For large problems, it is not computationally feasible to per-
form exhaustive search, since the n-choose-k combinations
grow exponentially fast as the problem size increases.

III. CONVEX RELAXATION

In this section, we consider a convex relaxation of the
leader selection problem (LS). By solving the relaxed prob-
lem, we obtain a lower bound on the optimal value Jopt

of (LS). We show that the convex relaxation can be for-
mulated as a semi-definite program (SDP) and thus can be
solved by available SDP solvers. Furthermore, we develop an
efficient customized interior point method for large problems.

A convex relaxation of the leader selection problem is
obtained by enlarging the Boolean constraint sets hi ∈ {0, 1}
to the convex sets hi ∈ [0, 1],

minimize J(h) = trace
(
(L + DαH)−1

)
subject to 0 ≤ hi ≤ 1, i = 1, . . . , n

n∑
i=1

hi = k.
(CR)

Let h∗ be a global minimum of the convex optimization
problem (CR). Since we have enlarged the constraint sets,
the optimal value J(h∗) of the relaxed problem provides a
lower bound on the optimal value Jopt of (LS). Note that h∗
may not provide a selection of k leaders since it may turn
out to be non-Boolean-valued.

Note that (CR) can be formulated as a semi-definite
program using the Schur complement [10, Appendix 5.5]

minimize trace (X)

subject to
[
X I
I L+DαH

]
≥ 0

0 ≤ hi ≤ 1, i = 1, . . . , n
n∑

i=1

hi = k,

(SDP)

and thus can be solved efficiently, for small and medium size
problems, using standard SDP solvers.

A. Customized interior point method

We next develop a customized interior point method to
deal with large problems. We consider the following approx-
imation of (CR)

minimize q(h) = γ trace
(
(L + DαH)−1

)
+

n∑
i=1

(
− log(hi) − log(1− hi)

)
subject to 1Th = k,

(2)

where γ is a positive scalar and 1 is the vector of all 1’s.
The log-barrier function − log(hi) increases to infinity as hi
approaches zero, while − log(1 − hi) increases to infinity
as hi approaches 1. Augmenting the objective function with
these log-barrier functions provides an approximation to the
convex relaxation (CR) with inequality constraints. The qual-
ity of this approximation is determined by the positive scalar
γ; the solution of the approximate problem (2) converges to
the solution of the convex relaxation (CR) as the parameter
γ increases to infinity [10, Section 11.2]. Thus, we solve
a sequence of the approximate problems (2) by gradually
increasing γ, and by starting each minimization using the
solution of the problem for the previous value of γ.

For fixed γ, we employ Newton’s method to solve the
approximate problem (2). Using standard procedure [10,
Section 10.2], we determine the Newton direction

hnt = − (∇2q)−1∇q − µ(∇2q)−11,
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where

µ = −1T (∇2q)−1∇q
1T (∇2q)−11

.

Here, we provide the expressions for gradient and Hessian
of q and omit derivation for brevity

(∇q)i = − γ αi ((L+DαH)−2)ii − h−1i − (hi − 1)−1,

∇2q = 2γ (Dα(L+DαH)−2Dα) ◦ (L+DαH)−1 +

diag{h−2i + (1− hi)−2},
where (∇q)i denotes the ith entry of the vector ∇q, (·)ii
denotes the iith entry of a given matrix, and ◦ denotes the
entry-wise multiplication of matrices.

We next examine complexity of computing the Newton
direction. The major cost of forming Hessian ∇2q is to
compute (L + DαH)−2, which takes (7/3)n3 operations
to compute (L + DαH)−1 and n3 operations to form
(L+DαH)−2. Computing the Newton direction hnt requires
solving two linear equations,

(∇2q) y = −∇q, (∇2q) z = −1,
which takes (1/3)n3 operations using the Cholesky factor-
ization. Thus, computation of each Newton step requires
(11/3)n3 operations. In comparison, solving (SDP) using
available SDP solvers takes O(n6) operations.

IV. GREEDY ALGORITHMS

With the lower bound obtained from solving the convex
relaxation (CR) in Section III, we next consider two greedy
algorithms to obtain an upper bound on the optimal value
Jopt. The first algorithm selects one leader at a time by
assigning the node that provides the largest performance
improvement as the leader. The second algorithm attempts
to improve a given choice of k leaders by checking pos-
sible swaps between leaders and followers. Similar greedy
algorithms have been used in [8], [11]. However, in both
cases, we show that substantial improvement in algorithmic
complexity can be achieved by exploiting structure of the
low-rank modifications to the Laplacian.

A. One-leader-at-a-time algorithm

We select one leader at a time by assigning the node that
results in the largest performance improvement as the leader.
To select the first leader, we compute

J i1 = trace
(
(L + αieie

T
i )−1

)
,

for i = 1, . . . , n, and assign the node, say v1, that achieves
the minimum value of {J i1}. If two or more nodes provide
the largest performance improvement, we select one of these
nodes as a leader. After choosing s leaders, v1, . . . , vs, we
compute

J is+1 = trace
(
(Ls + αieie

T
i )−1

)
,

for i /∈ {v1, . . . , vs}, and select node vs+1 that yields the
minimum value of {J is+1}. Here,

Ls = L + αv1ev1e
T
v1 + · · · + αvsevse

T
vs .

This procedure is repeated until all k leaders are selected.
Without exploiting structure, the above procedure requires

O(kn4) operations. On the other hand, the rank-1 update

formula obtained from matrix inversion lemma

(Ls + αieie
T
i )−1 = L−1s − L−1s αieie

T
i L
−1
s

1 + αieTi L
−1
s ei

,

yields

J is+1 = trace (L−1s ) − αi‖(L−1s )i‖22
1 + αi(L

−1
s )ii

, (3)

where (L−1s )i is the ith column of L−1s and (L−1s )ii is the
iith entry of L−1s . To initiate the algorithm, we use the
generalized rank-1 update [12],

L−11 = L†− (L†ei)1
T−1(L†ei)

T + ((1/αi) + eTi L
†ei)11

T ,

and thus,

J i1 = trace (L†) + n ((1/αi) + eTi L
†ei), (4)

where L† denotes the pseudo-inverse of L (e.g., see [13])

L† = (L + (1/n)11T )−1 − (1/n)11T .

Therefore, matrix inverse can be computed using O(n2)
operations and J is+1 can be evaluated using O(n) opera-
tions. Overall, k rank-1 updates, nk/2 objective function
evaluations, and one full matrix inverse require O(kn2 +
n3) operations as opposed to O(kn4) operations without
exploiting structure.

Algorithm 1 One-leader-at-a-time algorithm

1: for i = 1 to n do
2: compute J i1 using (4);
3: end for
4: choose node v1 that yields the smallest value of {J i1} as

a leader;
5: for s = 1 to k − 1 do
6: compute J is+1 using (3) for i /∈ {v1, . . . , vs};
7: choose node vs+1 that yields the smallest value of

{J is+1} as a leader.
8: end for

B. Swap algorithm
Given a selection of k leaders, we consider swaps between

the leaders and the followers to further improve performance.
Specifically, we swap one of the k leaders with one of the
n− k followers, and check if such a swap would provide a
decrease in the objective function J . If no decrease occurs
for all possible k(n − k) swaps, we stop the algorithm. If
a swap provides performance improvement, we update the
selection of the leaders and restart checking the k(n − k)
swaps for the updated leader selection. The number of swaps
between the leaders and the followers can be quite large.
Thus, we terminate the algorithm if it reaches a maximum
number Nswap of leader updates. If Nswap is chosen to
be proportional to the number of nodes n, then we show
below that the worst case computational complexity takes
O(n3) operations, the same as for the convex relaxation
problem (CR).

A swap between a leader (node i) and a follower (node
j) leads to a rank-2 modification of the Laplacian,

L̄ − αieie
T
i + αjeje

T
j ,
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where L̄ = L + DαH, with H = diag{h} for a given
leader selection h. Specifically, we have(

L̄ − αieie
T
i + αjeje

T
j

)−1
=

L̄−1 − L̄−1 Ēij (I2 + ETijL̄
−1Ēij)

−1ETij L̄
−1,

(5)

where Eij = [ ei ej ], Ēij = [−αiei αjej ], and I2 is a
2 × 2 identity matrix. Thus, the objective function for the
leader selection with node i replaced by node j is given by

Jij = trace(L̄−1 − (I2+ETijL̄
−1Ēij)

−1ETij L̄
−2Ēij). (6)

Here, we do not need to form the full matrix L̄−2, since

ETij L̄
−2Ēij =

[
−αi(L̄−2)ii αj(L̄

−2)ij
−αi(L̄−2)ji αj(L̄

−2)jj

]
and the ijth entry of L̄−2 can be computed by multiplying
the ith row of L̄−1 with the jth column of L̄−1. Thus,
evaluation of Jij takes O(n) operations and computation of
the matrix inverse in (5) requires O(n2) operations.

Since the total number of leader updates can be large,
we set a maximum number of the updates to Nswap. If we
let Nswap grow as O(n), then the worst case computational
complexity of the swap algorithm takes O(n3) operations
(the same as solving the relaxed problem (CR)). It is worth
mentioning that in practice the number of leader updates is
much less than O(n). Similar observation is made in [11]
where the swap algorithm is applied to a related sensor
selection problem.

Algorithm 2 Swap algorithm

1: Given a leader selection h, let sl = {s1l , . . . , skl } and
sf = {s1f , . . . , s

n−k
f } denote the index sets of leaders

and followers, respectively; set the number of swaps
m = 0;

2: for i = s1l to skl do
3: for j = s1f to sn−kf do
4: compute Jij using (6);
5: if Jij < J(h) then
6: swap i from sl with j from sf ;
7: set J(h) = Jij ;
8: increase m by 1;
9: if m = Nswap then

10: stop;
11: else
12: go to step 2.
13: end if
14: end if
15: end for
16: end for

V. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Since previously introduced greedy algorithms may not
yield the optimal leader selection, we next use the alternating
direction method of multipliers (ADMM) to search for a local
minimum of (LS). The ADMM has been studied extensively
since it was introduced in the 1970s [14]–[17]; see [18] for a
recent survey. A closely related split Bregman approach has

recently attracted considerable attention in the image pro-
cessing community due to its superior convergence properties
in several `1 norm related minimization problems [19], [20].

Owing to its alternating approach, the ADMM is capable
of handling the nonconvex Boolean constraints in (LS)
explicitly by simple projection. This feature of the ADMM
facilitates a straightforward procedure to search for a local
minimum of (LS). Let us denote the objective function and
the indicator function of the constraint sets in (LS) by

f(h) = trace
(
(L + DαH)−1

)
,

g(h) =

{
0 if hi ∈ {0, 1} and 1Th = k

+∞ otherwise.

Hence, (LS) can be formulated as an unconstrained problem

minimize f(h) + g(h), (7)

which can be put into the following form suitable for the
ADMM algorithm,

minimize f(h) + g(z)

subject to h − z = 0,
(8)

where z is the auxiliary variable. Note that both the uncon-
strained problem (7) and the constrained problem (8) are
equivalent to (LS).

We form the augmented Lagrangian associated with (8)

Lρ(h, z, λ) = f(h) + g(z) + λT (h − z) + (ρ/2)‖h − z‖22,
where λ ∈ Rn is the dual variable and ρ > 0 is the quadratic
penalty weight. Starting from some initial conditions z0 and
λ0, for κ = 0, 1, . . ., the ADMM algorithm updates

hκ+1 := arg min
h

Lρ(h, zκ, λκ), (9a)

zκ+1 := arg min
z

Lρ(hκ+1, z, λκ), (9b)

λκ+1 := λκ + ρ(hκ+1 − zκ+1), (9c)

until

‖hκ+1 − zκ+1‖2 ≤ ε and ρ‖zκ+1 − zκ‖2 ≤ ε.

An alternating way of updating h and z in (9) motivates the
name of the method. Splitting the optimization variables into
two copies and updating them in an alternating fashion yields
the minimization problems (9a) and (9b) that are easy to
solve. The minimization of Lρ(h, zκ, λκ) in (9a) with respect
to h can be formulated as an SDP
minimize trace (X) + (λκ)T (h− zκ) + (ρ/2)‖h− zκ‖22

subject to
[
X I
I L+DαH

]
≥ 0,

which can be solved efficiently for small and medium size
problems. Even though the indicator function g(z) in Lρ is
non-convex, we show in Appendix B that the minimizer of
Lρ(hκ+1, z, λκ) in (9b) with respect to z is given by

zi =

{
1 if z̄i ≥ [z̄]k
0 if z̄i < [z̄]k

where
z̄ = hκ+1 + (1/ρ)λκ,

and [z̄]k denotes the kth largest entry of z̄. Thus, the
minimizer of (9b) can be determined explicitly using simple
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Fig. 1: A network of 25 nodes.

projection. For large problems, we employ Newton’s method
to solve (9a); the gradient and Hessian of Lρ with respect to
h are given by

(∇Lρ)i = −αi((L+DαH)−2)ii + λi + ρ(hi − zi),

∇2Lρ = 2 (Dα(L+DαH)−2Dα) ◦ (L+DαH)−1 + ρI.

VI. EXAMPLES

In this section, we consider two examples to illustrate the
performance of the developed methods. In both examples
we set αi to be the degree of node i, that is, the number
of neighbors of node i. We set the penalty weight in the
ADMM algorithm to ρ = 103. Note that the convergence
of the ADMM depends on the value of ρ; in particular, the
convergence may not take place if ρ is not large enough [18].

A. An example from [8]
We first consider an example from [8]; see Fig. 1. For

this small example, the global minima can be determined by
exhaustive search. It turns out that the one-leader-at-a-time
algorithm followed by the swap algorithm actually finds the
global minima. On the other hand, the ADMM provides the
global minima for the cases k = 4 and k = 5; see Table I.
Note that both the greedy algorithms and the ADMM tend
to select nodes with large degrees (i.e., with large number of
neighbors) as the leaders. It is also worth mentioning that the
global optimal leader selections match the results reported
in [8].

B. Regular lattice
We next consider the leader selection problem for a 10×10

regular lattice. Figure 2a shows the lower bounds obtained
from solving the convex relaxation and the upper bounds
obtained from the one-leader-at-a-time algorithm followed
by the swap algorithm; for this example, the number of
swap updates is between 2 and 30. Figure 2b shows the gap
between these bounds. Note that, as the number of leaders
increases, the gap between the lower and the upper bounds
decreases. Using ADMM, we obtain the upper bounds close
to those obtained from the greedy algorithms; see Fig. 3.
The leader selections obtained using ADMM for the case
with k = 4, 20, 40 are plotted in Fig. 4.

TABLE I: Computational results for the example shown
in Fig. 1. Lower bounds Jlb are obtained from solving
the convex relaxation (CR); upper bounds Jub for greedy
algorithms – the one-leader-at-a-time algorithm followed by
the swap algorithm – are actually tight, i.e., Jub = Jopt;
upper bounds Jub for ADMM are tight when k = 4 and
k = 5.

greedy algorithms ADMM
k Jlb Jub leaders Jub leaders
1 38.4 72.3 13 118.3 25
2 30.3 43.4 8, 25 47.9 7, 25
3 26.7 35.2 8, 16, 25 36.7 7, 16, 25
4 24.3 30.0 3, 7, 16, 25 30.0 3, 7, 16, 25
5 22.4 25.8 3, 7, 9, 16, 25 25.8 3, 7, 9, 16, 25

(a) (b)

Fig. 2: Regular lattice: (a) the lower bounds (×) obtained
from solving the convex relaxation and the upper bounds (◦)
obtained from the one-leader-at-a-time algorithm followed by
the swap algorithm; (b) the gap between these bounds (∗).

Fig. 3: Regular lattice: the upper bounds obtained from
one-leader-at-a-time algorithm followed by the swap algo-
rithm (◦) and the upper bounds obtained from ADMM (�).

(a) k = 4 (b) k = 20 (c) k = 40

Fig. 4: The leader selections obtained using ADMM for a
10× 10 regular lattice; leaders are signified by •.
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VII. CONCLUDING REMARKS

In this paper, we consider the leader selection problem
in large dynamical networks. We focus on computing the
lower and upper bounds on the global optimal value of
this combinatorial optimal control problem. In particular,
we obtain a lower bound by solving a convex relaxation
and we obtain an upper bound using greedy algorithms.
Furthermore, we employ the alternating direction method of
multipliers to search for a local minimum. We provide two
examples to illustrate the effectiveness of our approaches.
As aforementioned, the main contribution of the paper is
the development of these efficient algorithms that allow us
to estimate the achievable performance in large networks.
We intend to apply these tools for leader selection problem
in different types of networks, including small-world social
networks and random graphs, in our future work.

APPENDIX

A. Derivation of (1)

We perform appropriate permutations such that the matrix
L+DαH can be partitioned into

L + DαH =

[
Lh Lb
LTb Ll +Dαl

]
.

Inverting the 2× 2 block matrix and taking the trace yields

trace (L−1h ) + trace (L−1h LbS
−1
α LTb L

−1
h + S−1α ),

where
Sα = Dαl + Ll − LTb L

−1
h Lb

is the Schur complement of Lh. Therefore, S−1α vanishes
as the state feedback gains {αi} of the leaders all grow to
infinity, and (1) follows.

B. Analytical solution of (9b)

Note that the minimization problem of Lρ(hκ+1, z, λk)
with respect to z is equivalent to

minimize − (λκ)T z + (ρ/2)‖z − hκ+1‖22
subject to zi ∈ {0, 1}, 1T z = k.

(10)

The objective function can be rewritten as

ρ

2

n∑
i=1

(
(zi − z̄i)

2 + hκ+1
i − z̄2i

)
, (11)

where
z̄i = hκ+1

i + (1/ρ)λκi .

Projecting the minimizer of (11)

zi = z̄i, i = 1, . . . , n.

onto the constraint set zi ∈ {0, 1} and 1T z = k yields

zi =

{
1 if z̄i ≥ [z̄]k
0 if z̄i < [z̄]k

(12)

where [z̄]k is the kth largest entry of z̄.
To see (12), let us consider z1 satisfying 1T z1 = k and

z1i ∈ {0, 1} but z1 is not the projection determined by (12).
Thus, there exists at least one entry of z1, e.g., the lth entry,
such that z1l = 1 with the corresponding z̄l < [z̄]k and at

least one entry, e.g., the jth entry, such that z1j = 0 with the
corresponding z̄j ≥ [z̄]k. Let

δlj = (z1l − z̄l)2 + (z1j − z̄j)2 = (1− z̄l)2 + z̄2j ,

and let
δjl = z̄2l + (1− z̄j)2.

Since
δlj − δjl = 2(z̄j − z̄l) > 0,

we conclude that the objective function (11) decreases if we
choose z1l = 0 and z1j = 1 instead of z1l = 1 and z1j = 0. In
other words, we can reduce the objective function (11) by
exchanging the values of two entries z1l = 1 (with z̄l < [z̄]k)
and z1j = 0 (with z̄j ≥ [z̄]k) until (12) is satisfied. Therefore,
the projection (12) provides the solution of problem (10).
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tion in large dynamical networks: Noise-free leaders,” in Proceedings
of the 50th IEEE Conference on Decision and Control and European
Control Conference, 2011, to appear.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[11] S. Joshi and S. Boyd, “Sensor selection via convex optimization,”
IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, 2009.

[12] C. D. Meyer, “Generalized inversion of modified matrices,” SIAM
Journal of Applied Mathematics, vol. 24, no. 3, pp. 315–323, 1973.

[13] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance
of a graph,” SIAM Review, vol. 50, no. 1, pp. 37–66, 2008.

[14] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite element approximation,”
Computers and Mathematics with Applications, vol. 2, pp. 17–40,
1976.

[15] R. T. Rockafellar, “Augmented lagrangians and applications of the
proximal point algorithm in convex programming,” Mathematics of
Operations Research, vol. 1, pp. 97–116, 1976.

[16] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Prentice Hall, 1989.

[17] M. Fukushima, “Application of the alternating direction method of
multipliers to separable convex programming problems,” Computa-
tional Optimization and Applications, vol. 1, pp. 93–111, 1992.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[19] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative
algorithms for `1-minimization with applications to compressed sens-
ing,” SIAM Journal on Imaging Sciences, vol. 1, no. 1, pp. 143–168,
2008.

[20] T. Goldstein and S. Osher, “The split Bregman method for `1
regularized problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 2, pp. 323–343, 2009.

2937


