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Abstract— The problem of recovering an analog signal from
discrete measurements, known as signal reconstruction, can be
formulated as a sampled-data L

2 fixed-lag smoothing problem.
In this paper the problem is solved under the constraint that
the reconstructor is an FIR (finite impulse response) system. An
analytic and numerically stable solution, whose computational
complexity is linear in the length of the reconstructor impulse
response, is derived. The formulation can accommodate steady-
state constraints via the use of weights with imaginary axis
eigenvalues and imposing the stability requirement on the error
system.

I. INTRODUCTION

Signal reconstruction is the problem of recovering an

analog signal from a measured discrete sequence. The funda-

mental result in this area is the Sampling Theorem [1], which

establishes that a bandlimited analog signal can be perfectly

reconstructed from its ideal samples, provided the signal

bandwidth does not exceed the Nyquist frequency !N ´ �=h

(h stands for the sampling period). The reconstructor (D/A

converter or hold) yielding this perfect reconstruction is then

the sinc-interpolator having sinch.t/ ´ sin.!Nt/=.!Nt/ as

its interpolation kernel (hold function). Moreover, the sinc-

interpolator generates the L2-optimal reconstruction even

when the original analog signal is not band limited but

sampled using the ideal low-pass antialiasing filter [2].

The sinc-interpolator, however, is non-causal, one needs to

know all past and all future measurements to reconstruct an

analog signal at any time instance. Because sinch.t/ decays

slowly, its truncation is also not practical. For this reason,

sinch.t/ is normally replaced with “less ideal” hold functions

having a faster decay rate, like polynomial or exponential

splines [3], [4]. Such hold functions are also typically non-

causal, so a common practice is to truncate them using some

ad hoc rationale to achieve a required degree of causality, see

[5] and the references therein.

An alternative approach to imposing causality constraints

on interpolation kernels has been recently proposed in [6].

The idea, following [7], is to cast the reconstruction problem

as a sampled-data estimation problem with performance

measured by a system norm. When no causality constraints

on the reconstruction are imposed, this approach recovers the

classical cardinal interpolation splines [8]. By minimizing

the very same, L2, performance index under a causality

constraint, [6] effectively derived causal and relaxedly causal

(i.e., having a finite preview) versions of several widely used

spline functions.
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The optimal reconstructors derived in [6] are typically IIR

(infinite impulse response), which implies that the current

reconstruction is affected by all past measurements. This

might be undesirable in some applications. For example, if

an abrupt change in the measured signal occurs, one would

prefer to “forget” this data as soon as possible. Shift-invariant

IIR reconstructors could attain this if their impulse responses

decay fast, but this might conflict with what a chosen signal

model demands. In such applications FIR (finite impulse

response) reconstructors would be preferable. FIR holds are

also generally more robust to round-off errors than their IIR

counterparts and are easily applicable to finite-horizon cases.

Thus, it is important to be able to incorporate constraints on

the support length of the hold function into the design of

optimal reconstructors.

In this paper we solve the problem of the design of FIR

signal reconstructors in the framework of the L2 (mean-

square) optimization. We follow the approach introduced in

[9], where a continuous-time L2 FIR estimation problem

was solved. The extension of this result to the discrete-

time and, especially, sampled-data (via lifting [10]) set-

tings, however, is not straightforward. Our recent discrete

solution in [11], for example, is not readily applicable to

sampled-data problems. The reason is that the solution, in

[11] hinges on simplifying assumptions that never hold in

sampled signal reconstruction problems studied in this paper.

We, thus, effectively re-derive a discrete counterpart of the

solution of [9] using different techniques. As a byproduct,

we derive a numerically stable solution, which is based on

matrix powers of Schur matrices only and can therefore be

computed regardless the support length of the hold function.

Following [9], we allow unstable weighting functions, which

can be used as a means to impose constraints on steady-state

reconstruction performance (via weights with j!-axis poles).

A. Notation

Throughout, signals are represented by lowercase symbols

such as y.t/ and overbars indicate discrete-time signals, NyŒk�.
For a set A, the indicator function 1A.t/ equals 1 if t 2 A

and zero elsewhere. Nık is the discrete pulse sequence, equals

1 at k D 0 and zero elsewhere. By nv we understand the

number of elements of a vector-valued signal v. To render

the exposition more compact, we denote L ´ L2Œ0; h/.

Uppercase calligraphic symbols represent continuous-time

systems in the time domain. Their corresponding transfer

function/frequency responses are then presented by upper-

case symbols, like G.s/ and G.j!/. Discrete-time systems,

transfer functions, etcetera, are denoted by overbars, like NG
and NG.´/. Finally, Zi1::i2

´ f i 2 Z W i1 � i � i2g.
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Fig. 1. System-theoretic signal reconstruction setup

II. PROBLEM FORMULATION

We study the signal reconstruction setup in Fig. 1. The

problem is to reconstruct an analog signal v from a discrete

sequance Ny, which is obtained from another analog signal y

by passing it through the ideal sampler S. The signal y might

be different from v. The available information about v, y,

and their relations is expressed via modeling these signals

as outputs of the signal generator G ´
�

Gv

Gy

�

driven by a

common normalized signal w.

The reconstructor that we design comprises a discrete filter
NF and a D/A converter H. This separation is somewhat

artificial, without loss of generality we may assume that NF
is identity. It, however, might be convenient, e.g., from the

implementation point of view, to have both these compo-

nents. We assume that H NF is shift invariant, in the sense

that H NF. NyŒ� � 1�/ D .H NF/.� � h/. In this case, the general

form of H NF is

u.t/ D
X

i2Z

�.t � ih/ NyŒi �; t 2 R; (1)

where �.t/ is an interpolation kernel or hold function to be

designed. For given � 2 N and � 2 Œ0; 1/, called the preview

ratio, we say that this reconstructor is .�; �/-FIR if

�.t/ D 0; whenever t 62 Œ���h; .1 � �/�h/: (2)

In other words, a .�; �/-FIR H NF produces the reconstruction

signal u using .1��/��1 past and �� future measurements

of Ny according to (we implicitly assume that �� is integer)

u.khC �/ D
.1��/��1

X

iD���

�.ihC �/ NyŒk � i �; k 2 Z; � 2 Œ0; h/:

We say that this reconstruction is admissible if � is a bounded

function, which guarantees that u is bounded (in whatever

sense) whenever so is Ny.

As the measure of reconstruction performance we consider

the L2-norm of the error system

Ge ´ Gv � H NFSGy ; (3)

which connects w and the reconstruction error e D v � u.

The L2 system norm is a non-causal version of the familiar

H 2-norm and shares its deterministic and stochastic inter-

pretations, see [10] and the references therein.

We suppose that the signal generator has a strictly proper

transfer function and is given in terms of its minimal state-

space realization

G.s/ D
�

Gv.s/

Gy.s/

�

D
�

Cv

Cy

�

.sI � A/�1B: (4)

Gv.s/ must be strictly proper to guarantee that the L2-norm

of the error system is finite and Gy.s/—to guarantee the

boundedness of the sampling operation [10]. Throughout, we

also assume that

A1: Cy has full raw rank,

A2: the pair .Cy ; e
Ah/ is detectible,

A3: � is not smaller than the observability index of the

unstable part of .Cy ; A/;

Assumption A1 merely rules out redundant measurements

and thus entails no loss of generality. Assumptions A2,3

are related to the stabilizability of the error system: A2

is necessary for the existence of a stabilizing reconstructor

even in the IIR case, while A3 then guarantees that an FIR

stabilizing reconstructor of length � exists. Unlike the analog

case, where the detectability of the measurement channel is

sufficient for the existence of a stabilizing FIR solution [9],

in the sampled-data cases the impulse response of H NF has

to be sufficiently long.

Remark 2.1: We do not restrict the signal generator to be

stable but do require that the error system (3) is stable (in the

L2 sense). The sole reason for considering unstable signal

generators is the possibility to cast steady-state requirements

in the form of the stability requirement. To illustrate this

point, consider a simple analog problem in which a stable

filter F.s/ is designed for the the error system Ge.s/ D
1 � F.s/Gy.s/. Zero steady-state error for a step input is

equivalent to the condition that Ge.0/ D 0. This condition can

be cast as the stability of Ge.s/
sCa

s
D sCa

s
�F.s/

�

Gy.s/
sCa

s

�

for any a > 0. In other words, by introducing an (artificial)

unstable mode at the origin into the signal generator we

can impose the requirement of zero steady-state error for

a constant measured signal via the stability of the error

system. This approach can be extended to ramp inputs (a

double integrator), a sine wave with a known frequency (a

harmonic oscillator), etc. In the open-loop context of Fig. 1,

the stability requirement effectively implies that all unstable

modes of G must be canceled in the error system, Ge. O

To conclude, the reconstruction problem addressed in this

paper is formulated as follows:

RP�;�: Let G be given by (4), assumptions A1–3 hold, S be

the ideal sampler, and � 2 N and � 2 Œ0; .� � 1/=��

be such that �� 2 Z. Find an admissible .�; �/-FIR

reconstructor H NF , which stabilizes the error system

(3) and minimizes J�;� ´ kGek2
2.

III. PROBLEM SOLUTION

To formulate the solution of RP�;�, we need to introduce

the following matrix valued function of a real argument:

�.t/ D
�

�11.t/ �12.t/

0 �22.t/

�

´ exp

��

A BB 0

0 �A0

�

t

�

: (5)

We skip the argument whenever t D h, so we write �ij

instead of �ij .h/. We shall also need the matrix � defined
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via

�

� �

0 �

�

´ exp

0

B

B

@

2

6

6

4

A BB 0 0 0

0 �A0 C 0
vCv 0

0 0 A BB 0

0 0 0 �A0

3

7

7

5

h

1

C

C

A

: (6)

Define the discrete algebraic Riccati equation (DARE)

Y D �11Y�
0
11 ��11YC

0
y.CyYC

0
y/

�1CyY�
0
11 C�12�

0
11: (7)

Its solution is said to be stabilizing if CyYC
0

y is non-singular

and the matrix
NA1 ´ �11 C LCy ;

in which L ´ ��11YC
0

y.CyYC
0

y/
�1, is Schur. It is known

[6] that if assumptions A1,2 hold, the stabilizing solution

of (7) exists and Y D Y 0 > 0. We also need the maximal

solution Xc D X 0
c � 0 of the DARE

Xc�11 ��22Xc CXc�12Xc D 0 (8)

for which the matrix �22 �Xc�12 has no eigenvalues outside

the closed unit disc.

Remark 3.1: The Riccati equation with a zero free term,

(8), which actually verifies the continuous ARE (also known

as the algebraic Bernoulli equation)

XcAC A0Xc CXcBB
0Xc D 0;

is effectively required to extract the unstable spectral sub-

space of �11 (equivalently, A), which has to be canceled by

stabilizing reconstructors. Indeed, it can be shown that kerXc

coincides with this space. If A is stable, Xc is invertible and

X�1
c is the controllability Gramian of (4). O

Finally, introduce three matrix sequences:

NAkC1 D NA1
NAk ; NA0 D I

(so, obviously, NAk D NAk
1 , we actually need this sequence just

to simplify the formulae below),

Wk D NA0
1WkC1

NA1 C C 0
y.CyYC

0
y/

�1Cy ; W� D 0

and

VkC1 D NA1Vk
NA0
1; V0 D .Xc C .I �XcY /W0/

�1.I �XcY /;

The main result of this paper, whose proof is outlined in

Section V, is as follows:

Theorem 1: Let A1–3 hold. Then Xc C .I � XcY /W0 is

invertible and the unique solution of RP�;� is as shown in

Fig. 2, where, denoting k� ´ .1 � �/�,

NFc.´/ ´
k��1
X

j D0

NAj . NA1Vk��j �1. NA0
1Wk��j � I /� I /L´�j

Ny u

Nu1

Nu2

NF .´/

NFc.´/

NFac.´/

�

I

�Wk�

�

�

Vk�

I � Wk�
Vk�

�

H

Fig. 2. The optimal ��-FIR reconstructor

is causal,

NFac.´/ ´
�1
X

j D���

NA0
�j �1.

NA0
1Wk��j � I /L´�j

is anti-causal, and H is a D/A converter with the .nv � 2n/-
valued zero-order generalized hold function

�h.�/ D
�

Cv 0
�

�.� � h/
�

I Y

0 I

�

1Œ0;h/:

The optimal kGek2
2 equals then

1

h
tr

�

�

Wk�
I �Wk�

Y
�

���1

�

Y C Vk�
� YWk�

Vk�

I �Wk�
Vk�

��

;

which is a nonincreasing function of � for any fixed �. O

Remark 3.2: It is worth emphasizing that the solution of

Theorem 1 uses matrix powers of stable matrix NA1 only,

either directly or through stable recursions for Wk and Vk .

This implies that the solution can be safely calculated for an

arbitrarily large �. O

Remark 3.3: Note that

NA1 D �11.I � YC 0
y.CyYC

0
y/

�1Cy/

is always singular, because NA1YC
0

y D 0. This means that NA1

has ny eigenvalues at the origin and the formulae for NFc.´/

and NFac.´/ can be simplified further. O

Remark 3.4: As k�, which is the length of the impulse

response of the causal part of H NF , increases, the matrix

Vk�
D NAk�

V0
NA0
k�

vanishes. In the limit, k� ! 1, the optimal

performance reads then

J1;� D 1

h
tr

�

�

Wk�
I �Wk�

Y
�

���1

�

Y

I

��

:

It can be shown that Wk�
D X� NA0

��X
NA��, where X D X 0 �

0 is the solution to the Lyapunov equation

X D NA0
1X

NA1 C C 0
y.CyYC

0
y/

�1Cy

Taking into account that �� is the length of the impulse

response of the non-causal part of H NF , it can be seen

that J1;� is exactly the optimal performance of the IIR

reconstruction with preview derived in [6]. If, in addition,

�� ! 1, we have that Wk�
D X , so that

J1;� D J1 ´ 1

h
tr

�

�

X I �XY
�

���1

�

Y

I

��

;

which is the performance of non-causal reconstruction. O

IV. FIR CARDINAL CUBIC B-SPLINES

To illustrate the proposed approach we consider in this

section the RP�;� for

Gv D Gy D 1

s2
: (9)

This signal generator can be thought of as reflecting the low-

frequency dominance of the signal to be reconstructed and

the requirement for zero steady-state error for step and ramp

components of v. In the non-causal IIR case, this problem

yields the cardinal cubic B-spline of [3], see [8, Thm. 3.3].

In [6] the optimal IIR l-causal reconstructor was derived for

this G.
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A. Solution

Bring in the minimal state-space realization

G.s/ D
�

1 0

1 0

� �

sI �
�

0 1=h

0 0

���1 �

0

h

�

:

Clearly, A1 holds true. As eAh D
�

1 1
0 1

�

, the observability

matrix of .Cy ; e
Ah/ is non-singular and thus A2 holds as

well. Since G.s/ has no stable poles, A3 holds whenever

� � 2 (and Xc D 0).

Analytic expressions for the parameters of the optimal

reconstructor are quite lengthy for general preview ratios.

To keep the exposition simple, we present below only the

formulae for the symmetric reconstructor, i.e., for � D 1=2

(consequently, only even window lengths are considered).

Define

˛ ´
p
3 � 2 � �0:2679:

Using the formulae of Theorem 1, we can calculate the causal

FIR filter,

NFc.´/ D
�

1=˛

1=˛ � 1

�

C
�

6

6

� �=2�1
X

j D0

˛j � ˛��j �2

1 � ˛2��2
´�j ;

the anti-causal FIR filter,

NFac.´/ D
�

1 � ˛
�1

�

6˛

h3

�1
X

j D��=2

p
3.1 � ˛�C2j /C Nıj C�=2

˛j
´�j ;

the matrices

W�=2 D 3.˛ C 1/

h3

��

2 �1
�1 1p

3

1
˛C1

�

�
�
p
3 �1

�1 1
˛C1

�

˛��2

�

;

V�=2 D
�

1 1

1 1

�

h3

p
3˛

˛��1

1 � ˛2.��1/
;

and two components of the interpolation kernels of H (which

are exactly as in [6]):

�h1. Q�/ D
�

1 Q� � 1
�

1Œ0;h�;

�h2. Q�/ D h3 Q�
6

�

�Q�2 C 3 Q� C
p
3 3 Q� C

p
3
�

1Œ0;h�;

where Q� ´ �=h is the normalized intersample time. Note

that all factors depending on h3 are canceled in the final

reconstructor.

The interpolation kernels �.t/ of the optimal reconstruc-

tors with .�; �/ D .4; 1=2/ and .4; 1=4/ are depicted in Fig. 3

by solid lines. Dashed lines there represent the interpolation

kernel of the non-causal IIR reconstructor, which is the

cardinal cubic B-spline of [3]. Similarly to the latter, the

optimal FIR hold functions satisfy �.kh/ D Nık for all k 2 Z.

�h h

1

(a) Preview ratio � D 1=4

�h h

1

(b) Preview ratio � D 1=2

Fig. 3. Interpolation kernels �.t/ of .4; �/-FIR optimal solutions

This implies that the reconstructed signal always interpolates

the samples. In other words, if the reconstructed signal is

injected back into the sampler, the resulting discrete signal

will coincide with Ny. This property is called the consistency,

see [2] for details.

B. Optimal performance

The optimal performance for this problem is

J�;� D .8 � ˛/˛ C .12C ˛/˛2��1 � 11.˛2�.1��/ C ˛2��/

840
p
3˛.1 � ˛2.��1//

h3

if 1=� � � � .1 � �/=� or

J�;0 D �.1C ˛2�/

12
p
3˛.1 � ˛2.��1//

h3

if � D 0. It is readily seen that J�;� is symmetric around the

midpoint � D 1=2, i.e., that J�;�=2�i D J�;�=2Ci for every

i 2 Z1::�=2�1. Moreover, the function  .�/ D ˛2�.1��/ C˛2��

attains its minimum at � D 1=2, which implies that

arg min
�

J�;� D 1=2

for every even � (if � is odd, the minimum is attained by

� D 1=2 ˙ 1=.2�/). Figs. 4(a) and 4(b) depict the optimal

cost for � D 4 and � D 8, respectively. One can see that the

reconstruction performance visibly improves when at least

one step of preview is available.

It is of interest to quantify the deterioration of the perfor-

mance achievable with FIR reconstruction with respect to the

performance of the non-causal IIR reconstruction (cardinal

cubic B-splines), which is J1 D 8�˛

840
p

3
h3, see [6]. The table

below shows this quantification for several even � and the

optimal � D 1=2:

� 2 4 6 8

J�;1=2=J1 � 1 0.95524 0.05210 0.00368 0.00026

While close to 100% at � D 2, the deterioration with respect

to J1 at � D 4 is already about 5% and drops below 1‰

at � � 8.

C. Frequency Power Response

The signal generator in (9) is not a real system, but rather

a shaping filter used in the design of �.t/ to reflect our

assumption that v is a lowpass signal and our requirement

that the reconstruction error for step and ramp v is zero

in steady state. Once designed, however, the reconstructor

will operate on any sequence Ny. It is therefore of interest

to understand how the reconstruction error e is connected

0 1 2 3

0:077

0:424

��

J4;�

(a) � D 4

0 1 2 3 4 5 6 7

0:075

0:424

��

J8;�

(b) � D 8

Fig. 4. Optimal cost J�;� vs. preview length ��
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with v itself, rather than with an artificial signal w. One

possibility to shed light on this connection is through a

frequency domain analysis.

The system connecting v and e is

Gev ´ I � H NFSFa; (10)

where Fa is an antialiasing filter, which may be used to

render the ideal sampling stable. This system is periodically

time varying, so its frequency-domain analysis is more com-

plicated than that of LTI systems. There are generalization

of the notion of the frequency response to sampled-data (and

other periodic) systems, see [12] and the references therein.

To account for possible folding effects, these generalizations

determine the frequency response at each frequency as an

infinite-dimensional operator, which is hard to visualize. The

magnitude frequency response, defined then as a norm of

such operators, has all aliased frequencies of input signals

mixed up in it. This is fine for the analysis of system

norms, but less appropriate for a harmonic analysis. In fact,

if applied to Gev defined above, the methods from [12] would

result in the frequency response gain larger than one at each

frequency, which makes no sense.

To circumvent this problem, we adopt the frequency power

response (FPR), defined in [6] as the power of the response

of a system to the harmionic signal ej!t :

Pev.!/ ´ lim
T !1

1

2T

Z T

�T

j.Gev ej!t /.t/j2dt

D 1

h

Z h

0

j.Gev ej!t /.t/j2dt

(no limit is required because Gev is h-periodic). As shown

in [6, Thm. 4.1], the FPR of the error system defined by

(10) (we assume hereafter, for simplicity, that there is no

antialiasing filter, i.e., that Fa D I ) equals

Pev.!/ D
ˇ

ˇ1 � 1

h
˚.j!/

ˇ

ˇ

2 C 1

h2

X

i2Znf0g
j˚.j.! C 2�

h
i //j2;

where ˚.j!/ is the Fourier transform of the hold function

�.t/ (the impulse response of H NF ). The second term in

the right-hand side above contains aliased terms and can be

though of as reflecting the deterioration of the reconstruction

error due to sampling.

The FPR for our example are presented in Fig. 5 for

� D 4 and two different preview ratios. The dashed lines

there represent the FPR of the non-causal IIR solution

P
e
v
.!

/

!!N

2

0:5

(a) � D 1=4

P
e
v
.!

/

!!N

2

0:5

(b) � D 1=2

Fig. 5. Frequency power responses for G as in (9) and � D 4

(cardinal cubic B-splines) and the dotted lines—that of the

classical sinc-interpolator. We shall be mostly interested in

the frequency range below the Nyquist frequency !N. In this

range the error power is a monotonically increasing function

of !. This is a result of our choice of weighing function,

1=s2, which places more emphasis on low frequencies. The

requirement for stabilizing the error function translates to

Pev.0/ D PPev.0/ D 0.

V. PROOF (OUTLINE)

Because of space limitations, we only outline the proof of

our main result, Theorem 1.

MGe.´/

Mw

Ny Mu

Mv
MeMG.´/

JF .´/
�

Fig. 6. Reconstruction setup in the lifted domain

By applying the lifting technique [10], the problem can be

converted to a pure discrete L2 estimation problem for the

system in Fig. 6. This is an LTI problem for the plant

MG.´/ D
� MGv.´/

KGy.´/

�

D

2

4

NA KB
JCv

Cy

MDv

0

3

5 ; (11)

where NA D eAh 2 R
n�n,

KB W L ! R
n Mv 7!

Z h

0

eA.h��/B Mv.�/d�

JCv W R
n ! L N� 7! Cv eA� N�

MDv W L ! L Mv 7! Cv

Z �

0

eA.���/B Mv.�/d�

and FIR

JF .´/ D
k��1
X

iD���

JFk� ;i ´
�i

where the coefficients JFk�;i W R
n Ny ! L are to be determined

and k� ´ .1 � �/� 2 Z1::� is the length of the causal part

of JF .´/. It is shown in [11] that this problem can be reduce

to a static optimization problem as follows.

Let ˘u 2 R
n�n be an orthogonal projection matrix such

that its kernel coincides with the unstable spectral subspace

of A, i.e., kerXc D Im˘u and the matrix Xc C ˘u is

invertible. Consider now the optimization problem

min
F

tr

�

�

I �F
�

˚

�

I

�F
0

��

(13a)

subject to the (stability) constraint

.C v � F C y/˘u D 0; (13b)

where

˚ ´
�

Dv

Dy

�

�

D
0
v D

0
y

�

C
�

C v

C y

�

.Xc C˘u/
�1

�

C
0
v C

0
y

�
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and

�

C v Dv

�

´

2

6

6

6

4

JCv
MDv 0 � � � 0

JCv
NA JCv

KB MDv � � � 0
:::

:::
:::

: : :
:::

JCv
NA��1 JCv

NA��2 KB JCv
NA��3 KB � � � MDv

3

7

7

7

5

;

�

C y Dy

�

´

2

6

6

6

4

Cy 0 0 � � � 0

Cy
NA Cy

KB 0 � � � 0
:::

:::
:::

: : :
:::

Cy
NA��1 Cy

NA��2 KB Cy
NA��3 KB � � � 0

3

7

7

7

5

:

It was proved in [11] (see also [9]) that the solution of

this problem, if it exists, produces the solution to the lifted

estimation problem in Fig. 6. Namely, each (block) row of

the optimal F contains the coefficients of the optimal JF .´/
for different �:

F D

2

6

6

6

4

JF1;0
JF1;�1 � � � JF1;1��

JF2;1
JF2;0 � � � JF2;2��

:::
:::

: : :
:::

JF�;��1
JF�;��2 � � � JF�;0

3

7

7

7

5

:

In [11] the optimization problem (13) was solved exploiting

the state-space realization of MG.´/ so that the computational

burden is linear in �. The idea in [11] is to treat D�
and C � as responses of dynamical systems with two-point

boundary conditions, which simplifies manipulations over

these matrices. This reduction, however, required that KGy.1/

has full column rank. This assumption is clearly void for (11)

as KGy.1/ D 0.

We thus cannot use the approach and formulae of [11].

Instead, we represent D� and C � via implicit descriptor sys-

tems with two-point boundary conditions as proposed in [13].

This representation facilitates the treatment of systems with

singular “D” and “A” matrices and leads, via some lenghtly

manipulation, to the closed-form solution of Theorem 1.

VI. CONCLUDING REMARKS

In this paper the problem of reconstructing an analog

signal from sampled measurements has been formulated as

an L2 sampled-data estimation problem with the constraint

that the estimator (reconstructor) has prescribed lengths of

its impulse response and preview. A closed-form solution

to this problem in the form of an FIR discrete filter and a

zero-order generalized hold has been derived. The solution

is based on the standard sampled-data Kalman filter Riccati

equation and two Lyapunov recursions over the length of

the impulse response of the reconstructor. The solution is

numerically stable and can accomodate asymptotic behavior

constraints by the use of unstable weighing functions. The

procedure has been illustrated by designing an FIR version

of the cardinal cubic B-splines.
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