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Subexponential convergence for information aggregation on regular trees

Yashodhan Kanoria and Andrea Montanari

Abstract— We consider the decentralized binary hypothesis
testing problem on trees of bounded degree and increasing
depth. For a regular tree of depth ¢ and branching factor
k > 2, we assume that the leaves have access to independent
and identically distributed noisy observations of the ‘state of the
world’ s. Starting with the leaves, each node makes a decision
in a finite alphabet M, that it sends to its parent in the tree.
Finally, the root decides between the two possible states of the
world based on the information it receives.

We prove that the error probability vanishes only subex-
ponentially in the number of available observations, under
quite general hypotheses. More precisely, in the case of binary
messages, decay is subexponential for any decision rule. For
general (finite) message alphabet M, decay is subexponential
for ‘node-oblivious’ decision rules, that satisfy a mild irre-
ducibility condition. In the latter case, we propose a family
of decision rules with close-to-optimal asymptotic behavior.

I. INTRODUCTION

Let G = (V, E) be a (possibly infinite) network rooted at
node @. Assume that independent and identically distributed
noisy observations of an hidden random variable s € {0,1}
are available at a subset U C V of the vertices. Explicitly,
each ¢ € U has access to a private signal z; € X
where {x;};cy are independent and identically distributed,
conditional on s. The ‘state of the world’ s is drawn from
a prior probability distribution © = (g, 7). The objective
is to aggregate information about s at the root node under
communication constraints encoded by the network structure,
while minimizing the error probability at @.

We ask the following question:

How much does the error probability at the root
node ¢ increase due to these communication con-
straints?

In order to address this question, consider a sequence of
information aggregation problems indexed by t. Information
is revealed in a subset of the vertices U; C V. There are
t rounds in which information aggregation occurs. In each
round, a subset of the nodes in V' make ‘decisions’ that are
broadcasted to their neighbors. In round 0, nodes ¢ € Uy
with distance d(g,i) = ¢ (with d(-, -) being the graph
distance) broadcast a decision o; € M to their neighbors,
with M a finite alphabet. In the next round, nodes ¢ € V
with distance d(g, i) = t — 1 broadcast a decision o; € M to
their neighbors. And so on, until the neighbors of g announce
their decisions in round ¢. Finally, the root makes its decision.
The decision of any node ¢ is a function of decisions of i’s
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neighbors in earlier rounds, and, if ¢ € Ui, on the private
signal z; received by 1.

Clearly, the root can possibly access only the private
information available at nodes ¢ € V with d(g,i) < t
(with d( -, -) the graph distance). We can therefore assume,
without loss of generality, that U; C {i € V : d(9,7) < t}.
It is convenient to think of U; as the information horizon at
time t.

Consider first the case in which communication is un-
constrained. This can be modeled by considering the graph
with vertices V. = {0,1,2,3,...} and edges E =
{(2,1),(2,2),(2,3),...}. In other words, this is a star net-
work, with the root at the center. Without loss of generality,
we take Uy = {1,...,|U|}, with |U;| T 00 as ¢ — o.

A simple procedure for information aggregation would
work as follows. Each node 7 computes the log-likelihood
ratio (LLR) ¢(x;) corresponding to the observed signal, and
quantizes it to a value o;. The root adds up the quantized
LLRs and decides on the basis of this sum. It follows from
basic large deviation theory [2] that, under mild regularity
assumptions, the error probability decreases exponentially in
the number of observations, i.e.,

P{ow#s}zexp{—@(wt\)}. (D

This result is extremely robust:

(1) It holds for any non-trivial alphabet | M| > 2;

(2) Using concentration-of-measure arguments [3], [4] it
is easy to generalize it to families of weakly dependent
observations [5];

(3) It can be generalized to network structures G' with weak
communications constrains. For instance, [6] proved that
the error probability decays exponentially in the number
of observations for trees of bounded depth. The crucial
observation here is that such networks have large degree
diverging with the number of vertices. In particular, for a
tree of depth ¢, the maximum degree is at least n'/t.

At the other extreme, Hellmann and Cover [7] considered
the case of a line network. In our notations, we have V =
{,1,2,3,...}, E = {(9,1),(1,2),(2,3),...}, and U; =
{1,2,...,t}. In [7] they proved that, as long as the LLRs
are bounded (namely |¢(x;)| < C almost surely for some
constant C'), and the decision rule is independent of the node,
the error probability remains bounded away from 0 as t —
0.

If the decision rule is allowed to depend on the node, the
error probability can vanish as ¢ — oo provided |[M| > 3
[8], [9]. Despite this, even if the probability of error decays
to 0, it does so much more slowly than for highly connected
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networks. Namely, Tay, Tsitsiklis and Win [10] proved that

P{o, # s} = exp{ — O(|U|")} )

for some p < 1. In other words, the communication
constraint is so severe that, after ¢ steps, the amount of
information effectively used by the root is equivalent to a
vanishingly small fraction of the one within the ‘information
horizon’.

These limit cases naturally lead to the general question:
Given a rooted network (G,¢), a sequence of information
horizons {U;};>1 and a finite alphabet M, can information
be aggregated at the root in such a way that the error
probability decays exponentially in |U;|? The question is
wide open, in particular for networks of with average degree
bounded or increasing slowly (e.g. logarithmically) with the
system size.

Networks with moderate degree arise in a number of prac-
tical situations. Within decentralized detection applications,
moderate degree is a natural assumption for interference-
limited wireless networks. In particular, systems in which a
single root node communicates with a significant fraction of
the sensors are likely to scale poorly because of interference
at the root. Standard models for wireless ad hoc networks
[11] are indeed based on random geometric graphs where
each node is connected to a logarithmic number of neighbors.

A different domain of applications for models of decen-
tralized decision making is social learning [12]. In this case,
each node corresponds to an agent, and the underlying graph
is the social network across which information is exchanged.
Also in this case, it is reasonable to assume that each agent
has a number of neighbors which is bounded, or diverges
slowly as the total number of agents grows. In many graph-
theoretic models of social networks [13], although a small
number of nodes can have large degree, the average degree
is bounded or grows logarithmically with the network size.

Given the slow progress with extreme network structures
(line networks and highly-connected networks), the study of
general moderate degree networks appears extremely chal-
lenging. In this paper we focus on regular trees. More pre-
cisely, we let G be the (infinite) regular tree with branching
factor k£ > 2, rooted at ¢ (each node has k descendants and,
with the exception of the root, one parent). The information
horizon U, is formed by all the nodes at distance ¢ from the
root, hence |U;| = k'. Under a broad set of assumptions, we
prove that the probability of error decays subexponentially
in the size of the information set, cf. Eq. (2), where p =
pam < 1 depends on the size of the alphabet | M| = m.

More precisely, we establish subexponential convergence
in the following cases:

1) For binary messages |M| = 2 and any choice of the de-
cision rule. In fact, we obtain a precise characterization
of the smallest possible error probability in this case.

2) For general message alphabet 3 < | M| < oo provided
the decision rule does not depend on the node, and
satisfies a mild ‘irreducibility’ condition (see Section
IV-B for a definition).

In the latter case, one expects that exponential convergence
is recovered as the message set gets large. Indeed we prove
that, for a given k£ > 2, the optimal exponent in Eq. (2) obeys

Ch
1— = <pm<l—exp{—CoM|}. 3)
M
The upper bound follows from our general proof for irre-
ducible decision rules, while the lower bound is obtained by
constructing an explicit decision rule that achieves it.

Our investigation leaves several interesting open problems.
First, it would be interesting to compute the optimal exponent
p = p(k, M) for given degree of the tree and size of
the alphabet. Even the behavior of the exponent for large
alphabet sizes is unknown at the moment (cf. Eq. (3)).
Second, the question of characterizing the performance limits
of general, node-dependent decision rules remains open for
|M| > 3. Third, it would be interesting to understand the
case where non-leaf nodes also get private signals, e.g.,
Ui = {i:14 € V,d(g,i) < t}. Finally, this paper focuses
on tree of bounded degree. It would be important to explore
generalization to other graph structures, namely trees with
slowly diverging degrees (which could be natural models for
the local structure of preferential attachment graphs [14]),
and loopy graphs. Our current results can be extended to trees
of diverging degree only in the case of binary signals. In this
case we obtain that the probability of error is subexponential

P{oy # s} = exp { — o(|U:])} @)

as soon as the degree is sub-polynomial, i.e. k = o(n?) for
all a > 0.

The rest of the paper is organized as follows: Section
I defines formally the model for information aggregation.
Section III presents our results for binary messages | M| = 2.
Section IV treats the case of decision rules that do not depend
on the node, with general M.

II. MODEL DEFINITION

As mentioned in the introduction, we assume the network
G = (V,E) to be an (infinite) rooted k-ary tree, i.e. a tree
where each node has k descendants and one parent (with
the exception of the root, that has no parent). Independent
noisy observations (‘private signals’) of the state of the world
s are provided to the nodes at ¢-th generation U, = {i €
V 1 d(g,i) = t}. These will be also referred to as the
‘leaves’. Define n = |U;| = k*. Formally, the state of the
world s € {0,1} is drawn according to the prior 7 and for
each ¢ € U; an independent observation x; € X is drawn
with probability distribution po(-) (if s = 0) or py(-) Gf
s = 1). For notational simplicity in this short version, we
assume that X = {0,1}, and that ps(x) = (1 — 0)I(z =
s) + 0l(z # s) for s = 0,1; where § € (0,1/2). Also, we
exclude degenerate cases by taking mg,m; > 0. We refer to
the two events {s = 0} and {s = 1} as the hypotheses H
and H;.

In round 0O, each leaf ¢ sends a message o; € M to its
parent at level 1. In round 1, the each node j at level 1
sends a message 0; € M to its parent at level 2. Similarly
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up to round ¢. Finally, the root node ¢ makes a decision o, €
{0,1} based on the k messages it receives. The objective is
to minimize Py, = P(o, # s). We call a set of decision
rules optimal if it minimizes Pe,;.

We will denote by 0i the set of children of node i. We
denote the probability of events under Hy by Py(-), and the
probability of events under H; by P;(-). Finally, we denote
by f; the decision rule at node 4 in the tree. If ¢ is not a
leaf node and i # ¢, then f; : M* — M. The root makes
a binary decision f, : M* — {0,1}. If i is a leaf node, it
maps its private signal to a message, f; : {0,1} — M. In
general, f;’s can be randomized.

III. BINARY MESSAGES

In this section, we consider the case M = {0, 1}, i.e., the
case of binary messages.

Consider the case mg = m; = 1/2. Define the majority
decision rule at non-leaf node 7 as follows: o; takes the value
of the majority of oy; (ties are broken uniformly at random).

It is not hard to see that if we implement majority updates
at all non-leaf nodes, we achieve

Pinaj(00 # 5) =exp {2 ([(k+1)/2]")} ()

Note that this is an upper bound on error probability under
majority updates.

Our main result shows that, in fact, this is essentially the
best that can be achieved.

Theorem 3.1: Fix . There exists C' < oo such that for
all k € IN and t € IN, for any combination of decision rules
at the nodes, we have

k4+1\
P(oy # 5) > exp {C (;) } ©)
In particular, the error probability decays subexponentially
in the number of private signals n = k', even with the

optimal protocol.

A. Proof of Theorem 3.1

We prove the theorem for the case 79 = m; = 1/2. The
proof easily generalizes to arbitrary .

Also, without loss of generality we can assume that, for
every node 1,

P(s=0]|oc; =1) — P(s =0]|o; =0)

)

(otherwise simply exchange the symbols and modify the
decision rules accordingly).

Denote by 7} the (negative) logarithm of the ‘type I error’
in 0;, i.e. n; = —log(P(s = 0,0; = 1)). Denote by 7} the
(negative) logarithm of the ‘type II etror’ in oy, ie. 7] =
—log(P(s =1,0; = 0)).

The following is the key lemma in our proof of Theorem
3.1.

Lemma 3.2: Given 6 > 0, there exists C = C(6) > 0
such that for any & we have the following: There exists an

optimal set of decision rules such that for any node ¢ at level
T €N,

min; < C*((k+1)/2)%" . (®)
Proof: [Proof of Theorem 3.1] Applying Lemma 3.2 to
the root ¢, we see that min(n},n5) < C((k + 1)/2)". The
result follows immediately. [ ]
Lemma 3.2 is proved using the fact that there is an
optimal set of decision rules that correspond to deterministic
likelihood ratio tests (LRTSs) at the non-leaf nodes.
Definition 3.3: Choose a node . Fix the decision
functions of all descendants of i. Define L;(0p;) =
P(Hl‘o'ai)/P(HO‘Uai)-
a) The decision function f; is a monotone deterministic
likelihood ratio test if:
(1) It is deterministic.
(ii) There is a threshold 6 such that

P(f; = 0,L; > 0) = 0

b) The decision function f; is a deterministic likelihood
ratio test if either f; or f{ is a monotone deterministic
likelihood ratio test. Here f{ is the Boolean complement
of fz

The next lemma is an easy consequence of a beautiful
result of Tsitsiklis [15]. Though we state it here only for
binary message alphabet, it easily generalizes to arbitrary
finite M.

Lemma 3.4: There is a set of monotone deterministic
likelihood ratio tests at the nodes that achieve the minimum
possible P(o, # s).

The proof is available in the full version [1].

Clearly, if f; is a monotone LRT, Eq. (7) holds. In fact,
we can argue that there is a set of deterministic monotone
LRTs with strict inequality in Eq. (7), i.e., such that

]P)(S = 1|(72‘ = 1) IP(S = 1‘0’1‘ = 0)
P(s=0|c;=1) = P(s=0|o; =0)

holds for all ¢, that are optimal. See the full version [1] for
details.

Definition 3.5: Let @ and 3 be binary vectors of the same
length 7. We say @ = S if a; > B; forall i € {1,2,...,7}.
We now prove Lemma 3.2.

Proof: [Proof of Lemma 3.2]

From Lemma 3.4 and Eq. (9), we can restrict attention to
monotone deterministic LRTs satisfying Eq. (9).

We proceed via induction on level 7. For any leaf node
i, we know that 0, = n! = —log(d/2). Choosing C' =
—log(6/2), Eq. (8) clearly holds for all nodes at level 0.
Suppose Eq. (8) holds for all nodes at level 7. Let ¢ be a
node at level 7+ 1. Let its children be 9i = {c1,ca, ..., ¢k}
Without loss of generality, assume

€))

Moy = Moy = oo = M, (10)
Claim A: We can also assume
Ne, < ey <<l (11
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Recall that f; : {0,1}* — {0,1} is the decision rule at
node 7. Assume the first bit in the input corresponds to o, ,
the second corresponds to o.,, and so on. Using Lemma 3.4,
we can assume that f; implements a deterministic likelihood
ratio test. Define the k-bit binary vectors w® = (111...1),
w! = (011...1), ..., w* = (00...0). From Lemma 3.4
and Eq. (9), it follows that f;(w’) = I(j < jo) for some
jo€{0,1,... .k, k+1}.

Claim B: Without loss of generality, we can assume that
j(]?éoal’ldj()#k-l-l.

See the full version [1] for proofs of Claims A and B.

Using Claim B, we can assume jg € {1,...,k} without
loss of generality. Now w >~ wlo~1 contribute to type I error
and w < w’® contribute to type II error. It follows that

k
m< Y on, < (k—jo+ D,

(12)
J=Jjo
Jo

<> < ok, (13)
j=1

where we have used the ordering on the error exponents
(Egs. (10) and (11)). Egs. (12) and (13) lead immediately to

Wi, o/, < (k1) (14)

Now, for any z,y > 0, we have z +y > 2,/zy. Plugging
x =1;/7,, and y =1;/n;, ., we obtain from Eq. (14)

k+1)°
1,0 1 i
nin; S <2> 77Cj0 77Cj0 .

By our induction hypothesis 7., n: < C*((k +1)/2)*".
Thus, nin! < C?((k + 1)/2)2"+1) as required. Induction

completes the proof. [ ]

5)

IV. ‘NODE-OBLIVIOUS’ RULES WITH NON-BINARY
MESSAGES

In this section we allow a general finite message alphabet
M that need not be binary. However, we restrict attention
to the case of node-oblivious rules: The decision rules f; at
all nodes in the tree, except the leaves and the root, must
be the same. We denote this ‘internal node’ decision rule
by f: M* — M. Also, the decision rules used at each of
the leaf nodes should be same. We denote the leaf decision
rule by g : {0,1} — M. The decision rule at the root is
denoted by h = f, : M¥ — {0,1}. We call such (f,g,h) a
node-oblivious decision rule vector.

Define m = |M|. In Section IV-A, we present a scheme
that achieves

P(o, # 5) :exp{—Q({k‘(l —1/m) }t)} )

when the error probability in the private signals is sufficiently
small. Next, under appropriate assumptions, we show that
the decay of error probability must be sub-exponential in
the number of private signals k.

(16)

A. An efficient scheme
For convenience, we label the messages as

-m+1 —m+3 m—1
= 1
M { T R } )

The labels have been chosen so as to be suggestive (in a
quantitative sense, see below) of the inferred log-likelihood
ratio. Further, we allow the messages to be treated as real
numbers (corresponding to their respective labels) that can
be operated on. In particular, the quantity S; = 5 oc is
well defined for a non-leaf node <.

The node-oblivious decision rule we employ at a non-leaf
node i # ¢ is

cedi

Si/k+(m—1)/2 m—1 . )
{%"};WJ +mel S > 0

(18)

Note that the rule is symmetric with respect to a inversion
of sign, except that S; = 0 is mapped to the message 1/2
when m is even.

The rule g(x;) used at the leafs is simply g(1) = (m—1)/2
and g(0) = —(m — 1)/2. The decision rule at the root is

h(oag){ 1, if S, >0

0, otherwise.
If we associate Hy with negative quantities, and H; with pos-
itive quantities, then again, the rule at the leafs is symmetric,
and the rule at the root is essentially symmetric (except for
the case S, = 0).

Lemma 4.1: Consider the node-oblivious decision rule
vector (f,g,h) defined above. For k > 2 and m > 3, there
exists 09 = do(m, k) > 0 such that the following is true for
all 6 < do:

(i) Under Hy, for node ¢ at level 7 > 0, we have

—logP[o; = —(m—1)/2+1] > (I/m){k (1 —1/m) }T
(20)

19)

fori=1,2,...,m—1.
(i) Under H;, for node 7 at level 7 > 0, we have

—logP[o; = (m—1)/2—1] > (I/m){k (1 —1/m) }T
21

forl=1,2,...,m—1.
Proof: We prove (i) here. The proof of (ii) is analogous.
Assume Hjy. Define v = k(1—-1/m) and C =
klogm/(k — 1). We show that, in fact, for suitable choice
of Jp the following holds: If § < Jg, then for any node ¢ at
any level 7 > 0,

—logP[o; = —(m—1)/2+1] >

(I/m)y" +C (22)

We proceed by induction on 7. Consider ¢ at level 7 = 0.
We have Py [0; = —(m—1)/2+1] =0forl =1,2,...,m—2
and Py [o; = (m — 1)/2] = 6. Choosing dy = exp(—1—C),
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we can ensure that Eq. (22) holds at level 0. Note that for
k> 1, we have dp = 1/(em).

Now suppose Eq. (22) holds at level 7. Consider node ¢
at level 7 + 1. From Eq. (18), for o; = —(m —1)/2 + 1 we
need

Si 2 k[=(m —1)/2+1(1 - 1/m)]

For every oy, = (—(m — 1)/2 4+ l;,—(m — 1)/2 +
lay...,—(m —1)/24l) such that Eq. (23) holds, we have
Sy 1 > KI(1 = 1/m). Thus,

(23)

k
Po(0ai) < exp [ —kC — (1/m)y" le

j=1

<exp (—kC — (1/m)ly™ ) (24)

Obviously, there are at most mF such op;. Thus,

<mPexp (—kC — (1/m)ly™ 1)
= exp (—C — (1/m)ly™)
Thus, Eq.(22) holds at level 7 + 1. Induction completes the
proof. [ ]
Theorem 4.2: For k > 2 and m > 3, there exists dg =

do(m, k) > 0, and a node-oblivious decision rule vector, such
that the following is true: For any § < &y, we have

Plos # 5] Sexp{—mZ_ml{k’(l ~1/m) }t}

m—1 o
=expq — o n

with p =1 +log(1 —1/m)/logk.
The theorem follows easily from Lemma 4.1 and the root
decision rule Eq. (19). See the full version [1] for details.

(25)

B. Subexponential decay of error probability

Define n = kt, i.e., n is the number of private signals
received, one at each leaf. The scheme presented in the
previous section allows us to achieve error probability that
decays like exp(—Q({k(1—1/m)}")) = exp(—Q(n”)),
where p = 1+ log(l — 1/m)/logk ~ 1 — 1/(mlogk)
for m > 1. In this section we show that under appropriate
assumptions, error probability that decays exponentially in
n, i.e., exp(—O(n)), is not achievable with node-oblivious
rules.

In this section we call the letters of the message alphabet
M ={1,2,...,m}. For simplicity, we consider only deter-
ministic node-oblivious rules, though our results and proofs
extend easily to randomized rules.

We define here a directed graph G with vertex set M
and edge set £ that we define below. We emphasize that G
is distinct from the tree on which information aggregation
is occurring. There is a directed edge from node p; € M
to node p; € M in G if there exists @ € M?F such that
; appears at least once in @ and f(@) = p,. Informally,
(pi,pj) € & if p; can be ‘caused’ by a message vector

received from children that includes p;. We call G the
dependence graph.

We make the following irreducibility assumptions on the
node-oblivious decision rule vectors (f, g, h) under consid-
eration (along with leaf and root decision rules).

Assumption 1: The dependence graph G is strongly con-
nected. In other words, for any ;; € M and p; € M, there
is a directed path from p; to p; in G.

Assumption 2: There exists a level 7, € N such that for
node i at level 7,, we have Py(o; = p) > 0 for all € M.

Note that Po(0; = p) > 0 implies Py(0; = p) > 0 by
absolute continuity of Py(z;) w.r.t. Py (z;).

Assumption 3: There exists u— € M, up. € M, n >0
and 74 € N such that, for all 7 > 74 the following holds: For
node ¢ at level 7, we have Py(0; = p—) > n and Py(0; =
p) > 7).

In other words, we assume there is one ‘dominant’ message
under each of the two possible hypothesis.

It is not hard to verify that for £k > 2, m > 3 and § <
do(m, k) (where §g is same as in Lemma 4.1 and Theorem
4.2), the scheme presented in the previous section satisfies
all four of our assumptions. In other words, the assumptions
are all satisfied in the regime where our scheme has provably
good performance.

Definition 4.3: Consider a directed graph G = (V, £) that
is strongly connected. For u,v € V, let d,, be the length
of the shortest path from u to v. Then the diameter of G is
defined as

diameter(G) = max max dy, .
u€V veEV,v#£u

Theorem 4.4: Fix m and k > 2. Consider any node-
oblivious decision rule vector ( f, g, h) such that Assumptions
1, 2 and 3 are satisfied. Let d be the diameter of the
dependence graph G. Then, there exists C' = C(f,m, k) <
oo such that we have

IP[% #* s] > exp {—C’nﬁ} , (26)

. —d
% <1

Now G has m vertices, so clearly d < m—1. The following
corollary is immediate.

Corollary 4.5: Fix m and k > 2. Consider any node-
oblivious decision rule vector ( f, g, h) such that Assumptions
1, 2 and 3 are satisfied. Then, there exists C' = C(f, m, k) <
oo such that we have

Ploy # s] > exp {—Cn’} ,

where p =1+

27
log(1—k~(m—1)) 1

(m—1)logk

Thus, we prove that under the above irreducibility assump-
tions, the error must decay subexponentially in the number
of private signals available at the leaves.

Remark 4.6: We have Po(0gy = (fi—sfbey.onyfi)) >
nk. It follows that we must have f,(u_,p_,...,pu_) =0
(else the probability of error is bounded below by myn* for
any t). Similarly, we must have fu(p4, pig,...,us) = 1. In

particular, p_ # .

where p =1+
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The following lemma is straightforward to obtain (see [1]).

Lemma 4.7: If Assumption 2 holds, then for a node ¢ at
any level 7 > 7, we have Py(o; = p) > 0 for all p € M.

Lemma 4.8 can be thought of as a quantitative version of
Lemma 4.7, showing that the probability of the least frequent
message decays subexponentially.

Lemma 4.8: Suppose Assumptions 1, 2 and 3 are satisfied.
Fix s € {0,1}. Consider a node i at level 7. Define
¢ = mingemPlo; = p|Hs). Let 7 = max(7p,7a)
(cf. Assumptions 2, 3). Let d = diameter(G). There exists
C' = C'(f,m,k) < oo such that for any a € NU {0} and
be{0,1,...,d — 1}, we have,

Crotadss > exp {—C'(k* — 1)} (28)

Proof: Assume Hj holds, i.e. s = 0. The proof for
s =1 is analogous.
We prove that, in fact, the following stronger bound holds:

—log(Crutadts) < C' (k% —1)* —log(1/n)/(k* - 2).
(29)

We proceed via induction on a. First consider a = 0.
Consider a node i at level 7. + b for b € {0,1,...,d —
1}. Consider the descendants of node 4 at level 7. For any
€ M, we know from Lemma 4.7 that there must be some
assignment of messages to the descendants, such that o; = pu.
It follows that

b
Crogp > CF (30)

Thus, choosing C’ = k?~1(—1log (., ) + log(1/n)/(k¢ — 2),
we can ensure that Eq. (29) holds for ¢ = 0 and all b €
{0,1,...,d -1}

Now suppose Eq. (29) holds for some a € N U {0}.
Consider a node 4 at level 7, + (a + 1)d + b. Let D be the
set of descendants of node 7 at level 7, + ad + b. Note that
|D| = k<. Consider any ;1 € M. By Assumption 1, there is
a directed path in G of length at most d going from p to p_.
By Remark 4.6, we know that (u—, u—) € €. It follows that
there is a directed path in G of length exactly d going from
1 to p—. Thus, there must be an assignment of messages op
to nodes in D, including at least one occurrence of p_, such
that o; = p. Using Assumption 3, we deduce that

> pokd-1
Cu+(a+1)d+b = nC—,—*+ad+b
Rewriting as
—log Cr, 4 (at1)asp <
(k" = 1)(=1og Cr. yaats) +log(1/n),
and combining with Eq. (29), we obtain
—log(Cr, 4 (at1)dtn) <
C'(k? = 1) — log(1/n)/(k* — 2).

Induction completes the proof. [ ]
Theorem 4.4 follows easily from Lemma 4.8 (see [1]).
Remark 4.9: For the scheme presented in Section IV-A,

we have d = log;, m, where d = diameter(G). For any € > 0,

Theorem 4.4 provides a lower bound on error probability
with p < 1 — Cy/m!*€ for some C; = Cy(k,€) > 0. This
closely matches the m dependence of the upper bound on
error probability we proved in Theorem 4.2.

C. Discussion of the irreducibility assumptions

We already mentioned that the efficient node-oblivious
rule presented in Section IV-A satisfies all of Assumptions 1,
2 and 3. Moreover, it is natural to expect that similar schemes
based on propagation of quantized likelihood ratio estimates
should also satisfy our assumptions.

In the full version, we discuss our assumptions taking the
cases of binary and ternary messages as examples. We find
that for the case of binary messages, each of the irreducibility
assumptions must be satisfied by any node-oblivious rule for
which error probability decays to 0. For the ternary case
as well, we argue that schemes violating our irreducibility
assumptions should be suboptimal.

We argued above that our irreducibility assumptions are
quite reasonable in various circumstances. In fact, we expect
the assumptions to be a proof artifact, and conjecture that a
subexponential convergence bound holds for general node-
oblivious rules. A possible approach to eliminate our assump-
tions would be to prune the message alphabet M, discarding
letters that never appear, or appear with probability bounded
by exp(—Q(k')) (because they require descendants from a
strict subset of M).
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