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Abstract— In this paper, we consider distributed algorithms
for consensus of multiple agents in presence of convex state
constraints on individual agent state. Each agent’s state is
assumed to be constrained in a distinct compact convex set.
We show that following the proposed distributed protocol, the
agents are guaranteed to reach an agreement on a state that
lies at the intersection of individual convex constraint sets. This
is accomplished by introducing and sharing auxiliary variables
in the network. The auxiliary variable utilizes a logarithmic
barrier function to form a convex potential that is augmented
to the consensus protocol. The consensus algorithm is then
interpreted as a gradient-descent algorithm which operates with
the desire to reach consensus while avoiding violation of the
constraint sets. This modified consensus algorithm is applicable
when each agent is required to satisfy its own constraints
while synchronizing with others, e.g., attitude synchronization
in presence of attitude constraints. An example is given for two
different network topologies to evaluate the effectiveness and
the convergence rate of the proposed algorithm.

I. INTRODUCTION

One of the prime conceptual models for networked dy-

namic systems is the agreement protocol- in fact, this model

is so well-studied that it has multiple names, among them,

consensus algorithm, Laplacian dynamics, and the heat ker-

nel [1], [3], [4], [6]. Its applications include modeling heat

distribution in a medium, random walks and electrical net-

works, flocking, attitude alignment, rendezvous, distributed

averaging, and even language development. In the agreement

protocol, the first order dynamics of each node in the

network- abstracted in terms of a graph- is driven by the

sum of the differences that it measures with respect to its

neighbors. The system of nodes is then allowed to evolve

from a particular initialization. The linearity and homogene-

ity of the node evolution admits a compact representation in

terms of an unforced linear time-invariant dynamical system,

where the evolution matrix is specified by the negative of

underlying graph Laplacian. This on the other hand, allows

one to examine system theoretic issues, such as stability

and convergence rate, in terms of the spectra of the graph

Laplacian. More recently, the dynamics of the agreement

protocol in switching, random, noisy, and directed networks,

have also been considered as they pertain directly to coop-

eration and control of multiple networked vehicle systems.

Moreover, the basic setup has been extended to nonlinear

models including unicycle models [7] and attitude dynamics

[9], [10]. We note that the agreement protocol is inherently

an “uncontrolled” and “unconstrained” dynamical systems,

with a trajectory that is determined by initial conditions

and the interconnection topology. In the meantime, most
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of the previous works in this area have not considered the

problems where the agent values are constrained. Examples

for pertinent situations where the presence of constraints in

individual agent’s configuration space is important include

motion planning and attitude alignment problems in presence

of agent’s restricted regions or attitude zones. Constrained

consensus problem has been examined in a handful of

recent research works. In this venue, Moore et al. [13] has

examined the constrained consensus when a subset of state

variables are constrained. In Nedic et al. [11], the authors

have proposed a framework for the constrained consensus by

utilizing a projection algorithm and presented its convergence

properties. The projection algorithm [12] provides means by

which one can determine the state’s closeness to a set defined

by linear constraints, which in turn, can be parameterized

using measures on an appropriate function space.

In this paper, we present a constrained consensus algo-

rithm framework where the agents values are constrained to

be in convex sets and each agent is only aware of its own

constrained set. By running proposed modified consensus

algorithm, each agent’s value evolves to reach consensus

asymptotically. A distinct feature of our algorithm is the

introduction of an auxiliary variable for each agent that is

shared with others over the network. This auxiliary variable

is associated with a convex function representing the con-

straint set and current agent’s state. We then proceed to show

that by updating the auxiliary variable and agent’s state via

a consensus-type algorithm, each agent’s value converges to

the point that lies at the intersection of the compact convex

constraint sets for all agents.

The rest of the paper is organized as follows. §II contains

the notation, relevant mathematical background and an brief

overview of graph theory. In §III, the problem formula-

tion and the continuous constrained consensus algorithm

are introduced. We then provide convergence analysis for

state evolution of the agents as generated by the proposed

algorithm. In order to evaluate the effectiveness of the

algorithm, two simulations are examined in §IV. Conclusions

and potential future extensions of this work are detailed in

§V.

II. NOTATION AND GRAPH THEORY

Here, we provide a brief background on graph theory

along with notation and terminology.

Throughout the paper, a vector is a column array and

denoted in bold by x; its ith component is denoted by xi. For

a stacked vector x = [ xT
1

· · · xT
n ]

T
, its subcomponent

are denoted as xi,l, indicating the lth element of ith vector

in x. In addition, Im denotes an m×m identity matrix. The
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Kronecker product is denoted by ⊗. Throughout the paper,

we let [·]⊗ denote [·]⊗ Im for brevity. We use ‖·‖ to denote

the standard Euclidean norm. Namely, ‖x‖ =
√
xTx. The

communication topology of a network among nodes/agents

are represented using a directed graph G, e.g., in such a graph

i can transmit information to j when the link i → j is present

in the graph. An undirected graph G is represented as a pair

G = (V, E), where V is a finite nonempty set of nodes as

V = {v1, v2, . . . , vn} and E is referred as the set of edges of

G and denoted E = {e1, e2, . . . eq}. An element of E, e.g.,

ej , consists of pairs of distinct nodes, where node vi and vj
are connected if {vi, vj}∈ E. Analogously, the neighbors of

ith nodes are denoted by

Ni = {vj ∈ V | {vi, vj} ∈ E} .
The graph G is connected if for every pair of distinct nodes

in V , there is a path that has them as its end nodes. The

graph G can be represented in terms of matrices. Under the

assumption that labels have been associated with the edges

in a graph, arbitrarily oriented, the n × q incidence matrix

D(G) is defined as

D = [dij ], where dij =







−1 if vi is the tail of ej

1 if vi is the head of ej

0 otherwise.

The advantage of using an incidence matrix over an adja-

cency representation is that it holds the orientation (vector)

of the connection between two nodes. The constrained con-

sensus algorithm proposed in this paper is equally applicable

to weighted graphs. Another matrix representation of a graph

G, used in this paper, is the graph Laplacian, L(G). The

symmetric Laplacian matrix which is defined as L(G) =
DDT holds the connection information among pairs of

nodes. This matrix is a positive semi-definite matrix and has

eigenvalues that can be ordered as

λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) (1)

where λ1(G) = 0. The graph G is connected if and only

if λ2(G) > 0 [6]. The weighted graph Laplacian associated

with the weighted graph G = (V, E, w) can be formed as

Lw(G) =
1

2
DWDT , (2)

where W is a diagonal matrix whose elements consist of

the numeric weights w(ej) corresponding to an edge ej . It

is well-known that λ2(G) > 0 still holds valid for weighted

connected graphs as long as the weights are positive.

III. PROBLEM STATEMENT

For the case of undirected graphs, consider the sum of

squares of state variables [1] as

xTL⊗x =
1

2

∑

i,j∈E

aij ‖xj − xi‖2 , (3)

where x denotes the stack of vectors xi ∈ Rm, aij denotes a

weight acting on the respective edge, and L⊗ denotes L⊗Im.

Without of loss of generality, we will assume that m = 1 in

subsequent sections; we denote L(G) by L. Then, defining

the quadratic potential function as

J(x) =
1

2
xTLx, (4)

the canonical consensus algorithm can be derived by taking

a negative gradient of Eq. (4) as

ẋi = −∇J =
∑

i,j∈E

aij(xj − xi). (5)

It is recognized that J(x) is convex in x and has a unique

global minimum for x = α1 for some α when the graph

is connected. This potential function can also be seen as

representing the amount of disagreement among the agents’

states. Geometrically speaking, the algorithm provides a

weighted directional derivative for the agent’s state as a

function of its relative states with its neighbors. Thus, it

is intuitive that this algorithm leads to a consensus on the

average of the agent’s initial state (x(0)T1/n) 1 [2].

Now, we introduce a continuous constrained consensus

algorithm in an analogous manner. First, under undirected

links, we assume that we have n nodes and the domain of

the ith node’s state xi is restricted to compact convex sets.

It is further assumed that the interior of these sets can be

represented by p convex functions fk : Rm → R defined

as

Domxi
.
= {xi ∈ Rm | f1(xi) < 0, . . . , fp(xi) < 0} . (6)

Additionally, we define a shift parameter βi,k which is

computed from a lower bound of the kth convex function

of ith node as:

Li,k = inf (fk(xi)) ,

where inf(.) denotes the infimum operation. Then, the posi-

tive scalar βi,k is chosen as

βi,k ≥ ‖Li,k‖3

‖fk(xi = 0)‖2
. (7)

The shift parameter βi,k is always attainable in Dom xi

since the sets are bounded and closed. Now, we propose

the potential function J(x) given by

J(x) =
∑

i

∑

i←j

1

2
‖xj − xi‖2

[
∑

k

− log

(

−fk(xi)

βi,k

)]

=
1

2
xT [DWDT ]x (8)

= xTLwx,

where ẋ = [ ẋT
1

· · · ẋT
n ]T , W denotes a q×q diagonal

matrix where q designates the number of edges in the graph G
and D denotes the incidence matrix representing this graph.

We note that each diagonal element in Lw is nonnegative.
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The weighting matrix W has the form

W =











∑

k
− log

(

−
f1,k(x1)

β1,k

)

0 0

0
. . . 0

0 0
∑

k
− log

(

−
fn,k(xn)

βn,k

)











.

(9)

If we now consider a gradient flow with J(x) as the poten-

tial, we arrive at a distributed protocol that is a generalization

of the consensus algorithm over the network, namely,

ẋ = −∇J (10)

= −[DWDT ]x− 1

2







xTD ∂
∂x1,1

(W )DTx

...

xTD ∂
∂xn,m

(W )DTx






, (11)

where x = [ xT
1

· · · xT
n ]

T
and its component vector

xi = [ xi,1 · · · xi,m ]T . We adopt the notation

∂

∂xn,m

W

that denotes the partial differentiation of the diagonal com-

ponents of the matrix W with respect to xn,m for notational

brevity. Thus we have,

ẋi =
∑

i←j

(gj,k + gi,k)[xj − xi
︸ ︷︷ ︸

] +
1

2
‖xj − xi‖2 [−∇gi
︸ ︷︷ ︸

]

(12)attractive repulsive

where gj,k refers to the auxiliary variable from jth agent and

computed as

gj,k =

p
∑

k=1

− log

(

−fj,k(xj)

βj,k

)

.

Note that ith agent does not need to know the corresponding

convex function for the jth agent, e.g., fj,k(xj), since only

xj and gj,k are transmitted to ith agent.

This weighted non-nlinear consensus algorithm, Eq. (12)

has repulsive and attractive components. As illustrated in

Fig. 1, the repulsive component provides “interior pointing”

vector acting normal to its domain’s boundary, while the

attractive component guides the agents states toward con-

sensus.

This also can be viewed as an agreement protocol on a

state dependent network. In fact, Eq. (12) reduces to

ẋi =
∑

i←j

pi,j(xj − xi) (13)

= −DW ′DTx (14)

where pi,j = f(g,x) = (gj,k + gi,k)− 1

2
∇gi(xj − xi).

Proposition 1: The potential function J has a global min-

imum when all agents’ states reach consensus

x1 = x2 = · · · = xn, (15)

while each state variable xi is restricted to stay in its own

x1

x2

-!g1   (repulsive)

x2-x1  (attractive)

x1

.

Fig. 1. Geometric illustration of the vector ẋ1 from constrained consensus
algorithm in presence of 1 neighbor

constrained domain, Domxi.

Proof: The proof is based on the fact that the potential

function J can made to be convex in x by having appropriate

values for βi,k. First, given the positive definite matrix W ,

the potential J is always semi-positive when the network is

connected as

J =
1

2
xT [DWDT ]x ≥ 0, (16)

whose minimum is contained in the set

{x ∈ Rn | J(t) = 0} = span {1} (17)

which in turn, is exactly the null space of Lw. This sub-

space corresponds to the agreement subspace in Eq. (15).

Moreover, its Hessian is calculated as

∇2J = [DWDT ]

+
[

D ∂
∂x1,1

WDTx · · · D ∂
∂xn,m

WDTx
]

+







xTD ∂
∂x1,1

WDT

...

xTD ∂
∂xn,m

WDT






+ Diag(

1

2
xTD

∂2

∂x2

i

WDTx).

(18)

Consequently,

x
T∇2

Jx =
∑

i

∑

i←j

‖xj − xi‖
2

[

gi + 2∇g
T
i xi +

1

2
‖xi‖

2 ∇2
gi

]

(19)

where

gi =

p
∑

k=1

− log

(

−fi,k(xi)

βi,k

)

.

As the Hessian ∇2gi is non-negative (fi(xi) is convex) we

conclude that gi is convex on the set

{xi ∈ Rm | f1(xi) < 0, . . . , fp(xi) < 0}
by the composition rule. Meanwhile, all convex functions,

g : Rm → R
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satisfy the following first-order convexity condition:

g(0) ≥ g(x)− xT∇g(x)

where x, 0 ∈ Dom g. This inequality condition provides a

lower bound on the first two terms in the bracket in Eq. (19)

as

gi + 2∇gTi xi ≥ 3gi − 2gi(0)

≥
p

∑

k=1

−3 log (−fi,k(xi)) + 2 log (−fi,k(0))

+ log βi,k (20)

In order for the right hand side of Eq. (19) to stay non-

negative, we manipulate the value βi,k accordingly. Thereby,

a reasonable choice of βi,k for the right hand side is

(−fi,k(0))
2βi,k

(−fi,k(xi))3
≥ 1, ∀ i and k

and the lower bound of βi.k is found as

βi,k ≥ (−fi,k(xi))
3

(−fi,k(0))2
≥ (− inf[fi,k(xi)])

3

(fi,k(0))2
.

Therefore, the permissible choices of βi,j are given as

βi,k ≥ ‖Li,k‖3

‖fk(xi = 0)‖2
(21)

where

Li,k = inf(fi,k(xi)).

With the value of βi,j chosen as above, Eq. (19) remains

positive for all x ∈ Rnm. Hence the Hessian ∇2V is positive

definite as

xT∇2Jx > 0 for all nonzero x. (22)

Note that we can select an arbitrary large positive value

for βi,k to have this Hessian positive, but it will cause the

gradient of −log function to approach infinity.

According to Eq. (8), when the graph is connected, the

potential J retains a positive value away from consensus

and at consensus,

x1 = x2 = · · · = xn, (23)

it has a unique minimum of zero. Since J is strictly convex,

the time evolution of the function J(x) along the trajectory

generated by the proposed consensus algorithm, is monoton-

ically decreasing for all xi as

J̇ = −‖∇J‖2 ≤ 0. (24)

The aforementioned conditions now qualifies J as a strong

Lyapunov function. Moreover, J(x) → ∞ as ‖x‖ → ∞.

Therefore, by Lyapunov’s second stability theorem [14], the

Lyapunov function J is a certificate for globally asymptotical

stability of the agreement subspace.

Proposition 2: Any connected graph G = (V, E) can

be partitioned into a tree graph and edges that complete its

cycles. In particular, any graph Laplacian matrix associated

with a connected graph can be written as the sum

L(G) = L(Gtree) + L(Gedge)

where Gtree = (V, E1), Gedge = (V, E2), and E(G) =
E1 ∪ E2.

Proof: See [2]

Proposition 3: The constrained agreement protocol, Eq.

(12) converges to the agreement set with a rate of conver-

gence that is at least that of λ2 for its spanning tree.

Proof: The convergence rate of the proposed consensus

algorithm is governed by Eq. (24). According to Prop. 2, Eq.

(11) can be written as

ẋ = −∇J

= −
1

2
Ltx−

1

4









x
T dLt1,1x

.

.

.

x
T dLtn,mx









−
1

2
Lex−

1

4









x
T dLe1,1x

.

.

.

x
T dLen,mx









= −(∇Jt +∇Je),

where Lw = Lt + Le, and dLwn,m
= dLtn,m

+ dLen,m
.

The fact that ∇Jt and ∇Je share the sign convention and

λ2(Lw) ≥ λ2(Lt) > 0 leads to

‖∇J‖ ≥ ‖∇Jt‖ .
Thus completing the proof.

IV. EXAMPLE

In this section, we present simulation results for two

applications of constrained consensus algorithms.

A. Example 1 - Unicycles

Consider that five homogeneous unicycles moving at con-

stant speed v and subject to steering controls θi for changing

their respective orientations. The dynamics of the unicycles

are given as

ṙi = ejθi (25)

θ̇i = ui, i = 1, 2, ..., 5. (26)

When the control law ui depends only on their relative

orientations, i.e., ui = θk − θi, the state vector evolves

on SO(2). If the state variables, however, are constrained

to given subsets, e.g., − 4

5
π ≤ θi ≤ 1

2
π, the proposed

consensus algorithm is applicable for reaching an agreement

set that lies at the intersection of the constrained sets.

Constrained orientations can be represented by quadratic

forms with convex domains, as shown in Table I. One

can recognize that the consensus value will be dominated

by 4th unicycle due to its narrowest domain among all

unicycles. The initial conditions are randomly selected but

close to their boundaries in order to reproduce the worst

case scenario. The undirected communication topology is

initially given a complete graph and later 3 edges among 5

unicycles are randomly eliminated while keeping connected

for the convergence rate comparison as shown in Fig. 2. The

second smallest eigenvalues of the graph Laplacian L(G1)
and L(G2) are given as 3.17 and 10, respectively. Note that

a consensus takes place quite far off the average because of
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Fig. 6. UAV trajectories on 2D space

β1 β2 β3,1 β3,2 β3,3 β4

67.5 5 13.68 167.48 167.48 61.04

TABLE IV

THE SHIFT PARAMETER βi,k FOR THE SIMULATION EXAMPLE 2

final position (◦ mark) in black. Note that the unfilled square

denotes the final position when unconstrained. Fig. 7 and

Fig. 8 show, respectively, the state evolution histories for

G1 and G2. Note in both cases consensus is asymptotically

reached, but the convergence rate for G2 is faster. The final

state attained by the agents depends on the initial conditions

and state dependent weights acting on the edges of the

communication graph and the shape of the respective convex

sets defining each agent’s constrained set.

V. CONCLUSION AND FUTURE WORK

In this paper, we have considered the continuous con-

strained consensus algorithm with the aid of the logarithmic

barrier function. The proposed algorithm is applicable when

each agent’s state is restricted to stay in the interior of
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Fig. 7. State evolution over time for G1
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Fig. 8. State evolution over time for G2

a compact convex set. By choosing an appropriate aux-

iliary variable, namely βi,k, satisfying required conditions

needed for appropriate convexification, we have shown that

the updated states for all agents asymptotically approach

consensus lying at the intersection of all constraint sets. This

algorithm is motivated by our research on spacecraft attitude

synchronization over a network in presence of multiple

attitude constrained zones.
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