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Abstract— Large networks arise by the gradual addition of
nodes attaching to an existing and evolving network component.
There are a wide class of attachment strategies which lead to
distinct structural features in growing networks. This paper
introduces a mechanism for constructing, through a process
of distributed decision-making, substrates for the study of
collective dynamics on power-law weighted networks with both
a desired scaling exponent and a desired clustering coefficient.
The analytical results show that the connectivity distribution
converges to the scaling behavior often found in social and
engineering systems. To illustrate the approach of the proposed
framework we generate network substrates that resemble the
empirical citation distributions of (i) patents granted by the
U.S. Patent and Trademark Office from 1975 to 1999; and (ii)
opinions written by the Supreme Court and the cases they cite
from 1754 to 2002.

I. INTRODUCTION

Understanding the formation of structure lies at the very
heart of the study of complex networks. A network en-
compasses a large number of interconnected elements (units
or agents) whose interaction with each other and with the
surroundings leads to emerging properties that can only
be attributed to the network as a whole [1]. Often, net-
works gradually develop distinct structural patterns without
centralized information or coordination schemes. Studying
the emergence of these patterns promises to enhance our
understanding of collective human dynamics [2], corrupt
behavior [3], [4], and economic development [5]-[7].

Random graph models fail to capture key features of
real-world networks (e.g., clustering coefficients and degree
correlations). Recent efforts to understand network structure
have focused on connectivity distributions underlying a num-
ber of social and engineering systems which, rather than
following the bell-shape of random networks (bounded by
Chebyshev’s inequality), have heavy tails [8], [9]. Heavy-
tailed distributions in empirical data suggests the existence
of causal mechanisms that shape the structure and function
of complex networks [10]. In the era of “big data,” the
development of formal frameworks that quantify patterns
of interaction of real-world networks has set the research
agendas across various disciplines, but only recently across
the data-driven computational social sciences.

Power-laws, a particular type of heavy-tailed distributions,
have received significant attention in recent years. For a net-
work with a power-law connectivity distribution, the proba-
bility that a node connects to x other nodes is proportional to
x−α for some positive constant α (the probability cumulative

function P [X > x] is a straight line on a log-log plot).
The distribution satisfies that for any positive constant λ,
limx→∞ eλxP [X > x] = ∞, characterizing the fact that its
tail has no exponential bound. As a result, the connectivity
of the nodes of the network comprises different orders of
magnitude, with a few nodes being highly connected (e.g.,
see [11], [12]).

Key to the above computational models is the existence of
hubs (highly interconnected nodes). Identifying hubs allows
us to measure key structural properties and plausibly predict
the behavior of complex networks [13]. In the context of
the spread of disease, measuring time-varying patterns in
regions that are more vulnerable to infection allows us to
design strategies that respond more effectively to the poten-
tial spread of large-scale epidemics [14]. The structuralist
approach to these strategies embraces how interconnected
regions influence one another (as a result of the evolution of
social systems) to quantify collective human behavior.

In order to capture some of the different types of rela-
tionships between the elements of a network, e.g., duration,
emotional intensity, or intimacy, mathematical models define
weights as an intrinsic property between nodes [15]-[18].
Previous models of weighted networks have focused on
attachment strategies in which nodes are added according
to probability distributions on the existing weights across
the entire network [18], [19]. The model introduced in [19]
captures the evolution of weights driven by preferential
strength attachment, a mechanism in which newly added
nodes are more likely to connect to nodes associated with
larger weights. Lacking a competitive advantage of (possibly)
newly added nodes (node fitness), the resulting network
exhibits a power-law distribution where hubs correspond to
the nodes that have been part of the network the longest.

This paper introduces a wide class of attachment strategies
which promote the formation of hubs based on both the
longevity and fitness of surrounding neighbors. Because
the connectivity dynamics of the nodes depend on their
attractiveness to compete for weights (as in [20]), older nodes
are not necessarily more successful in acquiring weights.
To our knowledge the proposed mechanisms is novel in
that it generates weighted directed networks with power-law
strength distributions (i) in a distributed fashion (decision-
making strategies are based on local information; we do not
assume any type of global information to generate the desired
network structure); (ii) for an arbitrary scaling exponent
α > 2 and varying clustering coefficients c ∈ (0, 1); (iii)
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for values greater than a particular threshold ωmin > 0; we
assume the power-law is obeyed at the tail of a distribution;
and (iv) at a rate of emergence captured by a smoothness
parameter δi > 0.

The remaining sections are organized as follows: Section 2
introduces a model that captures the connectivity and growth
dynamics of the gradual addition of nodes to an existing
network component and proposes attachment strategies for
local rearrangement of weights between pairs of nodes.
In Section 3, Theorem 1 shows that for any connected
network there exists a distribution of the total weight from
neighboring nodes (node strength) that is asymptotically
stable (i.e., the proposed strategies lead to an asymptotically
stable strength distribution). Theorem 2 proves that consec-
utive achievements of this network state leads to weighted
networks with power-law strength distribution. In Section 4,
we present simulations that capture the effect of node fitness
and present an application of the proposed model to generate
various citation networks. Section 5 draws some conclusions
and future research directions.

II. A MODEL OF NETWORK CONNECTIVITY AND GROWTH

LetH1 = {1, . . . , n1} be a finite set of nodes at generation
k = 1. Nodes represent elements (acting units) that establish
connections to other nodes. We represent the relationship
between nodes using a weighted matrix W1 = [wij ]n1×n1

,
where wij ∈ R+ = (0,∞) quantifies the relationship
between node i and j. If wij > 0, then there exists some kind
of action from i to j with weight wij . It may capture, for
instance, the extent to which node i influences node j. Let
Gk = (Hk,Wk) represent the network at generation k. For a
fixed generation, let p(i) = {j : wji > 0} represent all nodes
which influence node i (incoming neighbors). Similarly, let
q(i) = {j : wij > 0} represent all nodes influenced by node
i (outgoing neighbors). A gain function gi(si) is associated
to each node i ∈ Hk and characterizes the marginal benefit
that results from its current set of influences, where si =∑
j∈p(i) wji, si ∈ R+. Note that si is a scalar that represents

the incoming strength of node i (e.g., the extent to which
neighbors p(i) influence node i). The following network
assumptions are needed:
A1 Finite network strength: The total weight of the initial

network P1 =
∑n1

i=1 si, P1 ∈ R+, is finite. In other
words, the extent to which any node in the network can
be influenced by other nodes is bounded.

A2 Connectedness: Every node is influenced to some extent
by another node. At each generation k, si ≥ ε > 0, ∀i ∈
Hk.

A3 Bounded marginal gains: The gain function gi(si) > 0
associated to node i ∈ Hk satisfies

−ai ≤
gi(yi)− gi(zi)

yi − zi
≤ −bi (1)

for any yi, zi ∈ R+, yi 6= zi and some constants
ai ≥ bi > 0. In other words, the marginal gain
associated with each node decreases with increasing
strength. Equation (1) eliminates the possibility that a

very small difference in node strength may result in an
unbounded change in gain.

Assumption A3 captures an inverse relationship between
the gain level of a node and its incoming strength (e.g., the
attention of a node often degrades at some cost as other nodes
attach to it). If for example, gi(si) = 1

si
(ni/δi)

−βi for δi >
0, ni > 0, and βi ∈ (0, 1) for all i ∈ Hk, the upper and
lower bound in (1) are satisfied with bi = (ni/δi)

−βiP−2
k

and ai = (ni/δi)
−βiε−2, respectively.

Next, we use t ≥ 0 to specify the time index of events.
Let t = τk be the time instant when a new node is added to
the network Gk (i.e., the start of generation k). Let τ+

k be
the instant right before the new node is added to generation
k. When t = τk+1, Gk evolves into generation k + 1. For a
network generation k let the set of states

Sk =

{
s ∈ Rnk+ :

nk∑
i=1

si = Pk

}
be the simplex over which the si dynamics evolve. Con-
straints on our model below will ensure that for all nodes
i ∈ Hk, si(t) ∈ Sk for all τk ≤ t < τk+1. We assume that
as t→ τk, t→∞ for generation k and as t→ τk+1, t→∞
for generation k+1. Let s(t) = [s1(t), . . . , snk(t)]> ∈ Sk be
the state vector for generation k at time t (i.e., the incoming
distribution of strength of the entire network).

A. Connectivity dynamics

We first focus on the dynamics of s(t) for τk ≤ t < τk+1

(i.e., within a fixed generation). In particular, we want to
define a set of states, such that any strength distribution that
belongs to this set

S∗k = {s ∈ Sk : for all i, j ∈ Hk, gi(si) = gj(sj)} (2)

represents a distribution where all nodes in Hk have equal
gain levels. To capture the connectivity dynamics that lead
to S∗k , let eσ(i)

µ(i) represents the event when node i weakens its
relation from some nodes j in p(i) while strengthening its
relation to other nodes in Hk (it may strengthen a relation by
either increasing the value of wij for j ∈ q(i) or establishing
a weight wij > 0 to some new outgoing neighbor j ∈ Hk−
q(i)). Let the list σ(i) = (σj(i), σj′ (i), . . . , σj′′ (i)) such that
j < j

′
< · · · < j

′′
and j, j

′
, . . . , j

′′ ∈ Hk be composed of
elements σr(i) that denote the weight to be added to node
r ∈ Hk. For convenience, we will denote this list by σ(i) =
(αj(i) : j ∈ Hk). Similarly, let the list (µj(i) : j ∈ p(i))
be composed of elements µr(i) that denote the weight to be
subtracted from node r ∈ p(i).

Let {eσ(i)
µ(i)} denote the set of all possible combinations

of how node i can weaken or strengthen its relations to
other nodes. Let the set of events be described by E1 =

P
(
{eσ(i)
µ(i)}

)
− {∅} (P(·) denotes the power set). We call

e1(t) an event of type 1; they drive the connectivity dynamics
within a network generation. Notice that each event e1(t) ∈
E1 is defined as a set, with each element of e1(t) representing
the potential rearrangement of multiple weights between
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nodes. Multiple elements in e1(t) represent the simultaneous
rearrangements among multiple nodes.

An event e1(t) may only occur if it belongs to the set
defined by an enable function ge1 : Sk −→ P(E1)−{∅}. We
specify ge1 as follows:

- If for node i ∈ Hk, gi(si) ≥ gj(sj) for all j ∈ q(i), then
e
σ(i)
µ(i) ∈ e1(t) such that σ(i) = (0, . . . , 0) and µ(i) =

(0, . . . , 0) is the only enabled event. Hence, node i does
not modify its relationships to others nodes (i.e., the
strength of node i does not change).

- If for node i ∈ Hk, gi(si) < gj(sj) for some j ∈ q(i),
then the only eσ(i)

µ(i) ∈ e1(t) are ones with σ(i) = (σj(i) :

j ∈ Hk) and µ(i) = (µj(i) : j ∈ p(i)) such that:

C1
∑
j∈Hk

σj(i) =
∑
j∈p(i)

µj(i)

C2 σj∗(i) ≥
1

ai
γij∗ (gj∗(sj∗)− gi(si))

C3
∑
r∈p(i)

µr(i) ≤
1

bi
(gj∗(sj∗)− gi(si))− σj∗(i)

for some j∗ ∈ {j : gj(sj) ≥ gr(sr), for all r ∈ q(i)} and
γij . The parameter γij ∈ (0, 1) regulates the speed at which
weights are rearranged and allow us to alter the amount of
transitivity between the elements of the network (i.e., if a
node j is connected to node j′ and node j′ to node j′′, the
probability that node j is also connected to node j′′). Low
values of γij lead to slower convergence processes which
increase the probability of forming transitive triples and lead
to high clustering coefficients [21].

Condition C1 implies that a node can only establish
or strengthen its relations to other nodes by weakening
incoming weights (the sum of incoming weights must equal
that of outgoing weights). It is required so that C2 and C3
are well defined at all times. To interpret C2 and C3 it is
useful to remember that reducing (increasing) the strength of
a node always increases (decreases, respectively) the gain at
that node. Both conditions constrain how nodes can modify
their weights in terms of outgoing neighboring node gains.
Condition C2 implies that if the gain of node i differs
from any of its outgoing neighbors, then the relation to the
neighbor with the highest gain must be strengthened by some
amount. Condition C3 implies that when node i weakens
incoming weights, node i cannot exceed the highest gain of
at least one outgoing neighbor. Together they guarantee that
the highest gain node is strictly monotone decreasing over
time (as we prove in Theorem 1).

Next, state transitions are defined by the operator fe1 :
Sk −→ Sk where e1(t) ∈ E1. For a fixed generation k, if
e1(t) ∈ ge1(s(t)), eσ(i)

µ(i) ∈ e1(t), then s(t+1) = fe1(t)(s(t)),
where

si(t+ 1) = si(t) +
∑

{j ∈ Hk, eσ(i)µ(i)
∈ e1(t)}

σi(j)

−
∑

{j ∈ p(i), eσ(i)
µ(i)
∈ e1(t)}

µj(i) (3)

Equation (3) means that the strength at node i at time
t + 1 equals the strength of node i at time t, plus the
total weight added by the nodes that strengthened their
relationship to node i, minus the total weight reduced by
nodes that weakened their relation to node i at time t.
Note that (3) implies conservation of network strength for
a network generation k so that Pk =

∑nk
i=1 si(t) is constant.

Therefore, if s(τk) ∈ Sk, then s(t) ∈ Sk for τk ≤ t < τk+1.
Let E1 denote the set of all infinite sequence of events E1.

Let E1
t denote the sequence of events e1(0), . . . , e1(t−1) and

let the value of the function S(s(0), E1
t , t) denote the state

reached at time t from the initial state s(0) by the application
of the sequence E1

t of events of type 1. We assume that each
event of type 1 occurs infinitely often on each event trajectory
E1
tE

1 within each generation. Note that this assumption is
met if nodes persistently try to rearrange weights. The enable
function ge1 together with state transition operator fe1 define
the evolution of the connectivity dynamics of the network.

B. Growth dynamics

We now turn our attention to the evolution of the network
as it grows. To capture a nodes’s advantage of longevity let ki
be the generation when node i becomes part of the network
and define ni = ki

k as the fraction of generations node i
has not been part of the network component. Moreover, to
capture a node’s competitive advantage in acquiring weights
we associate to every node a fitness βi, where βi ∈ (0, 1)
is chosen from a random distribution. Let the gain function
associated to node i ∈ Hk during generation k be defined as

gi(si) =
1

si

(
δi
ni

)βi
(4)

Higher values of βi characterize nodes that are more attrac-
tive in the sense that they can carry more weight without
greatly reducing their gain. Both, high values of ni (repre-
senting the fact that node i has been part of the growing
network for only a few generations) and low values of βi
(representing the fact that the node has a low competitive
advantage for acquiring weights) have a negative effect on
the gain of node i. Below we will see how βi allows us to
define the scaling exponent of power-law strength distribu-
tions. In particular, Section 3 shows that if βi = β ∀i ∈ Hk
then α = 1/β + 1 represents the linear growth constant
in the case of networks that follow preferential strength
attachment [19]. Finally, the smoothness parameter δi > 0
allows us to quantify the curvature at the start of the power-
law distribution (δi is chosen from a random distribution
as specified below). Associating the parameter δi to the
nodes allows us to smooth out the curve that establishes the
emergence of power-laws.

Let eσ(i) represents the attachment of a new node i to
the network at the beginning of generation k (when t =
τk). Let m =

∑
r σr(i) be the total (constant) weight of a

newly added node. A node attaches to the network by (i)
randomly distributing σ(i) (its weight) across some of the
established nodes; and (ii) establishing a non-empty set of
incoming neighbors (i.e., some node must attach to it). We
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call this occurrence an event of type 2. Let E2 = {eσ(i)}
denote all possible combinations of how node i can attach
to the network component. An event e2(k) ∈ E2 may occur
if it is defined by an enable function ge2 : Sk −→ eσ(i). We
specify ge2 as follows:

- Node i attaches to the network only if the associated
gain function gi(si) follows the general form of (4).

- Node i has smoothness, longevity, and fitness parame-
ters that satisfy:

C4 δi ∼

{
1

∆
√
π
e−(δ−a)2/∆2

as ∆→ 0 , if a = 1
1
∆ for δ ∈ [0,∆] (0 otherwise) , if a = 0

C5 ni = 1

C6 βi = β ∀i ∈ Hk

where a ∈ {0, 1} captures the emergence of the scaling
behavior in the growth of the network. When a = 1 the
process of emergence of power-law distributions features
a sharp knee in the probability cumulative function of the
network strength P [si > ω]. When a = 0 the process leads
to a more gradual emergence of power-law distributions. The
parameter ∆ defines the support of the uniform distribution
(here, ∆=1). Condition C5 follows from letting ki = k for
the newly added node i (at generation k node i has been
part of network for one generation). Finally, condition C6
specifies an equal fitness for every node (as is the case
for networks with linear growth and preferential attachment
[11]).

The transition e2(k) ∈ E2 is defined by the operator
fe2 : S∗k −→ Sk+1. If e2(k) ∈ ge2(s(τk)), then s(τk+1) =
fe2(k)(s(τ

+
k )) where si(τk+1) = m only if node i is the

newly added node. Let E2 denote the set of all infinite
sequence of events E2. Let E2

k denote the sequence of events
of type 2, e2(1), . . . , e2(k). We assume that each event
of type 2 occurs infinitely often on each event trajectory
E2
kE

2. The assumption is met if nodes persistently attach
to the existing network component. The enable function ge2
together with the transition operator fe2 define the growth
dynamics of the network.

III. ANALYSIS

Here, we present stability properties of the invariant set
S∗k for every generation k. Second, we deduce bounds on
the average gain level of the network. We then prove that the
strength distribution converges a scaling behavior for values
greater than the threshold ωmin.

Theorem 1. (Asymptotic stability)
Suppose A1-3 and C1-3 hold. Then S∗k is an invariant set

and has region of asymptotic stability equal to Sk.

Because S∗k is globally asymptotically stable, there is
only one desired strength distribution for each group of
nodes at every generation k (i.e., |S∗k | = 1). Thus, for any
initial strength distribution Theorem 1 guarantees that S∗k
will be reached. In particular, for any generation k, initial
network state s(0), by applying the event sequence E1

t ,

S(s(0), E1
t , t)→ S∗k as t→∞ for generation k. Let

Ck =
1

n1 + k

∑
i∈Hk

gi(si(τ
+
k )) (5)

be the average gain of the network an instant before the start
of generation k + 1.

Lemma 1. (Equilibrium value)
Suppose A1-3 and C1-6 hold. Moreover, ∀k let s(τ+

k ) ∈
S∗k . Then the average gain level Ck → 1/m(1 − β) when
a = 1 and k → ∞. The expected average gain level is
bounded by E[Ck] <

(
1+β2

1−β2

)
1
m when a = 0 and k →∞.

Broadly speaking, Lemma 1 implies that if δi ∼ δ(1)
when a = 1, then at the desired strength distribution S∗k
every node i ∈ Hk has the gain level Ck → 1/m(1− β) as
k → ∞. Moreover, Lemma 1 implies that if δi ∼ U(0, 1)
when a = 0, then as k → ∞ every node i ∈ Hk has
a expected average gain level E[Ck] <

(
1+β2

1−β2

)
1
m at the

desired strength distribution S∗k .

Theorem 2. (Power-law distribution)
Suppose A1-3 and C1-6 hold. Moreover, ∀k let s(τ+

k ) ∈
S∗k . Then the strength distribution P [si > ω] of the network
Gk(Hk,Wk) follows a power-law with scaling exponent α =
1/β+1 as k →∞. In particular, the scaling behavior holds
for values greater than
i. ωmin = m(1 − β) for P [si > ω] for distinct emergent

distributions (a = 1); and
ii. E[ωmin] = 1−β2

1+β2
m
2β

for P [si > ω] for a gradual
emergent distribution (a = 0).

Theorem 2 implies that as the network grows, it develops
a power-law structure, driven by the marginal benefit of the
allocation of weights across nodes. It quantifies the value
ωmin above which the scaling behavior emerges.

IV. SIMULATIONS

To gain insight into the connectivity dynamics of the
network let β = 1

2 , m = 1, n1 = 2, and a = 1. We
let the network grow for 1000 generations. The theoretical
prediction for the power-law exponent is α = 1/β + 1 = 3.
Fig. 1 illustrates the clustering coefficient c for various values
of γij = γ as the network evolves. Note that the clustering
properties remain constant as the network increases in size.

Fig. 2 shows the effect of varying node fitness, where βi is
chosen from a uniform distribution with support (0, 1). The
left plot in Fig. 2 shows the time evolution of the node’s
strength for different values of βi illustrating that si(τ+

k )
follows a power-law for different values of βi ∼ U(0, 1).
Because of the node’s relative fitness, there are nodes with
higher strength si but lower longevity advantage ni. It is
possible for a node to join the network at a more recent
generation and become more attractive than other nodes that
have been part of the network for longer. Here, the node
added at generation k = 105 with β105 = 0.9 overcomes
older nodes with β55 = 0.6, and β5 = 0.3. The right plot
shows the strength cumulative probability distribution for the
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Fig. 1. The left plot shows the clustering coefficient as a function of
network size nk at various values of γ. The right plot shows the clustering
coefficient as a function of γ.

entire network, suggesting a power-law with a logarithmic
corrective term (similar to the theoretical prediction in [20]
where pω ∼ 1

log(ω)ω
−(1+C∗) with C∗ = 1.255).
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Fig. 2. The left plot shows the evolution on the strength of three nodes
added to the network G1000 using fitness β5 = 0.3, β55 = 0.6, and
β105 = 0.9 from βi ∼ U(0, 1) with m = 30 when a = 1. The right plot
shows P [si > ω] ∼ Ei(−C∗ log(ω)) or pω ∼ 1

log(ω)
ω−(1+C∗) where

Ei(x) is the exponential integral function (i.e., a power-law with an inverse
logarithmic correction term emerges).

Figs. 3 shows the effect of varying ωmin and δi on
the power-law distribution range. Few real-world networks
follow power-laws over their entire range of the distribution
[22]. As we increase m we shift the value above which the
network obeys a power-law. Fig. 4 shows how the model can
capture a slow rate of emergence of power-laws by letting
a = 0.

Finally, Fig. 5 shows empirical data on the citation dis-
tribution of patents granted by the U.S. Patents and Trade
Office, and the opinions written by the U.S. Supreme Court
and the cases they cited. The left plot in Fig. 5 represents
citations on the main subnetwork of U.S. patents granted
between January 1963 and December 1999 and references
made to these patents between 1975 and 1999 [23]. Finally,
the right plot in Fig. 5 shows the majority opinions written
by the U.S. Supreme Court and the cases they cite from 1754
to 2002 [24]. For both examples we estimate α∗, ω∗min, and
c∗ from actual data. We summarize the main attributes in

Table I.
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Fig. 3. Cumulative probability distribution with a fixed smoothness
parameter for m = 4 and ωmin = 2 (left); and for m = 16 and ωmin = 8
(right).
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Fig. 4. Cumulative probability distribution with a varying smoothness
parameter for m = 4 and ωmin = 1.69 (left); and for m = 16 and
ωmin = 6.79 (right).

TABLE I
PROPERTIES FOR TWO CITATION NETWORKS

Actual Model
α∗ ω∗

min c∗ α ωmin c
Patents 4.68 19 ± 2 0.037 4.63 20 0.044
Court opinions 4.29 55 ± 20 0.107 4.25 60 0.112

V. DISCUSSION

The proposed model generates power-law distributions
from consecutive achievements of stable strength distribu-
tions S∗k and may be of interest in the following context.
First, it can be shown that the state S∗k is a Nash, which im-
plies that when a network reaches the equilibrium there is not
any node that can gain by unilaterally rearranging weights
to neighboring nodes (there are no incentives to change or
establish new relationships). By focusing on the dynamics
that drive the network to S∗k we capture the coupling between
different nodes, characterizing how relationships between
any pair of nodes affects other nodes in the network. Second,
the proposed strategies allow us to control the connectivity
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Fig. 5. The left plot shows P [si > ω] for for U.S. patents data found
in [23]. The model uses m = 28, β = 0.28, and γ = 0.98. The right
plot shows P [si > ω] for U.S. Supreme Court opinions found in [24]. The
model uses m = 87, β = 0.31, and γ = 0.93.

dynamics of nodes based on local attachment strategies (C1-
6), allowing us to generate large network substrates through
distributed decision-making. Finally, the ability to control
the rate at which attachment strategies lead to the scaling
behavior allows us to modify transitivity properties of the
network.

We focused on two types of network incentives: (i)
Longevity rewards nodes that have been part of the network
for a long time (they have the ability to acquire more weight
compared to recently added ones); (ii) Fitness rewards nodes
that are highly competent (they are more suitable to compete
and maintain weights). Modeling nodes with varying fitness
allows “latecomers” to overcome nodes that have been in the
network for more generations.

Finally, the proposed framework can be extended to gener-
ate exponential strength distributions following similar ideas
as in Theorems 1 and 2. In particular, if we consider the
gain function of the general from gi(si) = 1

si
ln
∣∣∣ δini + κ

∣∣∣
where κ > 0, the proposed strategies lead to weighted
networks with P [si > ω] ∼ e−ω . A mathematical framework
that allows us to generate various strength distributions for
different intervals over an entire distribution range provides
an important direction for future research.

VI. APPENDIX

The proofs of Theorem 1 and 2 can be found
in the supplement to the paper available at the au-
thors’ websites (http://escher.puj.edu.co/∼pamoriano or
http://www.jfinke.org).
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