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Abstract— This paper investigates the leaderless consensus
control problem for a group of agents under fixed or switching
directed interaction topology, where each agent is modeled as
a generic linear system rather than the single- or double-
integrator dynamics. For the case with fixed topology, it
is shown that consensus can be reached by assigning an
appropriate feedback matrix if the interaction topology has
a directed spanning tree; while for the switching case, by
imposing the balanced condition on the interaction topology,
sufficient conditions are provided for the agents to reach
consensus under arbitrary switching signal. Furthermore, the
consensus equilibria are specified for both cases.

I. INTRODUCTION

During the recent years, information consensus of au-
tonomous agents has spurred increasing attention and study
due to its wide application in various disciplines. Much work
has been done, see e.g. [4], [5], [6], [9], [11], [12]. For
more details and developments, see the survey paper [13]
and references therein.

Most of the existing literature focuses on consensus algo-
rithms for agents modeled by single- or double-integrator
dynamics. Recently, the consensus problems for agents
modeled as generic linear systems is investigated in [15],
which aims at designing an appropriate feedback gain ma-
trix guaranteeing the final consensus. The model is further
investigated in [8] under fixed and switching interaction
topology in a leader-following framework, in which different
methods are used for the convergence analysis. Furthermore,
a Riccati-inequality-based method is proposed in [8] to find
the feedback gain matrix which thus reduces the computation
load largely compared to that in [15]. Note here that the
widely employed product properties of row-stochastic as well
as the related nonnegative matrix theory in performing the
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convergence analysis for agents modeled by integrators under
dynamic topology (see, e.g. [12], [11]) does not work in
the context of generic linear system dynamics. In [8], the
convergence analysis for the case with fixed and switching
topology are performed by employing Lyapunov method
together with graph theory, in which the interaction topology
is much relaxed as opposed to that in [15]. The relaxation on
the interaction in [8] relies heavily on the leader-following
architecture, and the convergence analysis therein cannot
be extended directly to deal with the leaderless consensus
control. Moreover, it is worth pointing out that both the
work in [8] and [15] are based on undirected interaction
topology, and the convergence analysis employed therein
does not work for the directed case, which, in general, is
more challenging than that of the undirected case.

With the above motivation, we investigate in this paper
the leaderless consensus control for multiple agents under
directed interaction topology. For the case with fixed topol-
ogy, it is shown that consensus control can be realized
by assigning appropriate feedback matrix if the interaction
topology has a spanning tree, in which the idea employed
in performing the convergence analysis is motivated by the
treatment of synchronization in complex dynamical networks
[10], [14], [16]. It is further shown that the leader-following
framework considered in [8] is a special case of the model
considered in this paper. For the case with directed interac-
tion topology, the consensus problem is investigated under
arbitrarily switching balanced interaction topology. The main
contribution of the part concerning the switching case lies
in the extension of the existing literature to the case with
dynamically changing weighting factors as opposed to the
finite case in [8], [9], and [15].

II. PRELIMINARY

The following notations will be used throughout the paper.
Denote by M > 0 (M < 0) that M is symmetric positive (nega-
tive) definite. If all the eigenvalues of M are real, then denote
by λ max(M) and λ min(M) the maximum and minimum eigen-
values of M, respectively. Denote by diag{A1,A2, . . . ,An} the
block diagonal matrix with its ith main diagonal matrix being
a square matrix Ai, i = 1, . . . ,n. By abuse of notation, for
any m×1 vector α , denote by diag(α)∈Rm×m the diagonal
matrix with the ith (i = 1,2, . . . ,m) diagonal element being
the ith element of α . A matrix is called nonnegative (positive)
whenever all its elements are nonnegative (positive).

Let G be a weighted digraph of order N, and A = [ai j] ∈
RN×N be the associated adjacency matrix in which ai j > 0
whenever there is a directed edge from node j to node i.
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Moreover, we assume aii = 0, i = 1, . . . ,N. Denote by L =
[`i j] the Laplacian matrix associated with G, where `i j =
−ai j, i 6= j, and lii = ∑N

k=1,k 6=i aik. Apparently, any square
matrix with non-positive off-diagonal elements and zero row
sum, shall be called graph Laplacian for convenience, can
be deemed as a Laplacian matrix of a weighted digraph.
Digraph G is called balanced if and only if 1TL = 0 [9].

A digraph is called strongly connected if any two distinct
nodes of the graph can be connected by a directed path;
while it is called weakly connected if replacing all of its
directed edges with undirected edges produces a connected
graph. A directed graph has a spanning tree if there exists at
least one node, called the root node, having a directed path
to all other nodes. Note that if G is strongly connected, then
there exists a positive column β = [β 1,β 2, . . . ,β N ]T ∈ RN

satisfying β TL = 0 and β T1N = 1 [7]. With this notation,
the following result regarding the algebraic connectivity of
strongly connected digraph is proposed in [16].

Lemma 1: (Lemma 7, [16]) If L is the Laplacian matrix of
a strongly connected graph, then the algebraic connectivity

a(L) = min
xTβ=0,x 6=0

xTL̂x
xTdiag(β )x

> 0, (1)

where L̂ = (diag(β )L + LTdiag(β ))/2 and β is as defined
above.

Lemma 2: Let x ∈ RnN×nN be any column vector satisfy-
ing

(β T⊗ eT
i )x = 0, (2)

where ei ∈Rn stands for the column vector in which only the
ith entry is 1 and all the other entries are 0, and ⊗ denotes
the Kronecker product. Then for any symmetric positive-
semidefinite matrix B ∈ Rn×n, we have

xT(L̂⊗B)x≥ a(L)xT(Ξ⊗B)x, (3)

where Ξ = diag(β ).
Proof: See the appendix. ¥

When L is the Laplacian matrix of an undirected and
connected graph, it is easy to get that a(L) = λ 2(L), where
λ 2(L) is called the algebraic connectivity of G [3] and

λ 2(L) = min
x 6=0,1Tx=0

xTLx
xTx

.

With this notation, as a corollary of Lemma 2, we have:
Corollary 1: Assume L is a Laplacian matrix of a con-

nected undirected graph. Let x = [xT
1 ,xT

2 , . . . ,xT
N ]T ∈ RnN ,

where xi ∈Rn, i = 1, . . . ,N, be any column vector satisfying
∑N

i=1 xi = 0. Then for any symmetric positive-semidefinite
matrix B ∈ Rn×n, we have

xT(L⊗B)x≥ λ 2(L)xT(IN ⊗B)x.
By using similar proof techniques as that for Lemma 2,

one can easily derive the following result:
Lemma 3: Let P ∈ RN×N be any symmetric matrix and

B ∈ Rn×n be any symmetric positive-semidefinite matrix.
Then, for any column vector x ∈ RnN×nN , we have xT(P⊗
B)x≥ λ min(P)xT(IN ⊗B)x.

Consider a multi-agent system consisting of N agents.
Each agent is regarded as a node in a digraph G, and the
dynamics of which is modeled by

ẋi = Axi +Bui, (4)

where xi ∈ Rn is the ith agent’s state, and ui ∈ Rm is the ith
agent’s input which can only use local information from its
neighboring agents. The matrix B is of full column rank.

Throughout the paper, the matrix pair (A,B) satisfies the
following assumption:

Assumption 1: The pair (A,B) is stabilizable.

III. CONSENSUS UNDER FIXED INTERACTION TOPOLOGY

The following control law will be used for agent i:

ui = K ∑
j∈Ni

ai j(x j− xi), i = 1,2, . . . ,N, (5)

where ai j ≥ 0, K ∈Rm×n is a feedback matrix to be designed.
Without loss of generality, we shall assume that the

interaction topology G has q (1≤ q≤N) strongly connected
components, say G1, . . . ,Gq, with, respectively, the node sets
V (G`) = {∑`−1

j=0 n j +1, . . . ,∑`
j=0 n j}, 1≤ `≤ q, where n0 = 0;

and the Laplacian matrix L associated with G takes in the
following Frobenius normal form [2]:




L11 0 · · · 0
L21 L22 · · · 0

...
. . .

...
...

Lq1 Lq2 · · · Lqq


,

where Lii ∈ Rni×ni , i = 1, . . . ,q.

Note that if G has a spanning tree, for each p = 2, . . . ,q,
there must exist 1 ≤ k < p such that Lpk 6= 0 [14]. Then,
following exactly the same proof as that in Lemma 4 in
[10], we can get the following result:

Lemma 4: If G has a spanning tree, then for any i =
2, . . . ,q, there exists a positive column vector β i such that
the matrix diag{β i}Lii + LT

iidiag{β i} > 0. In fact, β i ∈ Rni

can be chosen as the positive left eigenvector of Lii +
∑i−1

`=1 R(L`i) associated with eigenvalue 0 satisfying β T
i 1ni =

1, i = 2, . . . ,q, where R(L`i) denotes the diagonal matrix
with the kth (k = 1, . . . ,ni) diagonal element being the ith
row sum of L`i.

In the sequel, denote Ξi = diag{β i}, i = 2, . . . ,q.

Theorem 1: Consider a group of agents (4) under fixed
interaction topology G. If G has a spanning tree, then there
exist a feedback matrix K such that all the agents reach
consensus exponentially fast by using control law (5).
Proof: We first prove that the consensus of the group of
agents with Laplacian matrix L11 can be realized.

Let β 1 = [β 1
1, . . . ,β

n1
1 ]T ∈Rn1 be the positive vector satis-

fying β T
1 L = 0 and β T

1 1n1 = 1 and Ξ1 = diag{β 1}. Denote the
state error between agent i and ∑n1

k=1 β k
1xk(t) as ei(t) = xi(t)−

∑n1
k=1 β k

1xk(t), i = 1, . . . ,n1. In the sequel, t might be dropped
for notational simplicity. Then, one obtain the following error
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dynamical system:

ėi = Axi +Bui−
n1

∑
k=1

β k
1(Axk +Buk)

= Aei +BK ∑
j∈Ni

ai j(e j− ei)−BK
n1

∑
k=1

β k
1 ∑

j∈Nk

ak j(x j− xk)

= Aei +BK ∑
j∈Ni

ai j(e j− ei)+(β T
1 L11⊗BK)x, i = 1, . . . ,n1.

(6)

Let e = [eT
1 ,eT

2 , . . . ,eT
n1

]T. Note that β T
1 L11 = 0, then system

(6) can be written in the following compact form:

ė = [In1 ⊗A−L11⊗BK]e. (7)

Since G(L11) is strongly connected, it follows from
Lemma 1 that a(L11) > 0. If (A,B) is stabilizable, then there
exists a solution P > 0 to the following Riccati inequality

PA+ATP−2a(L)PBBTP+2a(L)In < 0. (8)

Let P be a solution of Riccati inequality (8) and the
feedback matrix K be K = BTP. Consider the following
Lyapunov function candidate

V1(t) = eT(t)[Ξ1⊗P]e(t).

Differentiating V1(t) along the trajectories of (7) yields

V̇1(t)

= eT(t)[Ξ1⊗ (ATP+PA)−2L̂11⊗PBBTP]e(t) (9)

≤ eT(t)[Ξ1⊗ (ATP+PA)−2a(L11)Ξ1⊗PBBTP]e(t) (10)

=
n1

∑
i=1

β ie
T
i (t)[ATP+PA−2a(L11)PBBTP]ei(t)

≤−2a(L)
n1

∑
i=1

β i
1eT

i (t)ei(t) < 0, (11)

for any e(t) 6= 0, where L̂11 = (Ξ1L11 + LT
11Ξ1)/2, (10) is

obtained by observing that ∑n1
i=1 β i

1ei(t) = 0 and applying
Lemma 2 to the second term in (9).

Note that V1(t) = ∑n1
i=1 β i

1eT
i Pei ≤ λ max(P)∑n1

i=1 β i
1eT

i ei,
which, together with the inequality in (11), implies
that V̇1(t) ≤ − 2a(L11)

λ max(P)V (t) and thus V1(e(t)) ≤
V1(e(0))exp(− 2a(L11)

λ max(P) t). This means that e(t) approaches 0

exponentially fast with a least speed of ε = − a(L11)
λ max(P) . That

is, the group of agents with Laplacian matrix L11 reach
consensus exponentially fast. Let x∗(t) = ∑n1

k=1 β k
1xk(t).

Clearly, x∗(t) satisfies the following equation [14]:

ẋ∗(t) = Ax∗(t)+O(e−εt), for some ε > 0,

and [xT
1 , . . . ,xT

n1
]T = 1n1 ⊗ x∗+O(e−εt).

Now we proceed to prove that consensus can be reached
by the other groups of agents. Let ei = xi−x∗, i = 1,2, . . . ,N,
and Si = ∑i

j=1 n j, i = 1, . . . ,q. Obviously, S1 + · · ·+Sq = N.

We further let yk = [eT
Sk−1+1, . . . ,e

T
Sk

]T, k = 2, . . . ,q and y =

[yT
2 , . . . ,yT

q ]T. Then, the network systems (4) with control law
(5) can be written in the following compact form:

ẏ = [IN−n1 ⊗A− L̄⊗BK]y+O(e−εt),

where L̄ =




L22 0 · · · 0
L32 L33 · · · 0

...
...

. . .
...

Lq2 Lq3 · · · Lqq




Consider the following Lyapunov function candidate

V (t) =
q

∑
i=2

∆iyT
i (Ξi⊗P)yi,

where P is a positive definite matrix to be chosen in order
to satisfying: 1) V (t) is a valid Lyapunov function; 2) the P
chosen for V1(t) and V (t) are the same and thus guarantee
K = BTP to be designed are consistent throughout the proof.

Note that

ẏi = (Ini ⊗A)yi−
i

∑
j=2

(Li j⊗BK)y j +O(e−εt), i = 2, . . . ,q.

(12)
Differentiating V (t) along the trajectories of (12) gives

V̇ (t)

=
q

∑
i=2

{
∆i

[
yT

i (I⊗AT)−
i

∑
j=2

yT
j (L

T
i j⊗KTBT)+O(e−εt)

]
(Ξi⊗P)

×yi +∆iyT
i (Ξi⊗P)

[
(I⊗A)yi−

i

∑
j=2

(Li j⊗BK)y j +O(e−εt)
]}

=
q

∑
i=2

∆iyT
i [Ξi⊗ (ATP+PA)]yi−2

q

∑
i=2

i

∑
j=2

∆iyT
i (ΞiLi j⊗PBBTP)y j

+2
q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt)

= yT [
diag{∆2Ξ2, . . . ,∆qΞq}⊗ (ATP+PA)−Φq⊗PBBTP

]
y

+2
q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt),

where Φi, i = 2, . . . ,q, is defined as

Φi =




∆2(Ξ2L22 +LT
22Ξ2) ∆3LT

32Ξ3 · · · ∆iLT
i2Ξi

∆3Ξ3L32 ∆3(Ξ3L33 +LT
33Ξ3) · · · ∆iLT

i3Ξi

...
...

. . .
...

∆iΞiLi2 ∆iΞiLi3 · · · ∆i(ΞiLii +LT
ii Ξi)




.

(13)

In order to find an appropriate matrix P such that V (t) is
a valid Lyapunov function, we first prove that matrix Φq
is positive definite if the constant positives ∆i, i = 2, . . . ,q
are appropriately chosen. It follows directly from Lemma 4
that all the matrices ΞiLii + LT

iiΞi, i = 2, . . . ,q, are positive
definite. Thus, Φ2 = δ 2(Ξ2L22 +LT

22Ξ2). Suppose that Φi >
0,2 ≤ i < q− 1, to complete the proof for the argument, it
suffices to prove by induction that Φi+1 > 0. To this end,
according to Schur complement lemma [1] and by noting
the fact that Ξi+1Li+1,i+1 + LT

i+1,i+1Ξi+1 > 0, it suffices to
prove that

Φi−∆i+1ΠT
i+1(Ξi+1Li+1,i+1 +LT

i+1,i+1Ξi+1)−1Πi+1 > 0,

1457



where Πi+1 =
[

Ξi+1Li+1,2 Ξi+1Li+1,3 · · · Ξi+1Li+1,i
]
,

which can be guaranteed by choosing appropriate ∆i+1 so
that ∆i+1 is sufficiently smaller than ∆ j for any j ≤ i.

Assume now that ∆i, i = 2, . . . ,q are properly chosen
constants such that Φq > 0. Recall that Ξi = diag{β i},
where β i =

[
β 1

i ,β
2
i , . . . ,β

ni
i

]T
∈Rni , i = 2, . . . ,q. Let δ min =

λ min(Φq)×min{(∆iβ j
i )
−1 : i = 2, . . . ,q,1≤ j ≤ ni} and δ =

min{2a(L11),δ min}. Since (A,B) is stabilizable, we can
choose P as a solution to the following Riccati inequality

PA+ATP−δPBBTP+δ In < 0. (14)

It is clear from the discussion above that such P as cho-
sen satisfying (14) can guarantee the final consensus of
the group of agents with Laplacian matrix L11. Let ∆ =
diag{∆2Ξ2, . . . ,∆qΞq}. With the above notations, we can get
that

V̇ (t)

≤ yT [
∆⊗ (ATP+PA)−λ min(Φq)⊗PBBTP

]
y

+2
q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt)

= [(∆1/2⊗ In)y]T
[
I⊗ (ATP+PA)−λ min(Φq)∆−1⊗PBBTP

]

× [(∆1/2⊗ In)y]+2
q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt)

≤ [(∆1/2⊗ In)y]T
[
I⊗ (ATP+PA)−δ I⊗PBBTP

]
[(∆1/2⊗ In)y]

+2
q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt)

=
N−n1

∑
i=1

ỹi
T(ATP+PA−δPBBTP)ỹi +2

q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt)

≤
N−n1

∑
i=1

−δ ỹi
Tỹi +2

q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt)

=−δyT(∆⊗ In)y+2
q

∑
i=2

∆iyT
i (Ξi⊗P)O(e−εt),

where ỹ = (∆1/2⊗ In)y = [ỹT
1 , ỹT

2 , . . . , ỹT
N−n1

]T ∈R(N−n1)n, ỹi ∈
Rn, i = 1, . . . ,N − n1. This implies V (t) converges to zero
exponentially and therefore completing the proof. ¥

Remark 1: Theorem 1 specifies that x∗(t) = ∑n1
k=1 β k

1xk(t),
the weighted average value of all the states of the agents with
Laplacian matrix L11, is the final group consensus value for
all the N agents. That is, the consensus value is decided by
all the agents which can be connected to all the other nodes
by directed paths.

Remark 2: Note that in the leader-following framework,
as in [8], the leader, indexed as agent 0, is modeled by ẋ0 =
Ax0, and the control law for agent i is designed as:

ui = K ∑
j∈Ni

ai j(x j− xi)+Kdi(x0− xi), i = 1,2, . . . ,N, (15)

where di > 0 whenever the agent i can receive information
from the leader and di = 0 otherwise.

Let ai0 = di and a0i = 0, i = 1, . . . ,N, then the control laws
for all the agents as well as the leader take in the following

form

ui = K
N

∑
j=0, j 6=i

ai j(x j− xi), i = 0,1, . . . ,N. (16)

This implies that the leader-following consensus problem
is transformed to the consensus problem of N + 1 agents.
Let Ḡ denote the digraph consisting of G, leader 0 and the
directed edges from leader 0 to the agents in G which have
access to the leader. Therefore, as a corollary of Theorem 1,
we directly obtain that all the agents can follow the leader
exponentially fast by assigning an appropriate K to control
law (15) if Ḡ has a spanning tree.

When G is undirected, this is just the main result consid-
ered in [8] for the fixed topology. Thus the result in Theorem
1 extends the result in [8] regarding the case with fixed
topology to a very general setting.

Example 1: Let A =
[ −1 −1 0

−1 2 1
0 0 −3

]
and B = [ 0 1 0 ]T.

Obviously (A,B) is stabilizable. Assume the interaction
topology is as shown in Figure 1. By some manipulation,
we can get δ = 1. According to (14), P can be chosen

as P =
[

1.3322 −1.5792 −0.2676
−1.5792 5.0263 0.8785
−0.2676 0.8785 0.4975

]
and thus K = BTP =

[ −1.5792 5.0263 0.8785 ].
It can be seen from Figure 2, which specifies the trajecto-

ries of the error states ei = xi− 1
3 (x1 + x2 + x3), i = 1, . . . ,6,

that the states of all the agents converge to the weighted
average of the states of the three “leader” agents, i.e. agents
1, 2, and 3.

21

3 5

46

G

Fig. 1. Example of a interaction topology having a directed spanning tree.

0 1 2 3 4 5 6
−100

0

100

t

e i1

0 1 2 3 4 5 6
−50

0

50

t

e i2

0 1 2 3 4 5 6
−100

−50

0

50

t

e i3

Fig. 2. Error states ei, i = 1,2, . . . ,6.

IV. CONSENSUS UNDER SWITCHING TOPOLOGY

Let σ : [0,+∞)→ΓN be a switching signal that determines
the weighted interaction topology, where ΓN is the index set
of all the possible weighted interaction topologies. Different
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from most of the existing literature (see, e.g. [9], [8], [15])
in which ΓN is a finite set and thus weighting factors are
constant for each interaction topology, ΓN here is an infinite
set as the weighting factors are allowed to be dynamically
changing.

The control law for agent i is designed as:

ui = K ∑
j∈Ni(t)

ai j(t)(x j− xi), i = 1,2, . . . ,N,

where Ni(t) is the set of neighbors of agent i at time t. We
assume that all the nonzero and hence positive weighting
factors are both uniformly lower and upper bounded, i.e.,
ai j(t) ∈ [α, ᾱ], where 0 < α < ᾱ , if j ∈ Ni(t).

Denote the state error between agent i and 1
N ∑N

k=1 xk(t)
as ei(t) = xi(t) − 1

N ∑N
k=1 xk(t), i = 1,2, . . . ,N. Let e =

[eT
1 ,eT

2 , . . . ,eT
N ]T. Then, by observing that 1T

NLσ = 0, where
Lσ is the Laplacian matrix associated with Gσ , then similar
to the deriving of (7), one can obtain the following compact
form of the error dynamical system:

ė = [IN ⊗A−Lσ ⊗BK]e. (17)

Lemma 5: Let ϒ be the set of all possible Laplacian
matrices with which the associated digraph are balanced and
weakly connected, i.e.

ϒ =
{

L = [`i j]|L is a graph Laplacian ;−`i j ∈ {0}∪ [α, ᾱ],

i, j = 1, . . . ,N, i 6= j;1TL = 0; G(L) is weakly connected},

then ϒ is a compact set in RN2
.

Proof: See the appendix. ¥
Theorem 2: Consider a group of agents modeled by a

directed graph with switching topology Gσ which is kept
weakly connected and balanced. Then, for any arbitrary
switching signal σ(·), all the agents reach average consensus
exponentially fast by using control law (5).
Proof: According to Theorem 7 in [9], Lσ +LT

σ
2 is a Laplacian

matrix of Ĝσ , the undirected mirror graph of Gσ . Since Gσ

is weakly connected, Ĝσ is connected. Thus λ 2(
Lσ +LT

σ
2 ) > 0

for any σ(·). Define the following multivariate function:

g : ϒ→ R1; g(L) := λ 2(
L+LT

2
),∀L ∈ ϒ.

It is clear from the well-known fact that the eigenvalues of
any matrix are continuous functions of the elements of the
matrix that g(·) is a continuous function. This, together with
Lemma 5 that the set ϒ is compact, implies that there exists a
positive number λ̄ 2 such that λ̄ 2 = min{λ 2(L+LT

2 )|L ∈ ϒ}>
0. It then follows from the fact that (A,B) is stabilizable
that there exists a solution P > 0 to the following Riccati
inequality

PA+ATP−2λ̄ 2PBBTP+2λ̄ 2In < 0. (18)

Consider the following Lyapunov function candidate

V (t) = eT(t)[IN ⊗P]e(t).

Differentiating V (t) along the trajectories of (17) yields

V̇ (t)

= eT(t)[IN ⊗ (ATP+PA)− (Lσ +LT
σ )⊗PBBTP]e(t) (19)

≤ eT(t)[IN ⊗ (ATP+PA)−2λ̄ 2IN ⊗PBBTP]e(t) (20)

=
N

∑
i=1

eT
i (t)[ATP+PA−2λ̄ 2PBBTP]ei(t)

≤−2λ̄ 2

N

∑
i=1

eT
i (t)ei(t) < 0,

for any e(t) 6= 0, where (20) is obtained by observing the
fact that ∑N

i=1 ei(t) = 0 and then applying Corollary 1 to the
second term in (19).

Note that V (t) ≤ λ max(P)∑N
i=1 eT

i (t)ei(t), which, together
with the above inequality, implies that V̇ (t)≤− 2λ̄ 2

λ max(P)V (t)

and thus V (e(t)) ≤ V (e(0))exp(− 2λ̄ 2
λ max(P) ). This means that

the error state e(t) approaches 0 exponentially fast with a
least speed of γ =− λ̄ 2

λ max(P) ¥

V. CONCLUSION

In this paper, we have studied the leaderless consensus
control for a group of agents under fixed or switching
directed interaction topology. In the framework of fixed
topology, we have shown that if the interaction topology has
a spanning tree, final consensus can be reached by assigning
an appropriate feedback matrix which extend some of the
existing results to a very general case; while for the case
with switching topology, we have investigated the consensus
control problem in a widely used balanced graph context, but
being more general in that the weighting factors are allowed
to change dynamically to model more practical dynamics.
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APPENDIX

Proof of Lemma 2: First, we prove the following inequality

xT(L̂⊗ In)x≥ a(L)xT(Ξ⊗ In)x (21)

holds for any x satisfying (2).
For the proof’s convenience, denote x as x = [xT

1 ,xT
2 , . . . ,xT

N ]T,
where each xi = [x1

i , . . . ,x
n
i ]

T, i = 1,2, . . . ,N is an n× 1 column
vector. With this notation, the equation in (2) holds if and only if
∑N

i=1 β ixi = 0. Then,

xT(L̂⊗ In)x =
1
2

n

∑
k=1

N

∑
i=1

N

∑
j=1

ˆ̀i j(xk
i − xk

j)
2, (22)

where L̂ = [ ˆ̀i j]N×N .
Let x̃k = [xk

1,x
k
2(t), . . . ,x

k
N ]T, k = 1,2, . . . ,n. It then follows from

(2) that β Tx̃k = 0, k = 1,2, . . . ,n, which together with (22) and the
fact that

1
2

N

∑
i=1

N

∑
j=1

ˆ̀i j(xk
i − xk

j)
2 = (x̃k)TL̂xk,

yields xT(L̂⊗ In)x = ∑n
k=1(x̃

k)TL̂x̃k.
Note that β Tx̃k = 0,k = 1, . . . ,n, it then follows from (1) that

xT(L̂⊗ In)x ≥
n

∑
k=1

a(L)(x̃k)TΞx̃k = a(L)xT(Ξ⊗ In)x. (23)

Now we proceed to prove the theorem. Since matrix B is symmetric
positive semidefinite, there exists a matrix E ∈Rm×n such that B =
ETE. Thus,

xT(L̂⊗B)x = xT[L̂⊗ (ETImE)]x
= [(IN ⊗E)x]T(L̂⊗ Im)[(IN ⊗E)x]

Let y = (IN ⊗E)x and ς i be the m by 1 column vector with the
ith entry being 1 and 0 elsewhere. By observing that

(β T⊗ ςT
i )y = (β T⊗ ςT

i E)x = ςT
i E

N

∑
j=1

β jx j = 0,

and the inequality in (21), we have

yT(L̂⊗ Im)y≥ a(L)yT(Ξ⊗ Im)y = a(L)xT(Ξ⊗B)x,

thereby completing the proof. ¥
Proof of Lemma 5: Note that the set of all N×N matrices can be
viewed as the metric space RN2

. Each L = [`i j] in ϒ can be viewed
as a vector [`1,1, . . . , `1,N , `2,1, . . . , `2,N , `N,1, . . . , `N,N ] in RN2

. To

prove that ϒ is compact in Euclidean Space RN2
, it is equivalent to

prove that ϒ is a closed and bounded set. Let

ϒ1 =
{

[`i j]
∣∣∣∣− `i j ∈ {0}∪ [α, ᾱ], i, j = 1, . . . ,N, i 6= j;

`ii ∈ [0,Nᾱ], i = 1, . . . ,N
}

, ϒ2 =
{

[`i j]
∣∣∣∣

N

∑
j=1

`i j = 0,

i = 1, . . . ,N
}

andϒ3 =
{

[`i j]
∣∣∣∣

N

∑
i=1

`i j = 0, j = 1, . . . ,N
}

.

It can be easily derived from the definition of Laplacian matrix that
ϒ1∩ϒ2∩ϒ3 is the set consisting of all graph Laplacian L satisfying
1TL = 0 and the off-diagonal elements of L are chosen from the set
0∪ [α, ᾱ]. We first prove that ϒ1 ∩ϒ2 ∩ϒ3 is closed and bounded
in RN2

. In fact, ϒ1 is closed and bounded; and the sets ϒ2,ϒ3 are
closed but unbounded. The former argument holds since it is the
product space of N2 closed and bounded sets in R1. For the latter
argument,we only prove in the following that the set ϒ2 is closed,
similar proof can be derived for that of ϒ3. let

Si =
{

[`i,1, . . . , `i,N ]
∣∣∣∣[`i,1, . . . , `i,N ] is the vector taken from

the i-th row of [`i j] ∈ ϒ2

}
, i = 1,2, . . . ,N.

Then, ϒ2 = S1×S2×·· ·×SN . It is clear that ϒ2 is a closed set in
RN2

if each Si, i = 1,2, . . . ,N is closed in RN . In order to prove
that Si is closed, we introduce the following continuous multivariate
function:

f : RN → R1, f (x) :=
N

∑
i=1

xi, ∀x = [x1,x2, . . . ,xN ] ∈ RN .

Since f is continuous and {1} is a closed set in R1, f−1({1})
is closed in RN , i.e. each set Si, i = 1, . . . ,N, is closed in RN .
Therefore, ϒ1∩ϒ2∩ϒ3 is closed and bounded.

On the other hand, denote by Ω the set of all N×N nonnegative
matrices with zero diagonal elements, it is clear that there are only
finite different types of matrices (two nonnegative matrices P1 and
P2 are said of the same type [7], P1 ∼ P2, if they have zero elements
and positive elements in the same places) in Ω and all the digraphs
associated with the matrices having the same type in Ω are also
with the same topological structure. Note that Ω can be partitioned
by the equivalence relation ∼. Let [A] := {B∈Ω|B∼ A} denote the
equivalence to which A (A∈Ω) belongs. Without loss of generality,
denote by [A1], [A2], . . . , [Am] all the equivalence classes with which
the associated digraph are weakly connected and let

ϒ4 =
m⋃

k=1

ϒk
4 =

m⋃

k=1

{
[`i j]

∣∣∣∣− `i j ∈ {0}∪ [α, ᾱ], `ii ∈ [0,Nᾱ],

i, j = 1, . . . ,N, i 6= j; and−L+diag{`11, . . . , `NN}∼ Ak

}

It is clear from the definition of ϒ that ϒ = ϒ1∩ϒ2∩ϒ3∩ϒ4.
Similar to the discussion above, it can be easily obtained that

ϒ4 is also closed and bounded since each ϒk
4 is a product space of

N2 closed and bounded set in R1. This combined with the above
analysis imply that ϒ is compact in RN2

. ¥

1460


