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Abstract—The performance of any linearization based estima-
tion algorithm like the Extended Kalman Filter (EKF) relies
heavily on the accuracy of the nominal trajectory about which
the system is linearized. When the linearization assumption does
not hold, such an algorithm behaves in an unpredictable fashion
and metrics of estimation error (i.e. state covariance) are invalid.

This paper presents methods to identify in real-time those
parts of the state vector whose uncertainties cause significant
deviations from the linearized model and proposes a near-real
time approach to address the issue. One important class of
applications is initialization of navigation systems; therefore, as
an example the paper applies the results of the theory to a
simplified 7 state, two dimensional GPS aided INS. The near-
real time approach is demonstrated in simulation.

I. INTRODUCTION

Consider evolution of state x in the state space R
N ac-

cording to some nonlinear vector of real analytic mappings

f : RN+M → R
N defined by

ẋ = f (x,u) (1)

where u ∈ R
M denotes the inputs to the system. If the

system dynamics f and initial conditions are perfectly known,

the state x can be uniquely determined by integrating (1).
But in real-world scenarios, u ∈ R

M are unknown and we

are only equipped with non-ideal sensors that make noisy

measurements of u denoted by ũ. Also, the initial conditions

x(0) are not perfectly known at time t = 0. Hence an estimate

of the state, x̂, is computed by integrating ˙̂x = f (x̂, ũ). But

note that x̂ is a stochastic process as the inputs ũ and initial

conditions x(0) are random in nature.

Assume that we are equipped with sensors that measure

some function of the state x modeled as

ỹ = h (x) + n (2)

where h : RN → R
P is a vector of real analytic functions

and n ∈ R
P is additive noise. Under the Bayesian estimation

philosophy (Ch. 10 in [8]), an estimator of x may be defined

as

x̂ = arg max
x∈RN

(p{x|ỹ, ũ}) = arg max
x∈RN

(p{ỹ|x, ũ}p{x, ũ})

(3)

where p{x|ỹ, ũ}} denotes the probability density of state x

conditioned on the measurements ỹ and inputs ũ. Computation

of the joint probability p{ỹ|x, ũ} is tractable as the random

noise appears additively in the model depicted in (2), however

computing the stochastic properties of x, characterized by the

joint density p{x, ũ}, is non-trivial due to the nonlinear nature

of f .

Many real world problems can be described by the generic

equations in (1) and (2). To demonstrate the ideas outlined

later in the paper, we will use a GPS aided Inertial Navigation

System (INS) as an application. State space approaches to

Inertial Navigation Systems (INS) have a state evolution

equation similar to (1) and almost all practical real time

implementations of aided INS use an EKF to estimate the

error state assuming a linearized error state propagation and

measurement model. Hence accurate linearization is essential

to ensuring the success of such integrations.

The following subsection briefly reviews the Extended

Kalman Filter (EKF) with is based on this idea. Section I-B

reviews some popular nonlinear estimation methods.

A. Linearization based methods

Linearization based estimation methods like the EKF seek to

estimate the error accrued in integration of ˙̂x = f (x̂, û). The

error in the estimate x̂(t) is defined as δx(t) = x(t) − x̂(t),
and it evolves in time according to

δẋ(t) = f (x(t),u(t))− f (x̂(t), û(t)) . (4)

Linearization based algorithms approximate (4) by truncating

the Taylor series expansion of f around (x̂, û) to first order

to derive an approximate error state evolution model as

δẋ(t) = A(t)δx(t) +G(t)δu(t) (5)

where A(t),G(t) are time-varying matrices obtained by com-

puting the Jacobian of f with respect to x and u respectively.

An EKF estimator is optimal [12] in the sense of minimizing

the Mean Square Error (MSE), if linearization is valid and

sensor measurement noise in ũ and ỹ are white and Gaussian.

Though the EKF algorithm is fast and a computationally

inexpensive approach (esp. when using scalar sequential up-

dates), if linearization errors in (5) are not negligible then the

behavior of an EKF is unpredictable and linear propagation

of error state covariance according to (5) does not necessarily

reflect the actual error in the state.

B. Nonlinear Sampling based methods

Alternative estimation paradigms like the Particle filter [1]

do not require the system to be linear, but large initial un-

certainties can cause severe degeneracy of particles in a short

time. For example if the measurement noise is assumed to

be Gaussian then the weights are penalized exponentially ac-

cording to their measurement residuals. A brute force method

to mitigate the degeneracy issue is to use a large number

of particles but the disadvantage of this approach is that
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it causes a huge computational burden. Estimation methods

like the Unscented Kalman Filter [7] seek to mitigate this

issue of computational burden by deterministically choosing

candidates or sigma points and propagating them through the

nonlinear function f . By carefully choosing sigma points, this

algorithm is in effect generalizing the EKF by approximating

the nonlinear function f up to higher orders of estimation

error [20]. Here again, large uncertainties in state initializations

would require an increased number of sigma points to be

able to model the higher order moments of the a-posteriori

probability density of state.

In this paper we propose a real time method to identify error

states in a nonlinear system that cause significant deviation

from the linearized error state model. After identifying those

states, we propose a near-real time approach to estimate such

states such that the linearization approach is valid again. Once

we determine the validity of the linearization assumption,

we integrate the states using the faster EKF approach. We

demonstrate the idea in theory and simulation on a 2D GPS

aided INS (e.g. a robot equipped with an IMU navigating a

flat plane).

The outline of this paper is as follows: Section II-A

discusses the generalized Bayes’ solution and Section II-B

discusses the linearized Maximum-A-Posteriori (MAP) solu-

tion to (3). Section III describes the proposed near-real time

based initialization approach. Section IV-A introduces notation

that is specific to the 2D GPS-INS application. Section IV-C

describes kinematics and measurement error modeling of a

2D GPS-INS. Section IV-F reviews some state initialization

approaches in GPS-INS. Section V provides some simulation

results for the proposed idea and Section VI concludes the

paper.

II. BAYESIAN SOLUTIONS

Let the measurement of system inputs u be modeled as [6]

ũ = u+ b+ ω (6)

where b and ω denote additive bias and sensor noise re-

spectively. Sensor biases are nuisance parameters that should

be estimated for improved system performance. Augmenting

system state with the bias states b, we define the augmented

state as x̄⊤ =
[

x⊤ b⊤
]

.

A. Generalized Bayesian solution

We can rewrite (3) in terms of the augmented state vector

x̄ ∈ R
N+M as

ˆ̄x = argmax
x̄

(p{x̄|ỹ, ũ}) = argmax
x̄

(p{ỹ|x̄, ũ}p{x̄, ũ}) .

(7)

In order to solve (7) we need to compute p {ỹ|x̄, ũ} and

p {x̄, ũ}. Since n appears additively in (2), it is straightfor-

ward to compute

p{ỹ|x̄, ũ} = p{ỹ|x̄} = pn {ỹ − h(x)} (8)

where pn denotes the probability density of additive measure-

ment noise. The joint density function of the state p{x̄, ũ}

can be derived as p{x̄, ũ} = p{x̄|ũ, x̄0}p{ũ|x̄0}p{x̄0} where

p{x̄0} is the a-priori density of the state. Assuming that the

biases b evolve as a random walk process according to ḃ = ωb,

in concept, the density p{x̄|ũ, x̄0} could be derived as

∂2

∂κ1∂κ2
P







t
∫

0

f(x, û)dτ ≤ κ1 − x(0), b(t) ≤ κ2







where b(t) = b(0) +
t
∫

0

ωb and û = ũ − b̂. Unless f is a

simple function, deriving this joint probability is not trivial.

Further p(ũ|x̄0) is non-stationary as it depends on system

inputs u. The following subsection discusses the linearization

based approximations to simplify the computation of (7).

B. Standard linearized MAP estimation

Using the initial estimate of x0, denoted by x̂0 and an

estimate of the system inputs û, an estimate of x is computed

as

x̂ = x̂0 +

t
∫

0

f (x̂, û) dτ. (9)

The error in the estimate defined in (9) is

δx = δx0 +

t
∫

0

f(x,u)− f(x̂, û)dτ. (10)

Since f is a vector of real analytic functions, we can express

it as a Taylor series in the neighborhood of (x̂, û) as

f(x,u) = f(x̂, û) +Aδx+G (δb+ ω)+ Tx (11)

where G = ∂f
∂u

, A = ∂f
∂x

evaluated at (x̂, û) and Tx ∈ R
N

denotes the higher order terms of the expansion. Substituting

(11) into (10) yields

δx = δx0 +

t
∫

0

Aδx+G (δb+ ω) + Tx dτ. (12)

Note that (12) and δb(t) = δb(0) +
t
∫

0

ωbdτ are the unique

solution to the system that evolves according to

δ ˙̄x = Āδx̄ + Ḡω̄ + T̄x (13)

where Ā
⊤

=
[

A⊤ G⊤ 0 0
]

, Ḡ
⊤

=
[

G⊤ I
]

,

ω̄⊤ =
[

ω⊤ ω⊤
b

]

and T̄
⊤
x =

[

T⊤
x 0

]

∈ R
N+M .

The main assumption in this section is that the error in

(x̂, û) is sufficiently small so that Tx can be ignored. Under

this assumption, (12) reduces to

δx = δx0 +

t
∫

0

Aδx+G (δb+ ω) dτ. (14)

Similarly the error in measurement can be expressed as

δy = ỹ − ŷ = H̄δx̄ + n+ Ty (15)

3185



where H̄ =
[

∂h
∂x

0
]

and Ty ∈ R
P denotes linearization

errors, which are ignored as before.

Since ˆ̄x is known we conclude

p{x̄|ỹ, ũ} = pn{δy|δx̄,ω}p(δx̄,ω) = pn{δy|δx̄}p{δx̄}p{ω}.
(16)

From (16) we conclude that, up to linearization errors,

max
x̄∈RN+M

p(x̄|ỹ, ũ) = max
δx̄∈RN+M

pn(δy|δx̄)p(δx̄). (17)

Denoting δˆ̄x as

δˆ̄x = arg max
δx̄∈RN+M

pn(δy|δx̄)p(δx̄) (18)

the result in (17) can be formally stated as the following

proposition.

Proposition 2.1: When linearization errors are small, the

estimate δˆ̄x satisfies (18) if and only if ˆ̄x satisfies (7).
Proof: (⇒)Given that ˆ̄x = x̄ + δˆ̄x and ˆ̄x satisfies (7),

then p(ˆ̄x|ỹ, ũ) ≥ p(x̄∗|ỹ, ũ) for all other estimators x̄∗, then

from (16) we conclude pn(δy|δˆ̄x)p(δˆ̄x) ≥ pn(δy|δx̄∗)p(δx̄∗).
Hence δˆ̄x satisfies (18). The converse can be proved likewise.

The subsequent section describes the proposed near-real

time initialization approach of systems modeled as (1) and

(2).

III. NEAR REAL TIME INITIALIZATION

A. Analysis

For the analysis presented here, we will consider only the

contribution of the second order term in T̄x and Ty. Let fj :
R

N → R and hi : R
N → R, denote the ith and jth component

of f and h respectively for 0 ≤ i ≤ N , 0 ≤ j ≤ P . Denote

the ith
(

jth
)

element of T̄x (Ty) as T i
x

(

T j
y

)

respectively.

We derive

T i
x = 1

2δx̄⊤J i
xδx̄ T j

y = 1
2δx̄⊤J j

yδx̄

where J i
x

(

J j
y

)

are the Hessian matrices of fi (hj) computed

with respect to x̄.

The linearized model will be considered accurate if T i
x(T

i
y)

are in the order of Ḡω̄(n), in a statistical sense. This idea is

developed below. For each 0 ≤ i ≤ N ,

E{δx̄⊤J i
xδx̄} = E{trace

(

δx̄⊤J i
xδx̄

)

}

= E{trace
(

J i
xδx̄δx̄⊤

)

}

= trace
(

J i
xP

)

(19)

where P denotes the covariance matrix of error in ˆ̄x. Similarly

E{δx̄⊤J i
yδx̄} = trace

(

J i
yP

)

for each 0 ≤ j ≤ P . If Qi and

Rj denote the second order moments of ith and jth component

of Ḡω̄ and n, we conclude that the linearized model is valid

if

trace
(

J i
xP

)

< γiQi trace
(

J j
yP

)

< µjRj (20)

for each 0 ≤ i ≤ N and 0 ≤ j ≤ P , where γi and µj

are designer specific parameters. The criteria in (20) allows

us to identify those states where the estimation error as

characterized by P is large enough relative to the curvature

(i.e. J i
x or J j

y ) such that its effect is larger than noise. This

is demonstrated in Section V-A for the specific case of a

2D GPS-INS. One method to detect a discrepancy in the

linearized model is to compare the probabilities of magnitudes

of the observed measurement residuals computed from the

linearized model to a designer specified threshold (λ2). This

threshold could be chosen using probabilistic principles such

that it satisfies a specified performance criteria. If we observe

measurement residuals whose probability of occurrence is

very small according to our linearized model then that might

indicate an error in the linearized model. Section III-B builds

more on this idea.

B. Validation of measurements

The linearized model for the measurement residual δỹ ∈
R

P is derived by ignoring Ty in (15) as

δy = H̄δx̄ + n. (21)

If the linearized model is valid (i.e. ∃Φ : RN+M → R
N+M

such that δx̄(t) = Φ(t, 0)δx̄(0) +
∫

ΦḠω̄dτ ) and uncer-

tainty in initial state estimate ˆ̄x(0) is normally distributed

as ˆ̄x(0) ∼ N (x̄(0),P (0)) then δx̄(t) ∼ N (0,P ), where

P = ΦP (0)Φ⊤ +
∫

ΦḠQḠ
⊤
Φ⊤dτ . Further, if the additive

measurement noise n is white and Gaussian with n ∼
N (0,R), the residual in (21) is Gaussian whose covariance

is derived as

S = H̄P H̄
⊤
+R. (22)

Using the procedure outlined in Section 4.9.1 in [3], we define

a new variable v = Σ−1U⊤δy, where Σ,U are derived

by resolving the positive symmetric matrix S using LDL⊤

decomposition as S = UΣ2U⊤.

For a given threshold λ ∈ R
+, we propose the following

indicator function I:

I =

{

1 v⊤v ≤ λ2

0 v⊤v > λ2.
(23)

Using the fact δy ∼ N (0,S), we can derive the stochastic

properties of v⊤v. If linearization errors are indeed small

then, v⊤v is Chi-square distribution with P degrees of free-

dom. The probability density function of v⊤v is given by

fv⊤v(s) =
1

2
P
2 Γ(P

2
)
s

P
2
−1 exp{− s

2} for s ≥ 0. Given q ∈

(0, 1), the corresponding threshold λ can be computed from

the P th order Chi-square cumulative distribution function such

that Prob{v⊤v ≤ λ2} = q.

C. Near Real Time Estimation

Without loss of generality, let the state vector be organized

as x̄⊤ =
[

ζ⊤
l ζ⊤

nl

]

. The symbol ζnl ∈ R
L represents the

states with error large enough that, when they are observable,

cause I = 0 in (23) to trigger. While ζl ∈ R
M+N−L represent

the remaining states, for which (23) indicates that linearization

is valid.

The central contribution of the paper is a method by

which, over intervals of time where portions of ζnl become
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observable, errors in ζnl within the observable subspace can

be decreased to the level where the standard EKF method

becomes practical. During such time intervals, due to the mag-

nitude of ζnl linearization based techniques are not reliable.

Fig. 1. In [0, t0] the observable states are sufficiently accurate such that
v⊤v < λ2. The system enters Maneuver 2 at time t = t0 and components
of errors in ζnl become observable. The time tn is such that ζnl(t0) is
observable from measurements (ũ(τ), ỹ(τ)), t0 < τ < tn.

In this paper, an alternative Near Real Time (NRT) Bayesian

method is proposed, which is described below. Consider the

situation depicted in Figure 1. In time [0, t0], the system

is undertaking a trajectory called Maneuver 1. Assume that

during this time a significant portion of the error in ζnl lies in

the unobservable subspace and hence cannot be detected by

measurements ỹ. During Maneuver 1 the observable states are

sufficiently accurate to allow the EKF approach to succeed.

An example of this is a typical stationary GPS aided INS

initialization where ζnl spans portions of the attitude and

IMU biases. At time t = t0, the system enters Maneuver 2

when previously unobservable states become observable with

errors too large to allow accurate linearization. Since ζnl(t0)
is observable using measurements in ỹ(t), t0 < t < tn, it

is possible to initialize ζnl(t0) such that v⊤v ≤ λ2 for all

t0 < τ < tn. This idea is outlined as Algorithm 1.

Algorithm 1 Near-real time initialization

// 0 ≤ τ ≤ t0
while v⊤v < λ2 do

EKF: x̂(τ) =
∫

f(x̂, û), b̂(τ) = b̂(0), δˆ̄x(τ) =
E{δx̄(τ)|δy(τ)}
v(τ)← Σ−1U⊤δy(τ)

end while

// t0 ≤ τ ≤ tn
if O(ũ(τ), ỹ(τ)) then

Initialize: ζnl(t0) ← I(ũ(τ), ỹ(τ)) using a MAP esti-

mator.

end if

Re-integrate via EKF: x̂(τ) =
∫

f(x̂, û), b̂(τ) = b̂(t0),
δˆ̄x(τ) = E{δx̄|δy}

In Algorithm 1, the indicator function O : R
M+P ×

[t0, tn]→ {0, 1} returns 1 if x̄(t0) is observable from measure-

ments (ũ(τ), ỹ(τ)), t0 < τ < tn and returns 0 otherwise. This

observability test is based on the well understood observability

conditions for linear systems. This condition is critical, for

otherwise trying to initialize an unobservable state from noisy

measurements can lead to erroneous results. The function I :
R

M+P×[t0, tn]→ R
L initializes ζnl(t0) based on observables

(ũ(τ), ỹ(τ)). A method to achieve this is through nonlinear

least squares minimization, provided a unique global minima

exists for the given cost function (existence is guaranteed if

the cost function is continuous and the domain is compact,

uniqueness requires proof) and achievable in a finite number

of iterations. There are methods that achieve off-line over long

time intervals (e.g. Bundle adjustment [19], Square root SAM

[2]), but we are proposing doing the nonlinear optimization on-

line over short intervals, to drive observable states to the point

where second order errors are small. A possible initialization

function is described for the specific case of a 2D GPS-INS

discussed in Section IV.

IV. A 2D GPS AIDED INS

A. Notation

Let the symbols b and n in the superscript denote the body

and navigation frames respectively; when they are used as

subscript they depict the origins of the respective frames. The

symbol xpyz is used to express the vector from points y to z

in the x frame. If av denotes a free vector v in the a frame,

then the rotation matrix b
aR is used to represent it in b frame

as bv = b
aR

av. The symbol cẋ denotes the time derivative of
cx vector in the c frame.

The subsequent subsections briefly discuss the kinematics

of a 2D INS and GPS measurement models.

B. Introduction

Consider a rover in a 2D world whose navigation state can

be fully described by

x⊤ =
[

np⊤
nb

nv⊤
nb ψ

]

where npnb
⊤ ∈ R

2, nvnb
⊤ ∈ R

2, ψ ∈ [−π, π] denote the

position, velocity and attitude of the rover in the 2D world. We

assume that the rover moves in the forward direction (defined

relative to the body frame) without slipping in other directions.

The rover is equipped with a 1D accelerometer and a yaw rate

gyroscope that measures forward acceleration and yaw rate

respectively. The inertial measurements are modeled as

bãf = baf + ba + na
bω̃y = bωy + bω + nω

where baf denotes the forward acceleration and bωy denote the

yaw rate about the body frame, ba, bω and na, nω represent the

biases and additive noise in those sensors respectively.

C. 2D INS Kinematics & GPS Measurement model

The kinematic equations are

nṗnb = nvnb (24)
nv̇nb = bωyΛ

⊤
1
bvnb +

n
bR

banb (25)

ψ̇ = bωy (26)
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where ba⊤
nb =

[

baf 0
]

and

n
bR =

[

cosψ − sinψ
sinψ cosψ

]

, Λ1 =

[

− sinψ cosψ
− cosψ − sinψ

]

.

The augmented navigation state x̄ ∈ R
7 is derived as

x̄⊤ =
[

x⊤ bω ba
]

.

Equations (24− 26) correspond to f in the generic nonlinear

model described in (1).
As stated earlier, it is difficult to compute the stochastic

properties of x̄ due to the nonlinear nature of (24 − 26).
The EKF propagates the error covariance using a linearized

approximation of the error state evolution. Let the augmented

error state vector be defined as

δx̄⊤ =
[

nδp⊤
nb

nδv⊤
nb δψ δbω δba

]

.

Assume a random walk model for the sensor biases

ḃa = nba (27)

ḃω = nbω (28)

where nba and nbω are random processes. Using (24 − 26)
and (27− 28) the error state dynamic equations equations are

derived to first order as

nδṗnb = nδvnb (29)
nδv̇nb = bω̂yΛ̂

⊤
1

b
nR̂

nδvnb − Λ̂⊤
1
bv̂nb (δbω + nω)

+Λ̂2 (δba + na) + Λ̂3δψ (30)

δψ̇ = −δbω − nω (31)

δḃω = nbω (32)

δḃa = nba (33)

where Λ⊤
2 = −

[

cos ψ̂ sin ψ̂
]

and

Λ3 = Λ⊤
1 Λ1

nv̂nb
bω̂y −

n
bR

bv̂nb
bω̂y + Λ̂⊤

1
bânb

which can be written in matrix form as

δ ˙̄x(t) = Ā(t)δx̄(t) + Ḡ(t)ω̄(t) (34)

where ω̄⊤ =
[

nω na nbω nba
]

such that ω̄ ∼
N (0,Q) and Q is the noise power spectral density.

D. GPS Measurement updates

Assume that there are 2 satellites in this 2D world at known

locations npj , j ∈ {1, 2}. The range measurement at time t

corresponding to the jth satellite is modeled as

ỹj(t) = ||
npnb(t)−

npj ||+ ω(t)

where ω ∼ N (0, R) is additive Gaussian white noise. The jth

measurement residual, defined as δy = y − ỹ is modeled as a

function of δx̄

δyj(t) = Hjδx̄(t) + ω(t) (35)

where Hj =
[

npnb(t)−
npj

||npnb(t)−npj ||
0 0 0 0

]

.

E. Observability conditions

Define the following rover maneuvers during the time

[0, tn]:

1) Maneuver 1: Rover is at rest for all τ ∈ [0, t0).
2) Maneuver 2: Rover undergoes non-zero constant accel-

eration along a straight line for all τ ∈ [t0, tn].

The following proposition is stated but not proved:

Proposition 4.1: The rover state is not fully observable

from range measurements during Maneuver 1. The rover state

is fully observable when Maneuver 1 is followed by Maneuver

2 using range measurements.

Proof: Solving (29− 33), we derive

δx̄ = Φ(t, 0)δx̄ (36)

where

Φ =













I
∫

exp
{∫

Ξ
} ∫

Λ3 −
∫∫

Λ⊤
1
bvnb

Λ2

2 t
2

0 exp
{∫

Ξ
}

Λ3 −
∫

Λ⊤
1
bvnb Λ2t

0 0 I It 0
0 0 0 I 0
0 0 0 0 I













Ξ = bω̂yΛ̂
⊤
1

b
nR̂

and process noise has been ignored since it is irrelevant to

observability analysis. Assume that for all t ∈ [0, tn], the

line-of-sight vectors to satellites are not collinear. Under this

assumption, we can reduce the measurement equation to

nδp̃nb = H̄δx̄ (37)

where H̄ =
[

I 0 0 0 0
]

and measurement noises are

ignored. It can be shown that if for each t ∈ [0, tn],

H̄Φ(0, t)v = 0 (38)

implies v = 0, then the observability gramian has full rank.

Let v⊤ =
[

v⊤
1 v⊤

2 v⊤
3 v⊤

4 v⊤
5

]

such that it satisfies

(38). For all t ∈ (0, t0), we derive

v1 + v2t+
Λ2

2
v5t

2 = 0. (39)

By repeated differentiation of (39), we derive

v1 = v2 = v5 = 0. (40)

Using (38) and (40), we derive for all t ∈ (t0, tn) as

Λ⊤
1
bãnbv3 −

∫∫

Λ⊤
1
bvnbv4 = 0 (41)

Differentiating (41) twice, we derive v4 = 0. Substituting

v4 = 0 into (41), we derive v5 = 0. Hence v = 0.

Using linearized observability analysis, we can show that for

during Maneuver 1 with at least ranging measurements from

two satellites with non-collinear line-of-sight vectors, npnb,
nvnb and ba are observable. The attitude and gyroscope bias

states are unobservable until the vehicle accelerates.
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F. Literature review

Initial uncertainty in position and velocity affect the error

state evolution linearly (see (29)) and hence it is accounted

for by linear covariance propagation models. If the rover

is initially known to be at rest then a reliable estimate of

gyroscope biases can be obtained by averaging gyroscope

measurements. Hence, yaw is the only state with a potential

to have large uncertainty, because it is unobservable through

standard range measurements. In this idealized 2D system,

we are able to estimate the forward accelerometer biases also,

but in real-world systems, this is not possible as errors in

alignment are coupled with the accelerometer biases.

1) Sensors: It is known that in any linearization based

aided INS, attitude can be a significant source of nonlinearity,

hence a significant amount of research has been conducted

into attitude initialization. In [15], the author uses 2 tilt sensors

to measure initial roll and pitch and estimates accelerometer

biases while the vehicle is stationary. Yaw and heading is

initialized after the rover begins to move. The approaches

in [14] and [21], use the accelerometer measurements to

initialize roll and pitch and a magnetic compass to initialize

yaw. In a related work [17], the author uses a sun sensor to

initialize yaw. Approaches in [9], [10], [11] etc., use double

differenced carrier phase measurements (after resolving integer

ambiguities) from three or more GPS antennas mounted at at

known relative locations to estimate 3D attitude.

2) Methods: In [5], the author uses a Particle Filter to solve

the in flight misalignment problem where initial uncertainty is

large. In [18], [16], large heading errors are accommodated

by alternative modeling (i.e. estimating the sine and cosine

of yaw separately by augmenting them in the state vector).

The approach in [4] uses standard fixed point smoother to

initialize the system in near-real time. Particle filters have

also been considered as a solution to the aided INS problem.

A 3 state 2D GPS aided odometer based navigation system

requires about 2000 particles to achieve lane-level accuracy

[13]. A 7 state 2D GPS aided INS simulation outlined in

Section V required 5000 particles to provide similar navigation

performance to the near-real time initialization approach. The

number of particles required to approximate the a-posteriori

density grows exponentially with the increase in state di-

mension. In general if m particles are used sample a single

dimensional probability density and the a-posteriori density is

d dimensional then the number of required particles is md.

V. SIMULATION RESULTS

The purpose of the this subsection is to demonstrate the

use of the methodology in Section III of this paper to

identify the states whose uncertainty causes significant devi-

ation from the ideal linearized model. In the simulation the

power spectral density of the accelerometer and gyroscope

measurements noise were assumed to be 10−3(m/s/s)2 Hz−1

and 10−7(rad/s)2 Hz−1. The bias random walk parameters

in (27 − 28) were assumed to be nbω ∼ N (0, σbω ),
nba ∼ N (0, σba) where σ2

ba
= 10−7(m/s/s/s)2 Hz−1,

σ2
bω

= 10−11(rad/s/s)2 Hz−1 for the accelerometer and gy-

roscope respectively. The raw IMU measurements are shown

in Figure 2. It can be shown that the full linearized error

state is observable at time t = 19 s. The initial uncer-

tainty was assumed to be Gaussian with diag (P (0)) =
[

0.5 0.5 0.1 0.1 0.67π 10−3 5× 10−3
]

with all

correlations set to zero. The error in initial yaw was 120 deg.
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Fig. 2. The IMU measurements as the rover executed a simulated trajectory.
The power spectral density of the accelerometer and gyroscope measurements
noise were assumed to be 10−3(m/s/s)2 Hz−1 and 10−7(rad/s)2 Hz−1.

A. Nonlinear effects of states

Given the kinematic system described by (24 − 26), the

exact error state dynamic is derived as (13). From (29− 33)
we see that only (30) is an approximation (i.e. truncated at the

first order of Taylor series) and the rest are exact, hence T̄x

has the form T̄
⊤
x =

[

0 T 3
x T 4

x 0 0 0
]

. Considering

the contribution of only the second order terms, we derive

T 3
x = 1

2δx̄J3
xδx̄⊤ T 4

x = 1
2δx̄J4

xδx̄⊤ (42)

where

J3
x

⊤
=

[

07×4 C3 07×2

]

,

J4
x

⊤
=

[

07×4 C4 07×2

]

and

C⊤
3 =

[

0 bω̂y 0 αbv̂nb v1 0
]

C⊤
4 =

[

0 0 bω̂y βbv̂nb v2 0
]

where α = 1
2

[

− sinψbω̂y + cosψ − cosψbω̂y − sinψ
]

,

β = 1
2

[

cosψbω̂y + sinψ − sinψbω̂y + cosψ
]

and
nv⊤

nb =
[

v1 v2
]

.

Similarly nonlinear effects of states on the jth mea-

surement is denoted by T j
y = 1

2δ
npnb

⊤Cy
nδpnb, where

Cy = I
ρ
− (npnb−

npj)(
npnb−

npj)
⊤

ρ3 with ρ = ||npnb −
npj ||

2.

Note that in real world scenarios ρ ≈ 20 × 106m, hence
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effects of T j
y are at the 10−2m level even if error in position

nδpnb ≈ 100m. Hence (20) is satisfied with µ = 1 even for

large errors in nδpnb.

For a motion scenario defined by the raw IMU measure-

ments in Figure 2, the absolute value of trace(J3
xP ) and

trace(J4
xP ) (black dots) along with Q3 and Q4 (red dots)

is depicted in Figure 3, where Q3 (Q4) is the third(fourth)

diagonal term in

Qd =

t
∫

0

ΦGQG⊤Φ⊤dτ.

The EKF propagation of the error covariance matrix P takes at

least 30 s to decrease to the point where (20) is satisfied. This

is attributed to the fact that as the rover begins to move, errors

in attitude, biases become observable and are corrected by the

EKF resulting in smaller values of diag(P ). Note that this

does not imply that errors in those states are small, because

the EKF uses an invalid linearized error model. Convergence

of the EKF will depend on the magnitude of the initial attitude

error. Figure 4 shows the corresponding measurement residuals

(blue dots) along with the residual covariance (red dots). It can

be seen that attitude errors cause large measurement residuals,

easily detected by (23), when the rover begins to move at

t = 10 s.
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Fig. 3. The black dots denote trace(J3
xP ) and trace(J4

xP ) and the red dots
denotes Q3 and Q4.

B. Initialization of ζnl

In the previous section it was determined that for a 2D
GPS-INS, ζnl = ψ. This section presents results of initializing

ζnl by finding the MAP estimate via nonlinear optimization.

First we generated Np candidates of the state x̄i, 0 ≤ i ≤ Np

such that they differ only along the ψ direction. Assuming that

ψ ∼ U [−π, π], the attitudes of the candidates were determinis-

tically chosen at equal intervals in that range. The candidates
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Fig. 4. GPS residuals are depicted as blue dots and the corresponding ±1σ
standard deviation is depicted as red dots.

were integrated through [t0, tn] and the GPS measurements

residuals generated by the ith candidate was computed as

δY ⊤
i =

[

δy⊤
i (t1) . . . δy⊤

i (tj) . . . δy⊤
i (tn)

]

where

1 ≤ j ≤ n is the index on discrete time GPS measurements.

We assign weights inversely proportional to the square-norm

of the measurement residuals, i.e. the candidates are weighted

according to wi =
(

δY ⊤
i δYi

)−1
, and the top two candidates

with maximum weights are selected (say ψm, ψn). In the next

iteration, Np candidates are chosen with attitudes determinis-

tically chosen between ψm and ψn. This iterative procedure

continues till |ψm − ψn| < ǫ, where ǫ is a chosen threshold

(in this case ǫ = 3deg) selected to guarantee accuracy of the

linearized error model.

Figure 5 shows the normalized weights plotted against

the attitudes of candidates during various iterations. In our

simulations, the attitude converged in just 3 iterations when

Np = 5. The attitude estimate ψc is computed as the weighted

average of the candidate attitudes in the last iteration.

Figure 6 depicts the measurement residuals (blue dots) along

with its ±1σ standard deviation (red dots) derived by re-

integrating the state after near real time initialization. The

proposed approach work even for yaw errors as high as

180 deg, whereas an EKF may quickly become unstable with

such large attitude errors.

VI. CONCLUSION

Performance of linearization based algorithms using the

state-space approach heavily depends on the accuracy of the

linearization point. In real world applications, initialization of

states is not always trivial. Errors in certain states cause a

greater deviation from the linearized model than others. In

this paper we propose a method to identify such states and

a method to validate measurements to detect errors in the

linearized model. We also proposed a near-real time approach
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Fig. 5. The black dots depict weights of candidates whose attitudes are
deterministically selected. The red line indicates the true initial attitude
(45 deg). In this case, the weighted average ψc, after coarse initialization
is computed as 42.1 deg.
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Fig. 6. GPS residuals are depicted as blue dots and the corresponding ±1σ
standard deviation is depicted as red dots computed by re-integrating the state
after attitude initialization.

to initialization of states. The paper also demonstrates the

theory on a simple 7 state 2D GPS aided INS.
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