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Abstract— We consider networks of single-integrator systems,
where it is desired to optimally assign a predetermined number
of systems to act as leaders. Performance is measured in terms
of the H2 norm of the overall network, and the leaders are
assumed to always follow their desired state trajectories. We
demonstrate that, after applying a sequence of relaxations, the
problem can be formulated as a semidefinite program and thus
solved efficiently. We compare the results of our algorithms
against others reported in the literature. Finally, we interpret
the leader selection problem in terms of electrical networks and
Kron reduction theory.

Index Terms— Consensus, convex optimization, convex re-
laxation, effective resistance, Kron reduction, `1 minimization,
leader selection, semidefinite programing, sparsity.

I. INTRODUCTION

The problem of optimal leader selection for networks
of dynamical systems was recently formulated in [1].
Reference [1] considers a framework in which the follower
(i.e., non-leader) nodes are modeled as single-integrators,
and to compute their control signal they are restricted to
using only relative information between themselves and
those nodes they communicate with. The leader nodes,
on the other hand, are able to maintain the desired state
at all times and are not corrupted by input disturbances.
It is then desired to optimally assign a predetermined
number of nodes to act as leaders in order to minimize a
performance index. The leader selection problem arises in
several emerging applications, including opinion dynamics
in social networks and multi-agent formation control [1].

The leader selection problem is inherently difficult due to
its combinatorial nature; choosing k leaders among n agents
means that the performance objectives for

(
n
k

)
possible

leader combinations would have to be compared; such an
exhaustive search is not feasible for large systems. Therefore
it is common practice to relax the binary constraints (a node
is either a leader or it is not) that arise in these problems,
in order to obtain a more tractable formulation.

In this paper, using the formulation proposed in [1], we
present two methods for efficiently selecting leaders. Our
methods rely on a linear approximation of the objective
function and a relaxation of the binary constraints. Method 1
is based on a greedy algorithm, where leaders are chosen
one at a time in an iterative procedure. This algorithm
is numerically efficient but suffers from the fact that, by
design, in choosing the (κ+1)th leader it leaves the first
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κ leaders untouched; the optimal choice of leaders does
not necessarily have this feature. Method 2 is based on
the sparsity-promoting property of the `1 norm [2], [3].
This method does not suffer from the aforementioned
shortcoming of a greedy algorithm and is observed to
perform well on benchmark examples, often finding the
globally optimal choice of leaders.

Our presentation is organized as follows. In Section II we
state the optimal leader selection problem, as formulated
in [1]. In Section III we use a linear approximation and
relaxation of binary constraints to convexify the leader selec-
tion problem, and then proceed to develop two optimization
algorithms. In Section IV we demonstrate the performance
and efficiency of our algorithms using the example provided
in [1] as a benchmark. In Section V we give an electrical
network interpretation to the leader selection problem. We
close with conclusions and directions for future work in
Section VI.

II. PROBLEM STATEMENT

In this section we first state the leader selection problem
as formulated in [1]. We then elaborate on how this
formulation is obtained.

We consider the optimal leader selection problem [1],

minimize trace (L−1h )

subject to hj ∈ {0, 1}, j ∈ 1, . . . , n

‖h‖1 = k

(LS)

The vector h is composed only of zeros and ones, where
the indices of the nonzero elements indicate the location
of the leader nodes. L denotes the Laplacian matrix of the
system’s graph, which is assumed to be connected, and
Lh denotes the submatrix of L after all columns and rows
corresponding to the leaders (as indicated by the nonzero
elements of h) have been removed.

Reference [1] develops the formulation (LS) for a network
of n single-integrators ẋj = uj + wj , j = 1, . . . , n, where
xj , uj , and wj respectively denote the state, the control, and
the disturbance of the jth node. The nodes are restricted to
using only relative information uj = −∑i∈Nj

(xj − xi),
j = 1, . . . , n, where Nj denotes the set of all nodes that
communicate with node j. Stacking all variables into
vectors yields the state equation of the overall network
ẋ = −Lx+ w, where L is the Laplacian matrix.

If a node is chosen to be a leader then it is assumed to
follow the desired trajectory at all times and is unaffected
by input disturbances. In the coordinate system considered
in [1] (i.e., deviation from desired trajectory) this implies
that the state of every leader is identically equal to zero.
The latter fact has the effect of eliminating the rows and
columns corresponding to leaders from the state equation
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ẋ = −Lx + w, until only the dynamics of the follower
nodes remain

ẋf = −Lh xf + wf . (F)

In equation (F), xf is a vector containing all states corre-
sponding to follower nodes, wf is the vector of disturbances
affecting them, and Lh is the same as in (LS). Finally, [1]
considers an H2 performance objective, which can be shown
to be proportional to trace (L−1h ).

III. LEADER SELECTION USING RELAXATIONS AND
SEMIDEFINITE PROGRAMING

As we next demonstrate, problem (LS) is not convex. In
this section, we first use a linear approximation together with
a relaxation of the binary constraints to convexify the leader
selection problem. We then proceed to develop two different
optimization algorithms using the new relaxed formulation.
The first method is based on a greedy algorithm, where
leaders are chosen one at a time in an iterative procedure. The
second method is based on the sparsity-promoting property
of the `1 norm.

A. Convex Relaxations & Approximations

Let H be the diagonal matrix formed from the elements
of h,

H = diag{h},
so that the nonzero diagonal elements of H determine the
indices of the leader nodes. Let Lh be the reduced Laplacian
defined in Section II. Then

trace (L−1h ) = trace ((I−H)(G+H◦L)−1(I−H)), (J)

where G := (I −H)L (I −H) and ◦ denotes
elementwise matrix multiplication; see Appendix for a proof.
We additionally demonstrate equation (J) with the help of a
simple example. Let

L =

[
a b c
b d e
c e f

]
, h =

[
1
0
0

]
=⇒ Lh =

[
d e
e f

]
.

Since

H =

[
1 0 0
0 0 0
0 0 0

]
, I−H =

[
0 0 0
0 1 0
0 0 1

]
,

G =

[
0 0 0
0 d e
0 e f

]
, H◦L =

[
a 0 0
0 0 0
0 0 0

]
,

and thus
G+H◦L =

[
a 0
0 Lh

]
,

it follows that

trace ((I−H)

[
a 0
0 Lh

]−1
(I−H)) = trace (L−1h ).

Using (J) and the Schur complement [4], the optimization

problem (LS) can be rewritten as

minimize trace (X)

subject to
[

X I−H
I−H G+H◦L

]
≥ 0

G = (I−H)L (I−H)

Hjj ∈ {0, 1}, j ∈ 1, . . . , n

trace (H) = k, H diagonal

where M1 ≥ M2 (respectively M1 > M2) for matrices M1

and M2 implies that M1 − M2 is a positive semidefinite
(respectively positive definite) matrix. To demonstrate the
equivalence of this problem and (LS), note that whenever
G+H◦L > 0,1[

X I−H
I−H G+H◦L

]
≥ 0

⇐⇒ X ≥ (I−H)(G+H◦L)−1(I−H).

Therefore, to minimize trace (X) subject to the
inequality constraint, with H and G fixed, we take
X = (I−H)(G+H◦L)−1(I−H). From (J) it follows that
trace (X) = trace (L−1h ), which proves equivalence of the
new formulation and (LS). For additional details, the reader
is referred to [4, Chap. 2].

Setting aside for the moment its combinatorial nature,
the optimization problem above is not convex due to the
nonlinear way in which the optimization variable H appears
in the matrix G. In [5] a linear approximation of the objective
function trace (Y Z), at the point (Y0, Z0), was considered

(1/2) trace (Y0Z + Y Z0).

The authors use an iterative procedure in which they mini-
mize trace (Y0Z + Y Z0) for a given feasible pair (Y0, Z0),
then set Y0 ← Y , Z0 ← Z, and repeat. Motivated by this,
we redefine the variable G in the objective function (J) as

G := (1/2) (I−H)L (I−H0) + (1/2) (I−H0)L (I−H),

where H0 is our current-best-estimate of H .

Despite the application of a linear approximation, the
optimization problem is still combinatorial and therefore
intractable in general. We further apply a relaxation
by replacing, for j ∈ 1, . . . , n, the binary constraints
Hjj ∈ {0, 1} with the linear ones 0 ≤ Hjj ≤ 1. This is a
common procedure in dealing with binary constriants; see
for example [6], [7].

The above described linearization in conjunction with a
relaxation of the binary constraints in (LS) yields a convex
optimization problem which can be written as the semidefi-

1The inequality G + H ◦L > 0 holds whenever H has at least one
nonzero diagonal element. To see this, note that the matrix (I−H)L(I−H),
when restricted to the range space of I−H , is a principal submatrix of
the Laplacian and thus strictly positive. Similarly, the matrix H◦L, when
restricted to the range space of H , is a diagonal matrix with strictly positive
elements.
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nite program (SDP)

minimize trace (X)

subject to
[

X I−H
I−H G+H◦L

]
≥ 0

G = (1/2) (I−H)L (I−H0) +

(1/2) (I−H0)L (I−H)

0 ≤ H ≤ I, H diagonal

trace (H) = k

(R)

Using the relaxed formulation (R), we proceed in two
directions:

1. Greedy algorithm (Method 1): We use the
optimization problem to find leaders one at a time.
Given κ leaders, we find the best (κ+1)th leader; we
start from zero leaders and continue until all k leaders
have been found.

2. Soft constraint (Method 2): We relax the hard con-
straint trace (H) = k to a soft one by considering
the objective function trace (X)+γ trace (H). Starting
from very large values, we gradually lower γ until H
has only k nonzero diagonal elements.

As we demonstrate in Section IV, with the help of an
example, both algorithms perform well in the sense that
they find solutions with performance values comparable to
the globally optimal solution (determined by an exhaustive
search).

B. Method 1: Greedy Algorithm

Consider the optimization problem

minimize trace (X)

subject to
[

X I−H
I−H G+H◦L

]
≥ 0

G = (1/2) (I−H)L (I−H0) +

(1/2) (I−H0)L (I−H)

0 ≤ H ≤ I, H diagonal

trace (H) = κ

H0 = diag{h0}, Hh0 = h0

(M1)

where the optimization variables are the symmetric matrix
X and the diagonal matrix H . This optimization problem
is solved as part of an iterative loop (the exact description
of the algorithm will be given below). The solution H of
every iteration is used to form the current-leader matrix
H0, which is used for linearization in the next iteration.
The iterative process is initiated with κ = 0 leaders, and
leaders are chosen one at a time by setting κ ← κ + 1
in every iteration until all k leaders have been selected.
Thus, problem (M1) assumes that trace (H0) = κ − 1;
the solution of (M1) will determine the κth leader. The
constraint Hh0 = h0 enforces that H have at least the
same nonzero elements on its diagonal as H0. To see this,
observe that H0 contains the indices for the first κ − 1
leaders, and in the current iteration we are looking for an
H that has the same κ − 1 leader indices as H0, plus, the
next best leader. Finally, note that the solution H at every
step can have values that fall between zero and one, as the

binary constraint on the elements of H has been relaxed.
We find the index of the largest diagonal element of H that
is not in the same location as any of the nonzero elements
of H0; we choose this index as the index of the next leader,
and update h0 accordingly.

In summary, the algorithm can be written as follows.
Greedy Algorithm (Method 1)
given k
Set κ = 0, h0 = 0, H0 = 0.
while κ < k repeat

1. κ← κ+ 1.
2. Solve the semidefinite program (M1).
3. Find the maximum diagonal element of H that does

not occur in the same location as any of the nonzero
diagonal elements of H0. If this maximum is zero,
stop.

4. Store the diagonal index of the maximum element
found in step 3 in max indx. Set h0(max indx) =
1.

5. Set H0 = diag{h0}.
end while

In Section IV this algorithm is applied to the 25-agent
example considered in [1]; see Fig. 1 for the problem graph.
The tables in Figs. 2 and 3 contain results and comparisons
of different methods.

C. Method 2: Soft Constraint
Consider the optimization problem

minimize trace (X) + γ trace (H)

subject to
[

X I−H
I−H G+H◦L

]
≥ 0

G = (1/2) (I−H)L (I−H0) +

(1/2) (I−H0)L (I−H)

0 ≤ H ≤ I, H diagonal

(M2)

where the optimization variables are the symmetric matrix
X and the diagonal matrix H . As in the greedy algorithm
of the previous section, this optimization problem is solved
as part of an iterative loop (its exact description is provided
below). The solution H of every iteration is treated as
the current-best-estimate H0 for linearization in the next
iteration. This method relies on the sparsity-promoting
property of the `1 norm [2], [3]; it is expected that since
trace (H) = ‖h‖1 appears in the objective, then the diagonal
of H will be sparse. Indeed, it is observed that for general
values of γ, the solution of (M2) is in fact sparse, and
sparsity increases as γ increases. Note that the solution H
at every step can have values that fall between zero and
one, as the binary constraint on the elements of H has
been relaxed. Starting from very large values, we gradually
lower γ until H only has k nonzero diagonal elements. We
choose the indices of all nonzero elements of the sparse
diagonal matrix H as the indices of the leaders. If it is
not possible to find a γ that results in H having exactly k
nonzero elements then the leaders are chosen by the indices
of the k largest diagonal elements of H .

In summary, the algorithm can be written as follows.
Soft Constraint (Method 2)
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given k, γ, ε
1. Set h0 = 0, H0 = 0.
while ‖H −H0‖ > ε repeat

Solve the semidefinite program (M2).
Set H0 = H .

end while
2. Set σ equal to the number of nonzero diagonal
elements in H . If σ = k, stop.
3. If σ > k, increase γ. If σ < k, decrease γ. Go to
step 1.

In Section IV this algorithm is applied to the 25-agent
example considered in [1]; see Fig. 1 for the problem graph.
The tables in Figs. 2 and 3 contain results and comparisons
of different methods.

Remark: The computational complexity of the algorithms
described above depends on how efficiently we can solve the
SDPs (M1) and (M2). The most efficient SDP solvers (such
as SeDuMi) employ interior point methods that require
solving systems of linear equations with O(n2) variables. If
problem structure is not utilized, this takes O(n6) operations.
However, for sparse large-scale problems, it is advantageous
to utilize iterative schemes [8] (e.g., conjugate gradient
method) to approximately solve the underlying linear equa-
tions. In the worst-case scenario, this approach brings down
the complexity of solving LMIs to O(n5.5) operations, while
the average-case complexity is close to O(n4); for additional
details, see [9], [10] and references therein. Therefore, the
computational complexity of solving (M1) and (M2) can be
significantly improved by developing a customized interior
point method that exploits the sparsity structures in large-
scale leader selection problems. Development of such a
method is a topic of our ongoing research.

IV. AN EXAMPLE

In this section we use the example from [1] as a
benchmark. We demonstrate that in most cases both of the
leader selection algorithms presented here achieve better
performance than those developed in [1].

Fig. 1 shows the problem graph, while the tables in
Figs. 2 and 3 display the computational results for the
different algorithms.

A short description of the columns of the table in Fig. 2
is as follows.
• Optimal: gives the globally optimal choice of leaders,

as determined in [1] using an exhaustive search applied
to the original combinatorial formulation (LS).

• PatBam 1: gives results for a greedy algorithm
developed in [1] that chooses leaders by determining
L−1h for different vectors h at every iteration.

• PatBam 2: gives results for an approximate greedy
algorithm developed in [1] that uses upper bounds on
eigenvalues of L−1h to save on computation.

• Method 1: gives results for the greedy algorithm
described in Sec. III-B.

• Method 2: gives results for the soft constraint method
described in Sec. III-C. The dagger sign † in this
column represents those cases in which it was difficult
or impossible to find a γ that resulted in H having
exactly k nonzero elements (for example, it turns out

that the number of nonzero diagonal elements of H
never falls below two no matter how large γ is taken
to be); in these cases the leaders were chosen by the
indices of the k largest diagonal elements of H .

The table in Fig. 3 displays the objective values, J =
trace (L−1h ), corresponding to each of the leader selections
in Fig. 2. Note that for k = 1, PatBam 1 computes J for
all possible leaders and chooses the leader that results in the
smallest J . Hence it is not surprising that PatBam 1 performs
well at k = 1, as it is computing the global optimum. It is
worth mentioning that for Method 2 convergence was always
achieved in fewer than ten iterations.

V. INTERPRETATION IN TERMS OF ELECTRICAL
NETWORKS

In this section, we give an electrical network interpretation
to the leader selection problem and the optimization problem
(LS) in particular. To this end, we first describe a different
way of deriving (LS) that also lends itself well to relaxations
and optimization techniques.

Let us assume that the equation

ẋ = −(L+ aH)x + w

governs the dynamics of the entire network, where x is the
vector containing the states of all nodes, L is the Laplacian,
a is a positive scalar, and H = diag{h} as defined before.

An important observation is that for very large values of a
the states of the leader nodes converge to zero very fast. In
particular, in the limit of a→∞ the state of every leader is
zero for t > 0, which is equivalent to the assumption made
in [1]. Furthermore,

trace ((L+ aH)−1) → trace (L−1h ) as a → ∞.
We can thus reformulate the leader selection problem as

minimize trace ((L+ aH)−1)

subject to Hjj ∈ {0, 1}, j ∈ 1, . . . , n

trace (H) = k

(LS’)

where a is a large positive number. In a companion paper
[11] we further investigate the formulation (LS’) and
develop efficient methods for computing lower and upper
bounds on the global optimal value of the leader selection
problem.

It turns out that the Laplacian matrix L, which describes
the network’s interconnection structure, can also be thought
of as the conductance matrix of a resistive network [12] in
which all edge conductances have unit value. For such an
electrical circuit, we have J = LV , where V denotes the
vector of node potentials and J is the vector of injected
currents.

Consider the matrix Q := L+ aH . Using [13], Q can be
associated with an electrical circuit in which the Laplacian
L is interpreted as describing links of unit conductance
between the nodes of the network, and aH is interpreted as
adding shunt conductances between the ground and those
nodes indicated by the nonzero diagonal elements of H .
Fig. 4 (left) gives an example of such a circuit, and Fig. 4
(right) demonstrates its corresponding “loopy Laplacian”
matrix [13].
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Fig. 1. Undirected graph with 25 nodes and 24 edges, used to generate
the results in Fig. 2 and Table I.

TABLE I
LEADER SETS SELECTED BY DIFFERENT LEADER SELECTION

ALGORITHMS FOR GRAPH IN FIG. 1

k Optimal Greedy Approx. Greedy Max. Degree
1 b b b a
2 a,i b,i b,h a,b
3 a,i,j b,f,i b,g,h a,b,e
4 e,f,i,j b,f,i,j b,g,h,k,l a,b,e,i
5 d,e,f,i,j b,f,e,i,j b,g,h,k,l a,b,c,e,i

first leader to be the node that corresponds to the smallest
diagonal entry of L†. This heuristic has been shown to
perform well in our experiments, as demonstrated in the next
section.

The leader selection algorithm that relies on these two
approximations of the variance of the deviation from consen-
sus is given in Algorithm 2. The performance improvement
comes from the fact that selecting each leader requires
computing the inverse of only one O(n) × O(n) matrix as
opposed to the n matrices required by Algorithm 1.

V. EXAMPLES

In this section, we present results of the various leader
selection algorithms for several example networks. We first
give the results for the graph shown in Fig. 1. The graph
has 25 nodes and 24 edges. For k = 1 . . . 7, we use
each algorithm to find the “best” leader set of size k.
Figure 2 shows the variance of the network that results
from each leader set. Since this is a small graph, we are
able to compute the optimal leader set and variance. We
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Fig. 2. Variance of deviation from consensus in the graph shown in Fig.
1 for leader sets selected by different leader selection algorithms.
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Fig. 3. Variance of deviation from consensus for leader sets selected by
different leader selection algorithms in a 250 node Erdös-Rényi random
graph where nodes are connected with probability 0.02.
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Fig. 4. Variance of deviation from consensus in a 250 node geometric
graph for leader sets selected by different leader selection algorithms.

also show the variance of the leader sets generated by
the greedy algorithm (Algorithm 1), the greedy algorithm
with approximate variances (Algorithm 2), and a nı̈ve leader
selection scheme, Max Degree. In this scheme, the leaders
are simply the k nodes with maximal vertex degree. We
note that our three schemes perform well in this network,
selecting the opitimal leader for k = 1, while the maximum
degree scheme performs erratically. The leader nodes chosen
by each algorithm are given in Table I. An interesting point
to note is that for k = 1, the optimal leader is node b, but for
k = 2, b is no longer in the optimal set. This demonstrates
a shortcoming of the greedy schemes, since when leaders
are chosen incrementally, b will also be in the leader set.
However, even with this shortcoming, the greedy schemes
both outperform the nı̈ve approach.

Figure 3 shows results for a 250 node Erdös-Rényi random
graph, where an edge connects each pair of vertices with
probability 0.02. The mean vertex degree of the graph is 5,
and the graph has 1,259 edges. We compare the variance of
the network for the leaders selected by the greedy algorithm
and the greedy algorithm with approximate variances to the
variance when leaders are generated using the max degree
heuristic and when leaders are selected at random. Although
a single random trial does not give an indication of the
expected performance of a random selection, it provides
some indication of the low coherence that may result from a
random leader set. We note that, in this example, the greedy

2696

Fig. 1: Graph of the example in [1].

kkk Optimal PatBam 1 PatBam 2 Method 1 Method 2
1 b b b i a†
2 a,i b,i b,h i,j a,i
3 a,i,j b,f,i b,g,h f,i,j a,i,j
4 e,f,i,j b,f,i,j b,g,h,l e,f,i,j a,f,i,j
5 d,e,f,i,j b,e,f,i,j b,g,h,k,l d,e,f,i,j d,e,f,i,j†

Fig. 2: Leader choices for different methods applied to the example in [1]. See the table in Fig. 3 for a quantitative comparison
of the performance of the leader selections in Fig. 2.

kkk Optimal PatBam 1 PatBam 2 Method 1 Method 2
1 66.00 66.00 66.00 112.00 69.00
2 38.40 44.75 47.20 64.00 38.40
3 30.00 33.25 38.87 32.13 30.00
4 25.27 27.36 32.32 25.27 26.00
5 20.70 22.19 26.62 20.70 20.70

Fig. 3: Objective values, J = trace (L−1h ), corresponding to each of the leader selections in Fig. 2. The numbers in bold
indicate that the value of the objective is equal to the global optimum.

1
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1

1
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1
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1

Fig. 4: Left: An electrical network with shunt conductances.
Right: The graph of a loopy Laplacian [13] associated with
an electrical network with shunt conductances; a self-loop
at node i of the graph corresponds to a shunt conductance
connecting node i to the ground.

The effective resistance matrix R is a matrix whose ijth
element Rij is equal to the effective resistance measured
across the pair of nodes i and j. The total effective resistance
Rtot, defined as the sum of the effective resistances between
all distinct pairs of nodes, or equivalently

Rtot = (1/2) ‖R‖`1 = (1/2)

n∑
i,j=1

Rij ,

is an important quantity that arises in a wide range of
applications [12]. Rtot can be computed directly from the
conductance matrix

Rtot = n trace (Q†),

1

1
1

1/3

1/3

1/3

Fig. 5: The blue node is eliminated via a Kron reduction
while the red nodes remain [13].

where † denotes the pseudo-inverse. It can be shown that
the total effective resistance is either reduced or remains
constant with the addition of shunt conductances between
the nodes and the ground.

The concept of total effective resistance gives an
electrical network interpretation to the objective function in
(LS’). Namely, trace ((L + aH)−1) is the total effective
resistance of the electrical network described by the
conductance matrix Q = L + aH in which those nodes
indicated by the nonzero elements of H are connected
to the ground by shunt resistors with conductance equal to a.

To give an electrical network interpretation to trace (L−1h )
we need the concept of Kron reduction, which is the
reduction of an electrical network through the application
of a Schur complement to its associated conductance matrix
[13]. Fig. 5 demonstrates an example of Kron reduction.

Consider an electrical network with conductance matrix
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Q, and assume that certain nodes ϕ ( {1, . . . , n}, |ϕ| ≥ 2
are to be kept and the rest of the nodes λ = {1, . . . , n}\ϕ
are to be eliminated through a Kron reduction. Then, after
an appropriate labeling of the nodes, the conductance matrix
can be written as

Q =

[
Qλλ Qλϕ
Qϕλ Qϕϕ

]
with its Kron-reduced matrix Qred given by the Schur
complement

Qred = Qϕϕ − QϕλQ
−1
λλ Qλϕ.

We note that the effective resistance Rij between two nodes
i, j ∈ ϕ is the same regardless of whether it is computed
using the original conductance matrix Q or its Kron-reduced
version Qred [13]. Now, if we assume that the nodes in
the set λ are connected to the ground by resistors with
conductance equal to a, then it can be shown that as a→∞
we have Q−1λλ → 0 and thus Qred = Qϕϕ.

The concept of Kron reduction introduced above gives an
electrical network interpretation to the objective function in
(LS). Namely, trace (L−1h ) is the total effective resistance
of a circuit in which the nodes indicated by the nonzero
elements of h are grounded and eliminated via Kron
reduction.

In summary, the optimization problems (LS) and (LS’) in
Section II can be restated in terms of electrical networks as
follows.
• Problem (LS): Choose k nodes to connect to the

ground such that the effective resistance of the circuit
is minimized.

• Problem (LS’): Choose k nodes to connect to the
ground, via shunt conductances of value a, such that
the effective resistance of the circuit is minimized.

VI. CONCLUSIONS

We consider the problem of devising computationally
efficient algorithms for optimal leader selection in networks
of dynamical systems. Relaxing the original problem
developed in [1] so as to obtain a convex formulation,
we propose two algorithms that utilize semidefinite
programming to find the optimal leaders.

In a companion paper [11] we examine the leader selection
problem for networks in which additive stochastic distur-
bances enter into the state equations for both leaders and
followers. In addition to relative information exchange with
their neighbors, leaders also have access to their own states.
This setup may be encountered in multi-vehicle coordination
problems where a certain number of agents (leaders) may
be equipped with GPS devices. For networks of single-
integrators, we show that this formulation leads to an objec-
tive function that is convex, thereby avoiding the need for its
linearization. Furthermore, we develop efficient methods to
compute lower and upper bounds on the global optimal value
of the leader selection problem. In particular, we consider
a convex relaxation to obtain a lower bound and we use
simple but efficient greedy algorithms to obtain an upper
bound. Finally, we employ the alternating direction method
of multipliers to search for a local minimum in the presence
of non-convex Boolean constraints.

APPENDIX

Proof of equation (J): Let h be the vector that determines
the leader nodes, i.e., a vector composed of zeros and ones,
where the indices of the k nonzero elements indicate the
location of the k leaders. After an appropriate relabeling of
the nodes, the vector h and the Laplacian L can be written
as (for ease of notation, we use the same letters to denote h
and L before and after the relabeling)

h =

[
1
0

]
, L =

[
Ll L0

LT0 Lh

]
,

where 1 is a k×1 vector of all ones, and Ll, L0, and Lh are
matrices of dimensions k×k, k×(n−k), and (n−k)×(n−k),
respectively. Let p := n− k. Then from the definitions H =
diag{h} and G = (I−H)L (I−H) it follows that

H =

[
Ik×k 0k×p
0p×k 0p×p

]
, I−H =

[
0k×k 0k×p
0p×k Ip×p

]
,

G =

[
0k×k 0k×p
0p×k Lh

]
, H◦L =

[
Ik×k◦Ll 0k×p
0p×k 0p×p

]
.

Thus
G+H◦L =

[
Ik×k◦Ll 0k×p
0p×k Lh

]
,

and we have

trace ((I−H)

[
Ik×k◦Ll 0k×p
0p×k Lh

]−1
(I−H)) = trace (L−1h ),

which is the desired result.
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