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Abstract— In this work we propose a new set of sigma points
for the Unscented Transform that uses the minimum number of
points. We than compare this new set with the symmetric set,
the reduced set, and the spherical set. Simulations comparing
this sets are done to verify the properties of this set and to
verify their transforms. Lastly, we simulate each of these sets
in a recursive filter for SLAM. The results show that our set
is a better choice for a non symmetric prior distribution and
still a good alternative for symmetric prior distributions.

I. INTRODUCTION

Based on the intuition that it is it is easier to approximate a

probability distribution than it is to approximate an arbitrary

nonlinear function or transformation [1], Julier et all [1]–[4]

proposed a non-linear estimation technique which was lately

called the Unscented Transform (UT).

The Unscented Transform has been extensively used on

the Simultaneous Localization and Map Building (SLAM).

To cite some, one can check [5]–[15].

However, the Unscented’s computational load is propor-

tional to the number of sigma points which is, in its turn,

increasingly related to the state’s dimension [16]. SLAM’s

problems usually have a huge state’s dimension, for it is the

sum of the dimension of the robot’s pose and the dimensions

of all the coordinates of the map’s landmarks. Moreover,

the computational cost can be a tough requirement for a

robot, because of it’s processing capacities or it’s power

consumption, since it uses an embedded hardware in a

great number of cases. Therefore, reducing the computational

cost in a SLAM problem is especially important and, in

consequence, reducing the number of sigma points is also

mainly important.

As the symmetric sigma sets of Julier use 2n + 11 sigma

points, it is extremely desirable to find a set of sigma set

that uses less points. In particular, n + 1, for it is the

minimum number of points that can be used to estimate

both mean and covariance matrix [16]. In this direction,

[16] proposed a n + 1 scheme and [17] offered a n + 2
set which n + 1 of them lie on a hypersphere [17]. [16]

has a specific problem of stability for high values of n
[17]. Additionally, both algorithm’s have the drawback that

their mean and covariance matrix are not equal to the mean

and covariance matrix of the prior distribution, which is a

very important property for the unscented framework, for it
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1n is the state’s dimension.

implies, with the condition of the differentiability of the non-

linear function, that the mean and the covariance matrix of

the posterior random variable are estimated up to the second

order of their Taylor Series [1].

Our efforts go precisely on the direction of finding a

minimum set of sigma points which captures both the mean

and covariance matrix of the prior distribution and to apply

it in a SLAM’s framework. Our set accomplishes these

properties and does not present the instability issues of

[16]. These properties are verified on simulations. Finally, a

comparison is made by simulating the recursive filter using

our new set, the symmetric set, the set of [16] and the set

of [17]. The results show that our set of n + 1 sigma points

is a good alternative for the problem of SLAM.

This work is organized as follows: section II provides a

background on the Unscented Transform, on the Unscented

Kalman Filter and introduces the new sigma set; section III

shows the simulations examples and section IV provides the

conclusions.

II. THE SIGMA SETS

A. The previous sigma sets

Consider that X ∈ ℜn is a vector of random variables and

consider that f : ℜn → ℜm is a transformation that defines

Y as follows:

Y = f (X) .

The Unscented Transform approximates the probability

density function (pdf) of the prior random variable (RV) - in

this case X - by a group of points - called sigma points -

which are obtained in a deterministic fashion. From another

point of view, one can consider this transformation as an

approximation of the random variable’s pdf by a probability

mass function. Hence, the UT can be seen as a discrete

approximation of a random variable.

One important advantage of this non-linear estimation

technique is that it does not require the calculations of

the Jacobians or Hessians of the nonlinear function as the

techniques based on the linearization do [1].

Another important property of the Unscented Transform

is that if its sample central moments are equal to the central

moments of the prior RV up to the 2k-th order inclusively,

the Taylor Series of the sample mean and of the sample

covariance matrix of the transformed points will be equal

to the Taylor Series of the mean and of the covariance

matrix, respectively, of the posterior RV up to the 2k-th order

inclusively [1].
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Now, we present three of the sigma points proposed in the

literature.

1) The symmetric set: The symmetric set has more than

one format, which are the ones of [1]–[4]. Here, we choose

the one of [1]. For i = 1, . . . , n, this set can be written as

follows:

χ0 = X̄,

χi = X̄ +

(√

n

1 − w0
PXX

)

i

,

wi =
1 − w0

2n
, (1)

χi+n = X̄ −

(√

n

1 − w0
PXX

)

i

,

wi+n =
1 − w0

2n
,

in which w0 6= 1 and (A)i represents the i-th column or the

line of the matrix A 2.

2) The reduced set: The reduced set of Julier presented

in [16] can be described by the following algorithm:

1) Choose w0, regarding 0 ≤ w0 ≤ 1.

2) Calculate the weights:

wi =







1−w0

2n , for i = 1;
w1 , for i = 2;

2i−1w1 , for i = 3, . . . , n + 1.

3) Initiate the vector sequence χj
i :

χ1
0 = [0];

χ1
1 =

[

− 1√
2w1

]

;

χ1
2 =

[

1√
2w1

]

.

4) Expand the vector sequence for j = 1, . . . , n according

to

χj+1
i =







































[

χj
0

0

]

, for i = 0;
[

χj
i

− 1√
2wj

]

, for i = 1, . . . , j;

[

0j
1√
2wj

]

, for i = j + 1.

3) The spherical set: The n+2 spherical set of Julier pre-

sented in [17] can be described by the following algorithm:

1) Choose w0, regarding 0 ≤ w0 ≤ 1.

2) Calculate the weights:

wi =
1− w0

n
.

3) Initiate the vector sequence χj
i :

χ1
0 = [0];

2If the matrix square root A of P is of the form P = AT A, then the
sigma points are formed from the rows of A. However, if the matrix square
root is of the form P = AAT , the columns of A are used.

χ1
1 =

[

− 1√
2w1

]

;

χ1
2 =

[

1√
2w1

]

.

4) Expand the vector sequence for j = 2, . . . , n according

to

χj
i =







































[

χj−1
0

0

]

, for i = 0;
[

χj−1
i

− 1√
j(j+1)w1

]

, for i = 1, . . . , j;

[

0j−1
1√

j(j+1)w1

]

, for i = j + 1.

B. The new minimum sigma set

The new transform can be resumed in the following

theorem.

Theorem 1 Let X ∈ ℜn be a random variable with mean

X̄ and covariance matrix PXX > 0 with its matrix square

root
√

PXX , and let be the set of points and weights,

{χi, wi}, i = 1, . . . , n + 1 with the following form3:

Aχ =
[

χ0 · · · χn

]

(2)

:=
[

−
√

PXX
[α]n×1√

w0

√
PXXC

(√
W

)−1
]

+
[

X̄
]

1:n+1
,

(3)

in which

W :=





w1 0 0

0
. . . 0

0 0 wn



 , (4)

[

w1 . . .
√

w1
√

wn

.

.

.

.
.
.

.

.

.
√

w1
√

wn · · · wn

]

:= w0α
2

C
−1

[1]n×n

(

C
T
)−1

, (5)

C :=
√

In − α2[1]n×n, (6)

α :=

√

1 − w0

n
, (7)

0 < w0 < 1. (8)

Let, still, be the non-linear mapping f : ℜn 7→ ℜm

differentiable up, at least, to the second order. Still, let f
define the random variable Y according to

Y , f(X),

and let be the set of points and weights {γi, wi|γi =
f (χi)}, the following statements are true:

3The notation [a]p×q , with a ∈ ℜ, represents a matrix of dimension
p× q which all of its terms are equal to a. In its turn, [v]1:q , with v ∈ ℜn,
represents a matrix of dimension n× q which all the columns are equal to
v.
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1) The sample mean of {χi, wi}, µχ =
∑n

i=0 wiχi, is

equal to the mean of X .

2) The sample covariance matrix of {χi, wi}, ΣXX =
∑n

i=0 wi (χi − µχ) (χi − µχ)
T

, is equal to the covari-

ance matrix of X .

3) The Taylor Series of the sample mean of {γi, wi} is

equal to the Taylor Series of the mean of Y up to the

second order inclusive.

4) The Taylor Series of the sample covariance matrix of

{γi, wi} is equal to the Taylor Series of the covariance

matrix of Y up to the second order inclusive.

Proof: According to the Taylor Series expansions of

the mean and the covariance of {γi, wi} and of Y , one can

see that if the first two items of this theorem are proved, the

remaining items will be also proven [1].

Let us than firstly prove item 1 and in sequence item 2.

The sample mean of {χi, wi}, µχ, can be written as:

µχ = Aχ





w0

...
wn





+
[

X̄
]

1:n+1





w0

...
wn





= −
√

PXX

[α]
n×1

√
w0

w0 +
√

PXXC
(√

W
)−1





w1

...
wn





+ X̄

=
√

PXX



−

√

w0 [α]
n×1 + C





√
w1

...√
wn







 + X̄. (9)

Substituting (7) in (9) and using (6) the mean’s proof will

be accomplished..

Now it remains to prove that the sample covariance matrix

of {χi, wi}, ΣXX , is equal to the covariance matrix of X .

For this, define

W a =

[

w0 0
0 W

]

. (10)

Than, from the definition of sample covariance matrix:

ΣXX ,

=
[

Aχ − [µχ]1:n
]

W
a
[

Aχ − [µχ]1:n
]T

.

=
[

Aχ −
[

X̄χ

]

1:n

]

W
a
[

Aχ −
[

X̄
]

1:n

]T
. (11)

Using (3) and (10) on (11)4:

ΣXX =
([

−
√

PXX
[α]n×1√

w0

√
PXXC

(√
W

)−1
]

4The expression (QP )(∗)T is equal to (QP )(QP )T .

√

[

w0 0
0 W

]

)

(∗)T

=
√

PXXC
(√

W
)−1

W

(

(√
W

)−1
)T

C
T
√

PXX

T

+
√

PXX

[α]
n×1

√
w0

[α]1×n
√

w0

√
PXX

T

=
√

PXXCC
T
√

PXX

T
+ α

2
√

PXX [1]
n×n

√
PXX

T

=
√

PXX

[

In − α
2 [1]

n×n

]√
PXX

T

+ α
2
√

PXX [1]
n×n

√
PXX

T

= PXX.

In the Theorem 1, the condition (7) assures that the

weights’ sum equals the unit. The weight w0, which is

restricted to (8), gives a degree of freedom on the parameters’

choice. A study of a particular choice of this parameter has

not been yet studied. One could try to, for example, choose

a value that minimizes the difference on the third moments.

Furthermore, simulations results made for diverse prior dis-

tributions and various functions indicate good robustness of

this sigma set (see [18]).

In comparison to the symmetric set, our new sigma set

has the advantage of using only n+1 sigma points, which is

the minimum possible amount. Both these sigma sets share

the properties of having their sample mean and covariance

matrix equal to the mean and covariance matrix of the

prior distribution which result, with the condition of the

differentiability of the non-linear function, in the ability to

estimate the mean and the covariance matrix of the posterior

random variable (RV) up to the second and first order,

respectively, of their Taylor Series [1].

When the prior distribution is not symmetric, there is

no reason for using the symmetric set instead of the new

minimum set, because they offer, for this case, exact esti-

matives up to the second order but the first requires more

computational effort.

For a symmetric prior distribution, the two sets will offer

a trade-off choice. The symmetric set will probably offer

a better estimative, but with a cost to the computational

effort. Meanwhile, the new minimum set will probably offer

a poorly estimative, but with a lighter computational effort.

However, the new sigma set still gives better estimatives for

certain functions even for a Gaussian assumption. We shall

see one example on section III-A.

Let us now turn our attention to the other two sets of sigma

sets, the ones of [16] and [17].

The set of [16] also uses the minimum amount of sigma

points. However, we can see two drawbacks on this set’s

properties. One is that [16] may be unstable for high values

of n ( see [17]). The other is that neither the sample mean

nor the covariance matrix of the set of [16] equals the mean

and covariance matrix respectively of the prior RV when n
is greater than one. There is no difficulty on checking it. If

one takes the algorithm of section II-A.2 and calculates any

set {χj
i , wi} for a j greater than 1 - try 2 - this affirmation

will be confirmed.
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As for the set of [17] we can see that it uses one extra

point, which is not a compromising drawback. However,

this set of sigma points also carries the second mentioned

drawback for the set of [16] and it can also be verified as

easy as for this other set.

C. The Unscented Kalman Filter

The sets of sigma points can be used in a Kalman Filter

frame as a recursive filter for non-linear systems resulting in

the Unscented Kalman Filter (UKF).

The UKF has been presented mainly in two approaches

according to the way the algorithm treats the noise terms

[19]. The first one treats both the process noise and the

measurement noise as additive. On the other hand, the second

Unscented Kalman Filter algorithm incorporates the noise

terms into the state vector, creating an augmented state vector

for the generation of the sigma points. Here we expose only

the augmented UKF (aUKF), for it is the most used and is

the one that we are going to use.

Consider the following stochastic non-linear discrete-time

dynamic system

Xk = f [Xk−1, uk, wk],

Yk = h[Xk, uk, vk],

in which Xk is the state’s vector at time k, Yk is the vector

of the measurements at time k, uk is the control input at time

k and wk ∼ N(0, Q) and vk ∼ N(0, R) are the process’

noise and the observation’s noise respectively.

First, we must restructure the vectors, covariance matrices

and functions as above [1]:

• The augmented prior state vector’s media will be:

X̄a
k−1 =





X̄k−1

0nw

0nw



 ,

in which 0nw
and 0nw

are vectors of nw (process noise’s

dimension) and nv (measurement noise’s dimension)

zeros respectively.

• The augmented covariance matrix will be 5:

P a
XX,k−1 =





PXX,k−1 0 0
0 Q 0
0 0 R



 .

• The process and measurements function must be rewrit-

ten as functions of X̄a
k−1:

X̄a
k = fa

[

X̄a
k−1, uk, wk

]

;

Yk = ha
[

X̄a
k , uk, vk

]

.

The aUKF’s algorithm is [1]:

1) Generates the augmented sigma points and its weights

from the prior distribution:

[χi,a
k−1, wi]← X̄a

k−1.

5We consider that the state and the noises are mutually uncorrelated.

2) Apply the augmented sigma points into the process

function to obtain the predicted sigma points:

χi,a

k|k−1 ← fa
[

χi,a
k−1, uk, wk

]

.

3) Calculate the predicted augmented media and covari-

ance matrix:

µa
χ,k|k−1 =

2n+1
∑

i=0

wiχ
i,a

k|k−1;

Σa
χχ,k|k−1

=

2n+1
∑

i=0

wi

[

µ
a
χ,k|k−1 − χ

i
k|k−1

]

[

µ
a
χ,k|k−1 − χ

i,a

k|k−1

]T

.

4) Apply the prediction’s augmented sigma points into the

observation function;

γi
k|k−1 = ha

[

χi,a

k|k−1, uk, vk

]

.

5) Calculate the observation’s predicted media and covari-

ance matrix:

µγ,k|k−1 =

2n+1
∑

i=0

wiγ
i
k|k−1;

Σγγ,k|k−1

=

2n+1
∑

i=0

wi

[

µγ,k|k−1 − γ
i
k|k−1

] [

µγ,k|k−1 − γ
i
k|k−1

]T
.

6) Calculate the cross covariance error:

Σχγ,k|k−1

=

2n+1
∑

i=0

wi

[

µχ,k|k−1 − χ
i
k|k−1

] [

µγ,k|k−1 − γ
i
k|k−1

]T
.

7) Calculate the update using Kalman Filter’s equations:

Gk = Σχγ,k|k−1Σ
−1
γγ,k|k−1;

νk = yk − µγ,k|k−1;

µγ,k = muγ,k + Gkνk;

PXX,k = Σχχ,k|k−1 −GkΣγγ,k|k−1G
T
k .

For more information, see [1].

The only difference between the unscented filters using

different sigma sets will be in the first stage of the aUKF

algorithm. In the simulations, will shall use this filter in a

SLAM frame for each of the sigma sets described in sections

II-A and II-B.

III. EXAMPLES

A. Simulations of the transforms

In this section we perform a simulation comparing the

estimatives of our minimum set of sigma points (MiUT)

with the estimatives of the symmetric set (SyUT), of the

reduced set of [16] (RUT) and of the spherical set of

[17] (SpUT). In all simulations, the prior RV’s distributions
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TABLE I

SIMULATIONS RESULTS

Montecarlo SyUT RUT

X̄

[

−0.1116
0.9965
2.1639

] [

−0.1116
0.9965
2.1639

] [

−0.2636
0.8292
2.3913

]

PXX

[

100.6877 0.7571 0.1904
0.7571 48.6841 −0.7459
0.1904 −0.7459 299.0401

] [

100.6877 0.7571 0.1904
0.7571 48.6841 −0.7459
0.1904 −0.7459 299.0401

] [

0.3170 0.2382 0.6988
0.2382 48.6841 0.0668
0.6988 0.0668 6.0078

]

Ȳ1 454.100 454.100 14.2438

Ȳ2

[

19.1433
0.1621
0.1284

] [

16.9046
1.1843
1.1961

] [

2.8786
0.8943
0.7037

]

PY2Y2

[

89.1275 0.2532 0.8015
0.2532 3.4195 0.0031
0.8015 0.0031 3.0060

] [

169.8262 0.9615 −6.2532
0.9615 1.4664 0.3953
−6.2532 0.3953 1.4502

] [

2.2908 0.3526 0.4411
0.3526 1.4695 1.199
0.4411 1.199 1.7020

]

SpUT MUT

X̄

[

−0.0930
1.9930

−10.4422

] [

−0.1116
0.9965
2.1639

]

PXX

[

0.0003 −0.0062 0.0324
−0.0062 6.6229 −12.1684
0.0324 −12.1684 123.5967

] [

100.6877 0.7571 0.1904
0.7571 48.6841 −0.7459
0.1904 −0.7459 299.0401

]

Ȳ1 262.0771 454.100

Ȳ2

[

12.3408
1.2656
−0.2717

] [

20.7854
−0.0136
−0.4013

]

PY2Y2

[

97.8847 0.6102 −13.4775
0.6102 0.0538 −0.0231

−13.4775 −0.0231 1.9318

] [

25.5601 5.5892 5.0464
5.5892 3.5939 2.3979
5.0464 2.3979 2.8100

]

are a 3 dimension multivariable Gaussian. The errors of

the posterior distributions are in relation to a Monte Carlo

simulation running 500000 samples. Finally, all the errors

are a mean of the errors of 100 simulations.

Table I and Table II contain the three simulations results.

In Table II, the first two lines show, respectively, the priors’

mean and covariance matrix errors, which are represented as

EX̄ and EPXX
. The third line shows the errors on the mean

(EȲ1
) of the posterior RV transformed by a second order

polynomial function (f1 below). The fourth and fifth lines

present, respectively, the errors on the mean (EȲ2
) and on the

covariance matrix (EPY2Y2
) of the posterior RV transformed

by a Cartesian to polar transformation (f2 below).

The two simulated functions, f1 and f2, are the following:

f1(X) = x
2
1 + x

2
2 + x

3
3.

f2(X) =









√

x2
1 + x2

2 + x3
3

arctan
(

x2

x1

)

arctan
(

x3

x1

)









.

From the results of the first two lines, we can see that

neither [16] nor [17] matched the prior’s RV mean and

covariance matrix, while our new set and the symmetric set

did. From the third line, one can check that our set and

the symmetric set really estimated precisely the mean of the

posterior RV for a second order polynomial function. Finally,

the last two lines showed that our new set provided the best

TABLE II

PERCENT ERRORS IN RELATION TO MONTE CARLO

SyUT RUT SpUT MUT

EX̄ 1.8 × 10−18 0.1356 5.2715 5.3 × 10−16

EPXX
3.0 × 10−19 0.9800 0.5923 2.2 × 10−16

EȲ1
2.1 × 10−12 0.9686 0.4269 1.1 × 10−14

EȲ2
1.3148 0.8467 0.3630 0.0911

EPY2Y2
0.2642 0.9735 0.1961 0.7507

estimative for the mean of the posterior RV and second best

one for the covariance matrix, even using only n + 1 sigma

points.

B. SLAM’s simulations

In this section, we consider the same system and UKF-

SLAM algorithm of Dr. Tim Bailey6. The algorithm per-

formed each of the four sigma sets (MUT, SyUT, SpUT,

RUT) running in a Matlab R2009a.

The motion function f and the measurement function h
are the following7:

f (xR [k] , uk)

6Available at www−personal.acfr.usyd.edu.au/tbailey/softwares
/slamsimulations.htm.

7For convenience, we will use a new notation: xR[k] = xk
R

.
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TABLE III

PATH ERRORS FOR THE SLAM’S SIMULATIONS

SyUT MUT RUT SpUT

RMSE (m) 1.9772 1.8345 unstable unstable

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

SyUT

MiUT

R
M

S
E

(m
)

Iteration

Fig. 1. Path errors in each iteration

=





x1
R [k] + u1

k cos
(

u2
k + x3

R [k]
)

∆t
x2
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
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where xR [k|k − 1] is the predicted state at time k, uk =
[

u1
k u2

k

]T
is the control input, ∆t is the time step, d is the

distance between the wheel of the robot, xi
R [k] i-th scalar

component of xR [k], and xfi is the coordinates of the i-th
feature;

Table III contains the root mean square error (RMSE) of

the robot’s poses in meters using each sigma set. It can

be seen that the filters that used the reduced set of [16]

and the spherical set of [17] present numerical instability.

It happened because state’s covariance matrix tended to loss

its positiveness.

Fig. 1 shows the errors of the robot’s poses in each

iteration for the symmetric set and for the new minimum set

of Theorem 1. Analysing both Table III and Fig. 1, we can

see the SLAM algorithm embedded with the new minimum

sigma set, even using less points, gave a better estimative in

comparison to the symmetric set.

IV. CONCLUSION

We develop a new set of sigma points for non-linear

estimation which uses the minimum amount of points. This

set’s sample mean and sample covariance matrix are equal

to the prior’s RV mean and covariance matrix respectively.

Numerical examples showed that the estimatives based on

the proposed sigma set outperform the estimatives based on

the most commonly used sigma sets.

Finally, we test the same sigma sets for a recursive filter

application in a SLAM algorithm.
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