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Abstract— This paper addresses an optimal state estimation
problem in the presence of limited communication and noiseless
feedback. In this setup, the state dynamics is estimated via an
additive white Gaussian channel with input power constraint.
We present a new communication and estimation strategy based
on Kalman-Bucy filtering theory and water filling optimization
algorithm. The optimality is established with respect to the
minimal mean-square estimation error. As an example, we
propose an analogue amplitude modulation scheme for state-
estimation of a linear planar dynamics.

I. INTRODUCTION

During the last decade much attention has been drawn to

control problems in the presence of communication channel

constraints. This class of problems has been investigated in

different settings, including finite alphabets channels (quan-

tization) [1], [2], erasure channels [3] [4] and additive Gaus-

sian channels [5], [6]. Among all the channel modelings,

channel capacity plays a key role in characterizing the

fundamental limitations of control design imposed by lim-

ited communication. The relationship between the channel

capacity and the plant dynamics are revealed in all above

channels.

Gaussian channel and its variants have been one of the

central topics in information and communication theory for

their capability of capturing several important aspects of real-

life communication systems. To consider the relationship

between control and communication, Gaussian channel is

also a popular choice. Ref. [5] has captured the relation

between the state (output) feedback stabilization of a linear

time-invariant (LTI) system and the signal-to-noise ratio

(SNR) constraint of the channel for both continuous-time

and discrete-time cases; [7] and [8] have considered the

linear quadratic Gaussian framework to derive the data-rate

bound and provide a fairly complete scheme for design of the

encoder, the controller and the decoder. In [9], Gaussianity

plays an important role in obtaining the Bode’s integrals in

terms of log integral of relevant power spectral densities in

the closed loop.

The state estimation under communication limitations has

been investigated for its close relationship with controls as

well as its own importance. Refs. [10]and [11] tried to fit the
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problem into the framework developed in [9] and [12] with

the hope to use the H2 and H∞ control theory in this context.

In a more general setting, feedback has long been used to

improve the performance of the communication systems in

terms of better convergence rate of the error probability.

In the discrete-time setting in case of additive white gaus-

sian noise (AWGN) channel, inspired by Robbins-Monro

stochastic iterative root seeking algorithm from [13] S-K

feedback coding is presented [14]. A large number of results

followed this seminal work along with various of extensions.

Recently, this classical result has caught much attention

from control community, starting from [15], which linked

the optimal estimation with optimal encoding/decoding, with

a fundamental observation unifying control, estimation and

communication (see also [16]). Another similar development

from the information theory perspective is reported in [17],

where colored gaussian channel with the capacity of coding

is discussed in a fairly general setting. The continuous-time

version of S-K scheme is presented in [18], where the deriva-

tion heavily relies on the stochastic calculus and optimal

filtering theory. From the Kalman filtering perspective of

view, the open-loop and discrete-time estimation problems

with various communication constraints such as probabilistic

packet loss [19] and band-width limitation [20] have been

investigated.

The objective of this paper is to solve the continuous-time

optimal estimation problem in the presence of an AWGN

channel with an input power constraint. The contribution of

the paper is three-fold:

• It establishes a framework to analyze some important

quantities in a stable closed loop, such as minimal

mean-square error (MMSE) and channel capacity (or

signal to noise ratio), where stationarity is not assumed;

• Based on this framework, we not only recover the

existing relation between channel capacity and the open-

loop instability in stable closed loops, but also provide

a tighter bound to guarantee an exponentially decaying

mean square estimation error.

• The detailed procedure and algorithms are provided for

the transmitter and estimator design, together with the

rigorous proof of optimality.

The paper is organized as follows. In Section II, we

introduce the models for both the channel and the plant, and

the design problem statement. Section III discusses a scalar

version of the problem, which leads to the development of

the solution in Section IV. A numerical example is analyzed
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in Section V. We conclude the paper with different problems

for future research directions in Section VI.

II. PROBLEM FORMULATION

In this section we state the problem formulation. The

scheme is depicted in Fig. 1 where the transmitter has

the access to the time-history of the channel output via a

noiseless feedback.

• The plant of interest is given by the following n
dimensional linear SDE

dx(t)

dt
= Ax(t) ,x(0) = x0 . (II.1)

where A ∈ R
n×n. To ensure the solution x(t) of (II.1)

is Gaussian, the initial value x0 is also assumed to be

Gaussian. Also, Ex0x
⊤
0 is not singular.

• The communication part of the closed loop is modeled

as an additive white Gaussian channel

dv(t) = z(t)dt + σdW(t) , (II.2)

where z(t) is the channel input generated by the signal

x
t
0, W(t) is a standard Wiener process and v(t) is the

channel output. An average power constraint is imposed

on the channel input:

lim sup
T→∞

1

T

∫ T

0

Ez
2(t)dt ≤ P ,

for some P > 0. Slightly different from most of the

communication theory literature, the power constraint

here is defined over an infinite time horizon to get

aligned with some notions in control theory such as

asymptotic stability. We also define the noise-to-signal

ratio of the channel as

SNR ,
P

σ2
.

It is well-known that the channel capacity is C = SNR/2
[21].

• The transmitter (encoder) is a causal map defined as

z(t) , f(t,x0,v
t
0). The receiver(decoder)/estimator is

also a causal map x̂(t) , g(t,vt
0), where x̂(t) is the

estimation of the state x(t). The error signal is defined

as x̃(t) , x(t)− x̂(t).
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Fig. 1. State Estimation via Noiseless Feedback

• As a standard assumption, all the random variables

(processes) in this system are defined in a filtered

probability space (Ω,F ,Ft,P).

Definition 2.1: The unique solution X(t) of a stochastic

differential equation is said to be mean-square exponentially

stable with convergence rate ν < 0 if

lim sup
t→∞

1

t
logE‖X(t)‖2 ≤ ν

The objective of joint estimation/communication design is

to identify a transmitter and receiver/estimator combination

such that the error dynamics with state x̃(t) is mean-square

exponentially stable with minimal decaying rate.

III. ESTIMATION, COMMUNICATION AND CONTROL

OVER GAUSSIAN CHANNEL: A SCALAR CASE STUDY

In this section we review a scalar estimation problem with

communication constraint, which was originated by [21] and

[18]. Some modifications and innovative observations are

made to shed a light on the main result to be presented in

the next section.

A. Transmitting a Gaussian Random Variable

We consider the simplest case, where an analog scalar

Gaussian variable m is to be transmitted through a

continuous-time AWNG channel. We further assume that the

transmitter (encoder) takes the following affine structure for

easy computation and Guassianity of f , given by

f(t,m,vt
0) , φ(t,vt

0) + ψ(t,vt
0)m . (III.1)

For this given structure of information transmission scheme,

the minimal mean-square error for each time instance t
is achieved by choosing the estimation m̂(t) = E[m|vt

0],
which is not readily calculable in general case. So one

needs to show a way to construct the corresponding re-

ceiver/estimator, which yields m̂(t). Upon that, constrained

by the channel input power level P , parameter optimiza-

tion for f and g needs to be conducted to reach minimal

mean square error. In other words, the problem of optimal

estimation is solved in two steps:

1) For the given transmitter (III.1), obtain the estimation

scheme g with output m̂(t);
2) Solve the optimization problem ming,f E(m̃2(t)) sub-

ject to power constraint P .

The first step is straightforwardly obtained by the condi-

tional Kalman-Bucy filter.

Lemma 3.1: Consider the linear transmission strategy in

(III.1). Then

dm̂(t) =
1

σ2
P (t)ψ(t,vt

0)[dvt − φ(t,vt
0)dt− ψ(t,vt

0)m̂(t)dt]

dP (t)

dt
= − 1

σ2
P 2(t)ψ2(t,vt

0) ,

(III.2)

where P (t) , E[(m̃(t))2|vt
0], P (0) = E(m̃(0))2 and

m̂(0) = Em.
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Proof: The proof is just an application of Kalman-Bucy

filter for the dynamic system with m(t) as the system state

and v(t) as the noise corrupted observation.

dm(t) = 0

dv(t) = [φ(t,vt
0) + ψ(t,vt

0)m]dt+ σdW(t) .

The second step is solved by the following lemma.

Lemma 3.2: Within the class of linear transmission strate-

gies, which satisfy the condition of (III.2) and the power

constraint, optimal transmission strategy φ∗ and ψ∗ are given

by

φ∗(t,vt
0) = −σ

√

SNR

P (0)
exp

(

SNR

2
t

)

m̂(t)

ψ∗(t,vt
0) = σ

√

SNR

P (0)
exp

(

SNR

2
t

)

.

The optimal mean square error for this strategy is

Em̃
2(t) = P (0) exp (−SNRt)

The proof of the lemma can be found in [18].

Remark 3.3: It is also shown in [18] that the solution

φ∗(t,vt
0) + ψ∗(t,vt

0)m is optimal among nonlinear func-

tionals of m (i.e. f(t,m,vt
0)).

Remark 3.4: This feedback communication scheme can

be regarded as an continuous-time extension of the S-K

method.

B. Transmission of a signal

Next we go one step further by replacing the constant

source m by a dynamic one x(t), evolving according to the

linear scalar differential equation with parameter λ ∈ R and

a Gaussian initial value x0

dx(t)

dt
= λx(t), x(0) = x0. (III.3)

Following the same idea in (III.2), we can consider the

Kalman-Bucy filter for the dynamics

dx(t) = λx(t)dt,

dv(t) = [φ(t,vt
0) + ψ(t,vt

0)x(t)]dt + σdW(t).

Next, we proceed with the two-step strategy. The following

lemma provides a structure of decoder/estimator, which

yields the optimal estimation x̂(t) = E[x(t)|vt
0].

Lemma 3.5: Consider the linear transmission strategy in

(III.1) (where m is replaced by x) and the source (III.3).

Then the optimal estimation of x(t) is given as

dx̂(t) = λx̂(t)

+
1

σ2
P (t)ψ(t,vt

0)[dvt − φ(t,vt
0)dt− ψ(t,vt

0)x̂(t)dt]

dP (t)

dt
= 2λP (t)− 1

σ2
P 2(t)ψ2(t,vt

0) ,

(III.4)

where P (t) , E[x̃2|vt
0], P (0) = Ex

2
0 and x̂(0) = Ex0.

The proof of the lemma can be done by simply apply the

Kalman filtering argument.

Next we proceed to the step two. Towards this end,

the differential equation with equality of P (t) in (III.4) is

rewritten as

Ṗ (t) =

(

λ− 1

σ2
P (t)ψ2(t,vt

0)

)

P (t) ,

and solved by

P (t) = P (0) exp

(
∫ t

0

(

2λ− 1

σ2
P (τ)ψ2(τ,vτ

0 )

)

dτ

)

.

Taking the expectation and using Jensen’s inequality, we have

Ex̃
2(t) = P (0) exp

(
∫ t

0

(

2λ− 1

σ2
EP (τ)ψ2(τ,vτ

0 )

)

dτ

)

,

where Fubini’s theorem is also used to interchange inte-

gration and expectation. The Lyapunov exponent can be

calculated as

lim sup
T→∞

1

T
logEP (T )

≥ 2λ− 1

σ2
lim inf
T→∞

1

T

∫ t

0

EP (t)ψ2(t,vt
0, t)dt

≥ 2λ− 1

σ2
lim sup
T→∞

1

T

∫ t

0

EP (t)ψ2(t,vt
0, t)dt .

(III.5)

It is clear that the minimization of P (t) is

reduced to the choice of ψ that minimizes
1
σ2 lim supT→∞

1
T

∫ t

0
EP (t)ψ2(t,vt

0, t)dt. Towards this

end, we have

P ≥ lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ(t,vt

0)x(t)]
2

= lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ(t,vt

0)x̂(t)]
2

+ lim sup
T→∞

1

T

∫ T

0

Eψ2(t,vt
0)P (t)dt

≥ lim sup
T→∞

1

T

∫ T

0

Eψ2(t,vt
0)P (t)dt .

A lower bound of the Lyapunov exponent of EP (t) is given

as

lim sup
T→∞

1

T
logEP (T ) ≥ 2λ− P

σ2
= 2λ− SNR . (III.6)

The above lower bound can be achieved on

ψ2(t,vt
0)P (t) = P

and

φ(t,vt
0) + b(t,vt

0)x̂(t) = 0 , ∀t ≥ 0 ,

which in turn gives the optimal solution of

ψ∗(t,vt
0) = σ

√

SNR

P (0)
exp

(

SNR − 2λ

2
t

)

and

φ∗(t,vt
0) = −σ

√

SNR

P (0)
exp

(

SNR − 2λ

2
t

)

x̂(t) .
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IV. MAIN RESULT: OPTIMAL ESTIMATION OVER A

GAUSSIAN CHANNEL

With the clear identification of the relation between com-

munication and estimation in the previous section,we are now

ready to tackle the main problem. The solution is given by

using a water-filling type of argument.

A. Estimation Structure & a Dual Control Problem

Like in the scalar case, we first consider the optimal

estimation problem for the vector dynamics

dx(t) = Ax(t)dt,

dv(t) = φ(t,vt
0)dt+ ψ⊤(t,vt

0)x(t) + σdW(t) .

The transmitter is expressed as φ(t,vt
0)dt + ψ⊤(t,vt

0)x(t).
The functions φ(t,vt

0) ∈ R ψ(t,vt
0) ∈ R

n are nonlinear

functions to be determined to minimize the Lyapunov index

of the error variance, while ensuring the average power of

channel input below the constrained level P .

For the given transmitting scheme, the following Kalman-

Bucy filter is adopted for the optimal estimation of x(t),

dx̂(t) = Ax̂(t)dt+

1

σ2
P (t)ψ(t,vt

0)[dv− φ(t,vt
0)dt− ψ⊤(t,vt

0)x̂(t)dt],

Ṗ (t) = AP (t) + P (t)A⊤

− 1

σ2
P (t)ψ(t,vt

0)ψ
⊤(t,vt

0)P (t) ,

(IV.1)

where P (t) := E
[

x̃(t)x̃⊤(t)|vt
0

]

.

Remark 4.1: One can consider the dual control problem

with plant dynamics given by

dx(t)

dt
= Ax(t) +Bu(t),

dv(t) = ψ⊤(t,vt
0)x(t)dt+ σdW(t) ,

(IV.2)

where the second equation models the AWGN channel iden-

tical to (II.2). If the control signal u(t) is designed via the

typical LQG method [22], then the separation principle fur-

ther shows that the variance of the error between the state and

its estimated value is identical to EP (t) in (IV.1). Therefore,

to control the plant (IV.2) over the AWGN channel, one can

design a proper estimator to cope with the communication

constraint, and the control part, which falls into the classical

linear quadratic framework, is relatively independent, given

the convergence of the estimation. Admittedly, the overall

closed loop performance is fundamentally restricted by the

communication-constrained estimation, no matter how well

the controller is designed. One can further refer to [23]

for the same property in general nonlinear systems. This

estimation-control separation also explains why our focus is

on the estimation part, whose relationship with communica-

tion constraint is unveiled in detail subsequently.

B. Solving The Estimation Problem: A water-filling ap-

proach

We first introduce a space B, which is a real Hilbert space

with internal product defined as

〈α, γ〉 , lim
T→∞

1

T

∫ T

0

α⊤(t)γ(t)dt α(·), γ(·) ∈ B .

We say β(·) ∈ B, if 〈β, β〉 exits and is less than ∞. If

β(·) ∈ B, then the limT→
1
T

∫ T

0
β(t)β⊤(t) exists.

Next, we define a new quantity β(t) , 1
σP

1/2(t)ψ(t,vt
0),

and assume that β(·) ∈ B. The next lemma links Lyapunov

exponent of the the variance of x̃ with a matrix eigenvalue.

Lemma 4.2: If P (0) is non-singular, and assume

∫ T

0

(

limT→∞
1
T

∫ T

0
β(t)β⊤(t)dt− β(t)β⊤(t)

)

dt ≺M

for some symmetric matrix M . then the following inequality

holds:

lim sup
t→∞

1

t
logE‖x̃(t)‖2

≤ λmax

(

A⊤ +A− lim
t→∞

1

t

∫ t

0

β(τ)β⊤(τ)dτ

)

.

The proof follows the same line in [24], and is omitted here.

Note that λmax cannot made arbitrarily small due to the

power constraint, clearly shown by the following inequality

P ≥ lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ⊤(t,vt

0)x(t)]
2dt

≥ lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ⊤(t,vt

0)x̂(t)]
2dt

+Eψ⊤(t,vt
0)P (t)ψ(t,v

t
0)dt

≥ lim sup
T→∞

1

T

∫ T

0

Eψ⊤(t,vt
0)P (t)ψ(t,v

t
0)dt = σ2〈β, β〉 ,

(IV.3)

where the second inequality follows from the orthogonality

between x̃(t) and x̂(t).
Hence, an optimization problem could be formulated to

achieve the lowest Lyapunov exponent upper-bound by the

choice of β(·).

inf
β(·)∈B

λmax

(

A⊤ +A− lim
T→∞

1

T

∫ T

0

β(t)β⊤(t)dt

)

s.t.〈β, β〉≤SNR and A⊤+A− limT→∞
1
T

∫ T

0 β(t)β⊤(t)dt ≺ 0 .
(IV.4)

Another related optimization problem can be formulated

in the same fashion, where the optimal β(·) must achieve a

minimal channel SNR, subject to closed loop stability:

inf
β(·)∈B

〈β, β〉

s.t. A⊤ +A− lim
T→∞

1

T

∫ T

0

β(t)β⊤(t)dt ≺ 0 .

For both problems, once the optimal decision function β∗(·)
is obtained, the optimal transmitter and estimator are straight-

forwardly obtained. Unfortunately, it is very hard, if not
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impossible to obtain β∗(t) by using numerical routines, be-

cause these optimization problems are all inherently infinite-

dimensional. Here we propose a solution inspired by the

water-filling strategy.

Before jumping into the detailed development, an imme-

diate observation can be made regarding the minimal SNR

for mean square stability.

Proposition 4.3: If the error dynamics are mean-square

exponentially stable, then channel SNR statistics for any

causal transmission and decoding/control is given by

SNR

2
>

1

2

∑

i

λ+i (A+A⊤) ≥
∑

j

ℜ+ (λj(A))

Now we are ready to construct an optimal information

transmission scheme. More specifically, given the channel

SNR level, the smallest mean-square convergence rate ν of

the state is obtained via the choice of β(·). The complete

algorithm follows these steps.

1) Basis Construction: Choose a set of orthonormal basis

functions βi(·) ∈ B, i = 1, 2, ..., n such that

〈βi, βj〉 = δij , i, j = 1, 2, ..., n

where δij is the Kronecker’s delta. There are a number of

ways to construct the basis functions, e.g. if n = 2, we can

simply choose

β1(t) =
√
2 sin(ωt), and β2(t) =

√
2 cos(ωt) ω > 0.

2) Weight Choice by Water-filling: Choose an orthonor-

mal matrix Q ∈ R
n×n such that

Q⊤(A+ A⊤)Q = diag{λ1, λ2, ..., λn} ,

where λi is short for λi(A + A⊤). Then β(·) can be

parameterized by the basis constructed in 1) with a set of

weighting factors η1, η2, ..., ηn ≥ 0 as

Q⊤β(t) = [η1β1(t), η2β2(t), ..., ηnβn(t)]
⊤ .

Based on this fact, the following identity is evident and will

be useful later for 〈β, β〉 = 〈Q⊤β,Q⊤β〉 =∑n
i=1 η

2
i .

Then the convergence rate minimization problem (IV.4)

can be reduced to the following finite dimensional case

min
ηi,ν

ν

s.t.
∑n

i=1 η
2
i ≤ SNR and (λi − ν)+ ≤ η2i ,

where the positivity of η2i brings up (λi − ν)+ ≤ η2i . This

standard optimization problem can be solved by using the

Lagrange multipliers ξi ∈ R, i = 1, 2, ..., n and L ∈ R. The

objective function is re-written as

J , ν +
∑n

i=1 ξi((λi − ν)+ − η2i ) + L
(
∑n

i=1 η
2
i − SNR

)

.

Differentiating with respect to η21 , ...., η
2
n and ν respectively,

we have

0 =
∂J

∂η2i
= −ξi + L

0 =
∂J

∂ν
= 1−

∑

i∈S

ξi , S , {i|(λi − ν) ≥ 0}

Solving the set of equations and using Kuhn-Tucker condi-

tions, we have the optimal assignment of the energy

η∗2i = (λi − ν∗)+ ,
∑n

i=1 η
∗2
i = SNR

The optimal convergence rate ν∗ satisfies
∑n

i=1(λi−ν∗)+ =
SNR, which is readily solved by “water filling” algorithms.

3) Optimal Transmitter and Estimator: Notice that (from

last step)

〈β∗, β∗〉 =∑n
i=1 η

∗2
i = SNR ,

and the equality in (IV.3) holds. Then we have the opti-

mality achieved on φ∗(t,vt
0) + ψ∗⊤(t,vt

0)x̂(t) = 0 . Ex-

pressed in terms of β∗(t), we have the optimal transmitter

design: φ∗(t,vt
0) = −β∗⊤(t)P ∗−

1

2 (t)x̂(t) ψ∗(t,vt
0) =

P ∗−
1

2 (t)β∗(t) , where P ∗(t) solves a variation of differential

Lyapunov equation given by (P ∗(0) = P (0))

Ṗ ∗(t) = P ∗(t)A+A⊤P ∗(t)− P ∗
1

2 (t)β∗(t)β∗⊤(t)P ∗
1

2 (t) .
(IV.5)

and the estimator/receiver is given as

dx̂(t) = Ax̂(t)dt+
1

σ2
P ∗−

1

2 (t)β∗(t)dv(t) , x̂(0) = x̂0

Remark 4.4: Note that the time profile of P ∗(t) (and

hence ψ∗(t,vt
0)) can be determined off-line by integrating

(IV.5).

V. SIMULATION

In this section we demonstrate our approach by using an

analog amplitudes modulation (AM) method to transmit the

estimation error. The schematic block diagram is shown in

Fig. 2, where we do not assume any digitalization (A/D, D/A,

quantization etc.) for simplicity. Here the plant is given as

dx(t)
dt =

[

0 1
−6 3.5

]

x(t) ,x(0) = [1 1]⊤ .

The communication channel is corrupted by a standard white

Gaussian noise (Ẇ(t), σ2 = 1) and is assumed to have the

power constraint P = 13 (SNR = P/σ2 = 13 ) .

Carrier Wave
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Fig. 2. Feedback Estimation via Amplitude Modulation

The design procedure follows the three steps proposed in

the previous section, following an initialization stage:

1) The estimator is initialized with x̂0 = [0, 0]⊤, and

P (0) is set to a 2× 2 unit matrix;

2) We choose the basis functions as β1(t) =√
2 sin(200πt) and β2(t) =

√
2 cos(200πt) respec-

tively .

3) We conduct the water filling algorithm to determine

the optimal convergence rate ν∗ = −3 and weights
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η1 = 0.6299 , η2 = 3.5501. In turn we have β∗(t) =
[

−0.7901 sin(200πt)− 2.3186 cos(200πt)
0.4114 sin(200πt) + 4.4532 cos(200πt)

]

4) The carrier waves ψ∗
1(t) and ψ∗

2(t), as well as the

estimator, can be generated by solving the matrix

differential equation (IV.5).

Figure 3 shows the time-history of the state error x̃(t);
Fig. 4 shows the modulated channel input the noise-corrupted

channel output.
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Fig. 4. Channel Input/Output

The simulation result is consistent with the theory de-

veloped in this paper and exhibits fast estimation error

convergence in the presence of channel noise and power

constraint. Compared with traditional amplitude modulation

communications, where carrier waves are usually chosen

as sinusoidal signals with constant amplitudes, this method

explicitly uses the knowledge of the signal dynamics (A) to

generate a set of carrier waves to meet the needs of optimal

estimation. This example also suggests that the method can

be extended to more practical scenarios for the simplicity of

amplitude modulation in communication systems.

VI. CONCLUSIONS

In this paper, we develop a design method to solve the
optimal estimation problem with limited information. The
objective is achieved by first fixing the structure of the
transmitter and estimator by using conditional Kalman-Bucy
filtering theory. Then the optimal parameters of the given
structure are determined by a water-filling like technique by
distributing the available channel input power to properly
address the state-space of the dynamics to be estimated. The
resulting communication/estimation scheme turns out to be
surprisingly simple and fits into the conventional amplitude
modulation framework with modified carrier waveforms, as
shown in the example. The future research includes extension
to digital communications and noisy feedbacks.
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