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Abstract— We consider a model of stealthy attack on a
networked control system by formulating a static zero-sum
game among four players. Three of the players constitute a
team of encoder, decoder and controller for a scalar discrete-
time linear plant, while the fourth player is a jammer, who acts
to flip the bits of the binary encoded observation signal of the
communication channel between the plant and the controller.
We assume that the observation and control signals have finite
codelength. We characterize the encoding/decoding/control de-
fense strategies available to the controller, and for simplicity
in conveying the main ideas, we model it for a scalar discrete-
time system with only one time step. We prove that there is no
loss of generality in restricting our attention to binning-based
encoding and control strategies. We determine the control and
jamming strategies that are in saddle-point equilibrium for this
game and show that the saddle-point value does not depend on
the jamming policy. We also provide a necessary and sufficient
condition on the minimum number of bits that are required to
drive the cost to zero for this one-stage control problem in the
presence of a jammer.

I. INTRODUCTION

Adverse effects of communication channel-induced limi-
tations on control have been intensively studied in the past
decade. For example, a number of papers have considered
the information theoretic minimum rate necessary for stabi-
lization (see, e.g. [1], [2], [3], [4], [5]) or achieving optimal
quadratic closed-loop performance [6], [7], [8]. In these
papers, the channel behavior is assumed independent of the
controller’s action or plant’s state, and uncorrelated across
time. This, however, does not capture the scenarios in which
the channel is adversarial.

In the absence of appropriate security measures, control
systems are highly vulnerable to attack. Two types of attack
on such systems have been considered in the past, namely
denial of service (DoS) attack and deception (or integrity)
attack [9], [10], [11]. Under DoS attack, the communication
link is jammed in order to break the information exchange
between the subsystems, while in a deception attack, the
data of the subsystems are altered in order to deceive the
controller and harm the system. Such attacks on control
systems are hard to analyze, since the channel behavior is
dependent on the state of the system, as well as correlated
across time.

In our earlier work [12] and [13], we considered a DoS
attack, in which an intelligent jammer jams the communi-
cation link between a controller and a scalar discrete-time
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linear plant. The jammer’s goal was to optimally block the
control signal by using a finite number of jamming actions
over a horizon of N time steps. The restriction on the
number of jamming actions captures the energy constraint
of the jammer. We formulated this problem as a zero-sum
game between the controller and the jammer. We showed
that, when playing optimally, the jammer uses a threshold-
based policy, i.e., jammer jams if the state is above a certain
threshold, which is dependent on the jamming history and
the current time step.

In [12], we modeled the communication as an analog
channel, which can pass real numbers over the network
without any error. However, in digital systems, real numbers
need to be quantized and binary codewords are sent across
a channel. Limited bandwidth also prohibits the controller
to send large amount of data over the network within a
short span of time. This means that one cannot have a
large number of quantization bins with arbitrarily small size,
since this requires long codelength. Hence, in this work,
we consider the scenario where the observation and control
signals are sent in binary codewords with limited codelength.
The jammer, instead of blocking the signal completely, can
only flip a limited number of bits in the codeword to corrupt
the data. The jammer’s role is in a sense similar to a binary
symmetric channel, but is also different in the sense that it
flips the bits deterministically and strategically to alter the
data. This study therefore falls in the category of deception
attack as described above.

Our main goal is to compute the saddle-point encoding and
control strategies for a general dynamic multi-agent system
under an adversarial attack like that of a jammer. However,
to gain insight and for simplicity of notation, we restrict
our attention to scalar systems where a static game is played
with the jammer. We also use concepts from non-cooperative
game theory to study this class of attacks. We formulate
the precise problem in Section II. Section III is the main
part of this paper, in which we obtain encoding and control
policies to attain zero cost. We also discuss relevant tools
from error correcting coding theory for the current problem.
Next, we derive the saddle-point value and corresponding
strategies for the jammer-controller pair in Section IV. We
analyze a dynamic case in Section V. Finally, we conclude
our discussion in Section VI.

II. PROBLEM FORMULATION

The state equation evolves as (note that we have a one-
stage problem)

x+ = Ax+ u+ w, (1)
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where x ∈ R is the initial state of the plant, x+ ∈ R is the
final state of the plant, u ∈ R is the control signal and w is
a random variable with support [−∆,∆],∆ < 1. Initial state
x is a uniformly distributed random variable in the interval
I := [−1, 1] and independent of the process noise w. We
study only the case of A > 1−∆, since for |A| ≤ 1−∆, a
trivial control strategy is u = 0. The case of A < −1 + ∆
can be analyzed in a similar fashion as in this paper.

What we consider is a prototype of a scenario where the
controller and the plant are far from each other, such that
the plant sends the state information to the controller and the
controller sends the control signal to the plant via a commu-
nication channel. Figure 1 provides a schematic description
of the interconnections and the flow of information in the
system. For the analysis, the channel is assumed to be perfect
(but unsecured). It does not induce any error on the received
bit at the controller or the plant end as only the jammer
can induce errors. The plant and the controller can send at
most n bits across the channel. The codeword sent over the
channel from the plant to the controller is intercepted by a
jammer, which can flip at most t bits in the codeword of
the observation signal. We assume that the jammer jams the
channel from the plant to the controller, while the channel
from the controller to the plant is not intercepted by the
jammer. Furthermore, we assume that the jammer knows the
codebook of the encoder.

Plant

x

Encoder Jammer

e(x) ∈ {0, 1}n j(e(x)) ∈ {0, 1}n

Decoder

Controller
u = d(j(e(x)))

Fig. 1. Control in the presence of an intelligent jammer. The lightly shaded
blocks belong to one player (referred to as controller) and the darker shaded
block is the other player (the jammer). See text for details.

In the problem described above, it is required that the
state of the plant does not deviate too much from a desirable
set point. Hence, if the state of the system starts within a
bounded set, we would like it to remain in the same set with
high probability at the next time step. Thus, the cost function
associated with this problem is

J = P
{
x+ 6∈ I|x ∈ I

}
(2)

which is to be minimized by the encoder-decoder-controller
team and maximized by the jammer. We will henceforth refer
to this team as controller, while in fact, it comprises three
players.

For a given codelength n > 0 and jamming parameter
t ≥ 0, we denote the set of all measurable maps from I
to {0, 1}n by En and the set of all measurable maps from
{0, 1}n to R by Dn.

Let ε1, ε2 ∈ {0, 1}n be two codewords of length n. Then,
the Hamming distance H(·, ·) between the two codewords is

given by

H(ε1, ε2) =

n∑
i=1

ε1i ⊕ ε2i,

where ε1i and ε2i are the ith bits of the codewords ε1 and
ε2 respectively, and ⊕ is the XOR operator. We denote the
set of all jamming strategies from {0, 1}n to {0, 1}n with
Hamming distance less than or equal to t by J(t,n), i.e.,

J(t,n) = {j : {0, 1}n → {0, 1}n :

H(ε, j(ε)) ≤ t, ∀ε ∈ {0, 1}n}.

The set En × Dn can be thought of as the strategy space
for the team composed of the encoder, which communicates
the plant’s observation in n bits, and the decoder/controller,
which maps the possibly corrupted message at the end of
the channel into a control input. Similarly, J(t,n) is the
jammer’s strategy space, which flips at most t bits in the
encoded sequence. To every choice (e, d) ∈ En × Dn of
the encoder-decoder/controller team and j ∈ J(t,n) of the
jammer corresponds the cost which, by a slight abuse of
notation, we denote by J(e, d; j).

We are interested in computing the quantity

γ(n) := inf
(e,d)∈En×Dn

sup
j∈J(t,n)

J(e, d; j) (3)

as a function of the codelength n and, in particular, in
determining the smallest codelength n? for which γ(n) = 0
for all n ≥ n?.

We also consider a zero-sum game between the controller
and the jammer with the cost function in (2), which the
controller strives to minimize and the jammer tries to maxi-
mize. Towards this end, we wish to compute the saddle-point
equilibrium control strategy (e∗, d∗) ∈ En×Dn and jamming
strategy j∗ ∈ J(t,n) such that

J(e∗, d∗; j) ≤ J(e∗, d∗; j∗) ≤ J(e, d; j∗),

which holds for all (e, d) ∈ En×Dn and j ∈ J(t,n). It should
be noted that γ(n) as defined above, is equal to the value of
the game J(e∗, d∗; j∗) if the saddle-point equilibrium exists
[14, pp. 19]. If the equilibrium does not exist, then γ(n)
is an upper bound for the minimum cost achievable by the
controller in the presence of a jammer, and is called security
level of the controller. Our main results are as follows :

1) There is no loss of generality in restricting the strategy
space of the controller to binning-based control strate-
gies. We show this by constructing a binning-based
control strategy given any other control strategy, such
that the binning-based control strategy achieves a lower
or equal cost.

2) We show that the saddle-point equilibrium exists, and
hence γ(n) = J(e∗, d∗; j∗).

3) We show that the saddle-point equilibrium strategy
(e∗, d∗) of the controller can be restricted to a subset
of En×Dn. Moreover, we show that if the saddle-point
value of the game is V , then

J(e∗, d∗; j) = V ∀j ∈ J(t,n).
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4) We obtain a necessary and sufficient condition on n?

such that γ(n) = 0 for all n ≥ n?.

III. BINNING-BASED ENCODING AND CONTROL
STRATEGIES

When there is a finite length encoding of a real number, it
is natural to think of using quantization and a binning-based
strategy for the controller. Towards this end, we partition
the interval I into N sub-intervals (henceforth, termed as
bins). The encoder takes x as the input, determines which
bin x belongs to, and outputs the codeword corresponding to
that bin. Note that our problem formulation in the previous
section does not enforce this structure on the controller.

A. Notation

We now introduce some additional notation, which will
be used later in the paper. We say that an encoding strategy
e ∈ En is N bin-based if there exists a mutually disjoint,
non-empty set of partitions (B1, ...,BN ) of the interval I
such that

I =
⋃
i∈J

Bi, J := {1, . . . , N},

and corresponding to each bin Bi, there exists a codeword
εi ∈ {0, 1}n such that

e(x) = εi for all x ∈ Bi, i ∈J .

If, for i, k ∈J , the codewords satisfy

H(εi, εk) ≥ 2s+ 1 for all i 6= k, s ∈ N ∪ {0}, (4)

we say that the encoding strategy e ∈ En is s-error free. Let
ε ∈ {0, 1}n be the codeword received by the decoder and
define h : {0, 1}n →J by the following relation:

h(ε) := arg min
i∈J

H(εi, ε). (5)

We say that a control strategy d ∈ Dn is N bin-based if there
exist N codewords εi ∈ {0, 1}n (i ∈ J ) and N control
inputs u1, ..., uN ∈ R such that

d(ε) = uh(ε) for all ε ∈ {0, 1}n.

The set of points T di ⊂ I where the control ui keeps the
state within the interval I is given by

T di =

[
−1 + ∆− ui

A
,

1−∆− ui
A

]
∩ I. (6)

We let N e
i ⊆J denote the set of bin indices defined as:

N e
i = {k ∈J : ∃j ∈ J(t,n), k = h(j(e(x))) ∀x ∈ Bi}, (7)

where h(·) is defined in (5). Clearly, the set N e
i for each

bin index i ∈ J is dependent on the encoding strategy.
Since the jammer flips at most t bits, the set N e

i consists
of all bin indices corresponding to the nearest neighbors of
all 0 to t flips in the codeword for the ith bin. For all m ∈
N e
i , H(e(x), e(y)) ≤ 2t ∀ x ∈ Bi, ∀ y ∈ Bm. Also, it is

easy to see that i ∈ N e
i for all i ∈J .

We say that N bin-based encoding and control strategies
are adapted if the codewords {ε1, ..., εN} are the same for

both strategies, and refer to the pair (e, d) as s-error free
when e is s-error free. The set of all adapted N bin-based, s-
error free encoding and control strategy pairs with codelength
n is denoted by S(n,N,s).

Although an N bin-based decoding strategy may not be
well-defined over {0, 1}n (because there may be more than
one index satisfying (5)), the expression d(j(e(x))) is well
defined for every x ∈ I, every N bin-based encoding
strategy e that is adapted to d and t-error free, and every
j ∈ J(t,n). Indeed, in this case, condition (4) ensures that
every codeword used by the encoding and control strategies
is uniquely recovered by the nearest neighbor rule (5),
regardless of which t out of its n bits are flipped. In addition,
for every (e, d) ∈ S(n,N,t),

d(j(e(x))) = ui ⇔ x ∈ Bi (8)

for all j ∈ J(t,n) and all x ∈ I.
In words, when the encoder-decoder/controller team uses

a pair of strategies in S(n,N,t), it is guaranteed that system
(1) will receive the input signal corresponding to the actual
bin in which the state lies, regardless of the action of
the jammer. The goal of the team is to achieve a cost
supj∈J(t,n)

J(e, d; j) of zero by appropriately choosing con-
trol inputs corresponding to each bin.

B. Achieving Zero Cost

The lemma below states a necessary and sufficient condi-
tion on the number of bins that are required to keep the state
in the set I at the next time step.

Lemma 1: Let n, N , and t be such that N bin-based, t-
error free encoding strategies exist. Then there exists (ē, d̄) ∈
S(n,N,t) such that J(ē, d̄; j) = 0 for all j ∈ J(t,n) if and only
if

N ≥
⌈
|A|

1−∆

⌉
. (9)

In addition, when (9) holds, ē and d̄ can be constructed with
the following choice of bins (B1, ...,BN ) and control inputs
u1, ..., uN :
• if N is odd:

Bk =

[
2k − 1

N
,

2k + 1

N

)
, uk = −2kA

N
, (10)

for all −N−1
2 ≤ k ≤ N−1

2
• if N is even,

Bk =

[
2(k − 1)

N
,

2k

N

)
, uk = − (2k − 1)A

N
, (11)

for all −N2 + 1 ≤ k ≤ N
2 .

In both cases, any set of codewords ε1, ..., εN ∈ {0, 1}n
which renders ē t-error free can be chosen.
Proof: The reader is referred to [13, pp. 52].

For the no-noise case, ∆ = 0, and the length of the
codewords is log2d|A|e. This value is the same as obtained
in [1], [2], [3], since it has been shown that the codelength
has to be (strictly) greater than log2 |A| for the system to be

4074



stabilizable. However, if the goal is to keep the state bounded
in the same interval and in the presence of process noise
with bounded support, the required codelength increases. If
the process noise has unbounded support (as in the case of
Gaussian noise), then there is no control strategy with the
finite codelength scheme which can keep the state within
the given bound with probability one, as has been observed
in [1], [2] among many others.

C. Jamming and Error Correcting Code

In Lemma 1, we noticed that a certain minimum number of
bins is necessary to be able to keep the state in the set I even
without a jammer. If the number of bins is less than that, then
there is no hope of being able to keep the state within the
interval I at the next time step. In the absence of a jammer,
the required codelength for encoding N bins is bounded
below by dlog2(N)e. In the presence of the jammer, if the
control strategy lies in the set S(n,N,t) with N ≥

⌈
|A|

1−∆

⌉
,

then the cost achieved by the controller is zero.
The following result, which is classical in the theory of

error correcting codes, provides conditions for the (non)
existence of t-error free N bin based encoding strategies
with a codelength n.

Lemma 2 (Gilbert & Hamming bounds [15]): If

N ≤ 2n∑2t
j=0

(
n
j

) , (12)

then there exists a t-error free N bin-based encoding strategy.
However, if

N >
2n∑t

j=0

(
n
j

) , (13)

there does not exist any t-error free N bin-based encoding
strategy.

Lemma 2 implies that, for every N and t, the set of
codelengths for which there exists a t-error free N -bin based
encoding strategy is non-empty. In addition, the minimum
codelength for which there exists a control strategy in
S(n,N,t), denoted by necc(N, t), satisfies

n1(N, t) ≤ necc(N, t) ≤ n2(N, t), (14)

where ni(N, t), i = 1, 2 is given by

ni(N, t) = min

n ∈ N : N ≤ 2n∑it
j=0

(
n
j

)


Currently, it is not known how close necc(N, t) is to
n1(N, t) (known as the Hamming bound) or to n2(N, t)
(known as the Gilbert bound) [15]. There are only a few
coding strategies for which the Hamming bound is tight, and
they are known as perfect codes [15].

We now look into the case when the codelength n <
necc(N, t). If n < necc(N, t), then there is no encoding-
decoding strategy which can correct all t flips by the jammer.

Using nearest neighbor decoding rule, the decoder may
obtain a wrong bin index, and then a wrong control input is
sent to the plant. Thus, the cost of zero cannot be achieved
by a binning-based control strategy if n < necc(N, t). We
prove this claim in Theorems 3 and 7 below.

Among the many ways by which an encoding and a control
strategy can be designed for n < necc(N, t), we focus our
attention on two. One possible way (and rather naive way)
is to encode in such a way that the codewords are t-error
free, and compute the control strategy which minimizes the
cost to the controller. Another possible way is to consider
a game between the controller team and the jammer, and
compute the saddle-point equilibrium strategy for the team
and the jammer. The surprising result is that the naive way
of encoding and controlling the plant is also the saddle-point
strategy for the team and the jammer.

For a fixed codelength n and the number of flips t, and
define Ncr to be

Ncr = max{N ∈ N : necc(N, t) ≤ n}. (15)

In this case, we can obtain Ncr number of codewords, each
of codelength n, which are 2t+ 1 bits apart. Using this set
of codewords, we can obtain an upper bound on the cost
function and as a consequence, an upper bound on γ(n).
The following theorem establishes an upper bound on the
cost as a function of n.

Theorem 3: Let Ncr be given by (15). If Ncr < |A|/(1−
∆), then for a pair (e, d) ∈ S(n,Ncr,t) such that T di ⊆ N e

i

for all i ∈ {1, . . . , Ncr}, the cost to the controller is

J(e, d; j) =

(
1− Ncr(1−∆)

|A|

)
, ∀j ∈ J(t,n). (16)

Moreover, this is the best cost achievable by the controller
in the class of strategies in the set S(n,Ncr,t).
Proof: For a proof, refer to [13, pp. 57].
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Fig. 2. The change in cost to the controller J(e, d; j) with increase in the
codelength n as obtained from Theorem 3 using the Hamming bound and
the Gilbert bound. The actual cost lies between the two curves and depends
on necc(N, t).

The following theorem establishes the fact that there is no
loss of generality in restricting the encoding strategy to t-
error free binning-based strategies. For proving this, we need
the following lemma which simplifies the cost function.
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Lemma 4: Let (e, d) ∈ En × Dn be an N -bin based
control strategy. The maximum cost function over j ∈ J(t,n)

is equivalent to

max
j∈J(t,n)

J(e, d; j) =

N∑
i=1

max
k∈N e

i

P{x ∈ Bi\T dk }. (17)

Proof: This can be proved using Bayes’ theorem. The
detailed proof is given in [13, pp. 56, 61].

Using the lemma above, we prove the following theorem.
Theorem 5: For a fixed n and t, let (e, d) ∈ En × Dn

be an Ñ -bin based control strategy. Then, there exists a
corresponding t-error free N bin-based encoding and control
strategy (eN , dN ) ∈ S(n,N,t) with N ≤ Ñ bins such that
supj∈J(t,n)

J(eN , dN ; j) ≤ supj∈J(t,n)
J(e, d; j).

Proof: Let {B̃i}Ñi=1 be the set of mutually disjoint bins
and {ε̃i}Ñi=1 be the set of corresponding codewords used in
encoding of the bins with the control strategy (e, d). From
the set {ε̃i}Ñi=1 of codewords, extract the maximal subset of
codewords {ε̃il}Nl=1 ⊂ {ε̃i}Ñi=1 such that H(ε̃il , ε̃ik) ≥ 2t+1
for l, k ∈ {1, . . . , N}, l 6= k.

Now, we construct t-error free N bin-based control strat-
egy (eN , dN ) ∈ S(n,N,t). Towards this end, we define
N eN

1 = N e
i1

and if N ≥ 2, define N eN
l = N e

il
\
⋃l−1
k=1N e

ik
for l ∈ {2, . . . , N}. Then, the set {N eN

l }Nl=1 has mutually
disjoint sets. Note that since il ∈ N e

m for all m ∈ N eN
l , we

have il ∈ N eN
l . Moreover,

⋃N
l=1N

eN
l =

⋃Ñ
i=1N e

i .
Define Bl =

⋃
m∈N eN

l
B̃m for l = 1, . . . , N and set

εl = ε̃il such that eN (x) := εl for all x ∈ Bl. Since
{ε̃il}Nl=1 is a set of t-error free codewords, the encoding
strategy eN is t-error free. Also, since the set {N eN

l }Nl=1

has mutually disjoint sets, we have Bl
⋂
Bk = ∅ for all

l, k ∈ {1, . . . , N}, l 6= k. Define dN (εl) := d(ε̃il) for all
l ∈ {1, . . . , N} to be the N bin-based control strategy.

Using Lemma 4, we know that the maximum value of the
cost function with control strategy (e, d) over j ∈ J(t,n) is

max
j∈J(t,n)

J(e, d; j) =

Ñ∑
i=1

max
k∈N e

i

P{x ∈ B̃i\T dk }.

This can be rewritten and bounded below by

max
j∈J(t,n)

J(e, d; j) =

N∑
l=1

∑
m∈N eN

l

max
k∈N e

m

P{x ∈ B̃m\T dk },

≥
N∑
l=1

∑
m∈N eN

l

P{x ∈ B̃m\T dil },

=

N∑
l=1

P{x ∈ Bl\T dil }.

Here, the first inequality holds because we select k = il for
each l ∈ {1, . . . , N} instead of taking maximum over each

N e
m. The second equality holds since

P
{
x ∈ Bl\T dil

}
= P

x ∈
 ⋃
m∈N eN

l

B̃m

 \T dil
 ,

= P

x ∈ ⋃
m∈N eN

l

(
B̃m\T dil

) ,

=
∑

m∈N eN
l

P
{
x ∈ B̃m\T dil

}
.

Since (eN , dN ) ∈ S(n,N,t), the corresponding cost
J(eN , dN ; j) remains the same for all j ∈ J(t,n). It follows
that supj∈J(t,n)

J(eN , dN ; j) ≤ supj∈J(t,n)
J(e, d; j).

Therefore, the t-error free binning-based control strategy
(eN , dN ) ∈ S(n,N,t) achieves a lower or the same cost, and
this completes the proof of Theorem 5.

As a result of Theorem 5, we have the following result.
Theorem 6: For the problem formulated in Section II, let

Ncr be given by (15). If Ncr < |A|/(1−∆), then

γ(n) =

(
1− Ncr(1−∆)

|A|

)
. (18)

Also, γ(n) = 0 if and only if n ≥ n? := necc

(⌈
|A|

(1−∆)

⌉
, t
)

.
Proof: Using the definition of γ(n), we have

γ(n) ≤ inf
(eN ,dN )∈S(n,N,t)

sup
j∈J(t,n)

J(e, d; j),

since we are infimizing over a smaller set S(n,N,t), which is
a subset of En ×Dn. From Theorem 5, we get

inf
(eN ,dN )∈S(n,N,t)

sup
j∈J(t,n)

J(eN , dN ; j) ≤ γ(n).

Both inequalities, together with the result of Theorem 3
yields the equality in (18).

Next, if n ≥ necc(d|A|/(1−∆)e , t), then the construction
in Lemma 1 guarantees zero cost. This implies that γ(n) =
0. Conversely, let n < necc(d|A|/(1−∆)e , t). From (15),
we know that if n < necc(d|A|/(1−∆)e , t), then Ncr <
|A|/(1−∆). As a result of (18), γ(n) > 0. This completes
the proof of Theorem 6.

IV. ZERO-SUM GAME PROBLEM

In the last section, we obtained the worst cost γ(n) the
controller can achieve in the presence of a jammer, which
by definition, is the security level of the controller for the
zero-sum game. We now have the following theorem, which
says that the security level of jammer in the zero-sum game
considered in Section II is the same as the cost in (16) given
in Theorem 3. Since the security levels of both the players
are equal, the saddle-point value of the zero-sum game exists
[14]. The following theorem summarizes and proves this fact.

Theorem 7: For a given n and t, if n <

necc

(⌈
|A|

(1−∆)

⌉
, t
)

, then the saddle-point encoding
and control strategy is (e∗, d∗) ∈ S(n,Ncr,t) such that
T d∗i ⊆ N e∗

i for all i ∈ {1, . . . , Ncr} and the saddle-point
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jamming strategy j∗ is any jamming strategy in J(t,n). The
corresponding saddle-point value of the game is given by
(16).
Proof: Let (e, d) ∈ En×Dn be an arbitrary control strategy
and let j̃∗ ∈ J(t,n) be the jamming strategy which achieves
the maximum of J(e, d; j) over all j ∈ J(t,n). Then, using
the construction in Theorem 5, we can obtain (eN , dN ) ∈
S(n,N,t), such that J(eN , dN ; j) ≤ J(e, d; j̃∗) ∀j ∈ J(t,n).
Using this fact and Theorem 3, we get

J(e∗, d∗; j∗) ≤ J(eN , dN ; j) ≤ J(e, d; j̃∗) ∀j ∈ J(t,n).

From Theorem 3, we know that if (e∗, d∗) ∈ S(n,Ncr,t) such
that T d∗i ⊆ N e∗

i for all i ∈ {1, . . . , Ncr}, then

J(e∗, d∗; j) = J(e∗, d∗; j∗) ∀j ∈ J(t,n).

Hence, (e∗, d∗) and j∗ are a saddle-point control and jam-
ming strategy, respectively, for the zero-sum game. Since the
saddle-point control and jamming strategies are independent
of each other, by ordered interchangeability property of
multiple saddle-point strategies in a zero-sum game, any
other saddle-point control and jamming strategy incurs the
same value. Therefore, we conclude that the saddle-point
value of the game is given by (16).

V. THE DYNAMIC CASE

Due to non-linear control strategy and additive noise, the
probability distribution of x+ is not uniform. However, we
analyze the support of the probability distribution of the state
at every time step k ∈ N for a dynamic case in the next
theorem.

Theorem 8: Let the initial state have a symmetric prob-
ability distribution with support of length 2λ0 with λ0 = 1,
and 2λk denote the length of the support of the probability
distribution of the state at time instant k. Then, λk+1 grows
as

λk+1 =
|A|
Ncr

λk + ∆, k = 0, 1, . . . . (19)

If Ncr ≥ |A|/(1−∆), then the sequence {λi}∞i=0 converges,
and it satisfies λk ≤ λ0 = 1 ∀ k ∈ N.
Proof: Let Bi be a bin such that x1 = inf Bi, x2 = supBi,
u be the control action corresponding to this bin and assume
A > 1. Then, λk+1 ≥ Ax2 +u+∆ and −λk+1 ≤ Ax1 +u−
∆. Both these inequalities give x2−x1 ≤ 2(λk+1−∆)

A , which
means Ncr = 2λk

(x2−x1) ≥
Aλk

(λk+1−∆) . This yields the sequence

in (19) when x2−x1 = 2(λk+1−∆)
A , i.e., when the bins are of

equal length. Clearly, this sequence converges if Ncr > |A|.
However, if Ncr ≥ |A|/(1−∆), a simple induction argument
shows that λk ≤ 1 for all time steps k ∈ N.

VI. CONCLUSION

We considered a model of deception attack on a scalar
linear control system for a single time step, when the process
noise has bounded support. We analyzed binning and control
strategies for the case where the jammer can flip a limited
number of bits in codewords of fixed length. We showed

that there is no loss of generality in restricting the con-
troller’s strategy space to binning-based control strategies.
We formulated a zero-sum game between the controller
and the jammer, and derived the saddle-point value and
corresponding strategies for the controller and the jammer.

An immediate extension of the results of the paper is to
consider a finite horizon or an infinite horizon dynamic game
between the jammer and the controller under codelength
constraints. Besides jamming, if there is channel noise, then
the problem is non-trivial as well as challenging due to
non-classical information pattern at both the controller and
the encoder sides. The case of channel without jammer
but with channel noise has been investigated in [16], [17]
using concepts from Markov chains. One of our goals in the
future is to extend the framework in [16], [17] to adversarial
channels.
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