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Abstract— This paper addresses the performance of a
Kalman filter when measurements are intermittently available,
i.e., network transmission problems. More specifically, we
present a method to determine whether the expected value of
the estimation error covariance is bounded for a given stochastic
network model. The method applies to very general network
models and for a class of degenerate systems. It can be easily
adapted to non-degenerate systems, recovering known results on
the critical value. The main result follows from the convergence
conditions on a series that describes the bounds on the expected
error covariance.

I. INTRODUCTION

The performance of a Kalman filter when measurements
are intermittently available is studied in this paper. The prob-
lem has attracted great interest in the recent years, partly due
to the development of communications technologies, which
today, allows distributed control and monitoring in a great
range of applications. When measurements sent through a
communication channel are subject to random losses, the
estimation accuracy of the Kalman filter will deteriorate.
In [1], the authors established the mathematical foundations
for the basic problem and pointed out that the covariance
of the estimation error does not reach a steady state. Since
then, several authors have studied different aspects of the
problem, using different assumptions on network models and
protocols.

The most common entity studied in this context is the
Error Covariance (EC) matrix. When a Kalman filter is
subject to intermittent measurements, its EC becomes a
random variable and its statistical properties are studied.
Bounds on the expected value of the EC are given in [2],
[3], [4], [5]. In [3], [6], higher order statistics of the EC are
addressed, while in [7], [8], [9] the distribution function of
the EC is studied.

The question of whether the Expected value of the EC
(EEC) is bounded by a constant matrix or unbounded is
the topic of this paper. The answer depends on the system
under consideration and on the given stochastic network
model. Two of the most popular network models used are
the independent and identically distributed (i.i.d.) and the
Gilbert-Elliot [10] models. Under the i.i.d. model assump-
tion, the only network parameter is the probability that a
given measurement arrives at the estimator. The smallest
probability that yields a finite EEC is called the critical value.
In the case of more elaborated models, such as Gilbert-Elliot,
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there might be more than one parameter that controls the
dichotomy of behaviors.

Even when the i.i.d. network model is used, finding the
critical value for a general system is still an open problem.
In [1], the authors showed that there exists a critical value,
i.e., the EEC is bounded if and only if the arrival probability
is greater than the critical value. They also provided lower
and upper bounds on measurement arrival probability in
order for the EEC to be bounded, and for the particular case
that the observation matrix C is invertible, these bounds are
tight, i.e., the critical value is given. This condition is relaxed
to only requiring the invertibility of the part of the matrix
C corresponding to the observable subspace in [11]. In [12]
the conditions under which the critical value is known were
expanded to the case when the eigenvalues of the system
have distinct absolute values.

As an attempt to model effects like the fading of the com-
munication channel, the Gilbert-Elliot network model was
introduced. It assumes that the availability of a measurement
depends on the availability of previous ones. The problem
was first introduced in [13], where necessary conditions
for the stability of the peak covariance were developed. In
[14], these conditions were further improved, providing less
conservative results for systems with observability index of
two. Again, to the best of our knowledge, there is no analytic
solution to find the critical parameters for the Gilbert-Elliot
network model in the general case.

A class of systems that still lacks on the knowledge of the
critical value includes the degenerate systems. We present a
formal definition of degenerate systems in section II, which
is equivalent to the one in [6]. We point out that most of the
results available in the literature apply only to non-degenerate
systems.

In this paper, we study a class of discrete-time linear
degenerate systems in which all eigenvalues have the same
magnitude, but different phases. We also require the dif-
ferences on the phases to be rational numbers and the
system dynamics’ matrix to be diagonalizable. Although
our results are for degenerate systems, they can be easily
modified to account for the simpler case of non-degenerate
systems, recovering known results in the literature. The main
result follows from the convergence conditions on a series
that describes bounds on the expected error covariance. A
necessary and sufficient condition for the finiteness of the
EEC is presented in terms of the probability to observe a
given class of sequences. This probability is then derived
in a later section. We point out that the results presented
here are preliminary and that they can be extended relatively
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easily to more general systems.

II. PROBLEM STATEMENT

Consider the discrete-time linear system:{
xt+1 = Axt + wt

yt = Cxt + vt
(1)

where the state vector xt ∈ Rn has initial condition x0 ∼
N(0, P0), yt ∈ Rp is the measurement, wt ∼ N(0, Q) is
the process noise and vt ∼ N(0, R) is the measurement
noise. It was shown in [1] that even when the measurements
are subject to random losses, the standard Kalman filter still
obtains the best estimate x̂t of the state xt. In this case,
however, the covariance Pt of the state estimation error
becomes a random matrix.

We assume that the measurements yt are sent to the
Kalman estimator through a network subject to random
packet losses, and that there is no delay in the transmission.
Let γt be a binary random variable describing the arrival of
a measurement at time t, i.e., γt = 1 when yt is received at
the estimator and γt = 0 otherwise.

The update equation for Pt depends on the availability of
measurements. When a measurement is available, both steps,
prediction and update, are performed. When a measurement
is not available, only the prediction step can be computed.
The equation for Pt can then be written as follows:

Pt+1 =

{
Φ1(Pt), γt = 1
Φ0(Pt), γt = 0

(2)

with

Φ1(Pt) = APtA
′ +Q+

−APtC
′(CPtC

′ +R)−1CPtA
′ (3)

Φ0(Pt) = APtA
′ +Q. (4)

We point out that when all measurements are available,
and the Kalman filter reaches its steady state, the EC is given
by the solution of the following algebraic Riccati equation

P = APA′ +Q−APC ′(CPC ′ +R)−1CPA′. (5)

In [15], the authors introduce the definition of a degenerate
system, which applies to systems that can be written in a
diagonal standard form. A diagonal system in the form (1)
is said to be degenerate if it contains at least one sub-system
(i.e., a pair Ã = diag{αi1 , · · · , αiJ}, C̃ = [ci1 , · · · , ciJ ],
where αij and cij , j = 1, · · · , J , denote the ij-th diagonal
entry of A and the ij-th column of C, respectively), whose
eigenvalues have the same absolute value, and such that C̃
does not have full column rank.

Notice that degenerate systems arise in systems containing
more than one eigenvalue with the same absolute value and
a wide matrix C. An example of such a system is

A =

[
0 1
−1 1

]
, C =

[
1 1

]
. (6)

In this paper, we present a necessary and sufficient condi-
tion for the EEC of a class of degenerate systems to be finite.

More precisely, the proposed criterion requires the following
assumption:

Assumption 2.1: A is diagonalizable and there exists T ∈
N such that AT = νT I , for some ν ∈ C. Also, the pair
(A,C) is observable.

Notice that Assumption 2.1 implies that all the eigenvalues
of A have the same magnitude. We point out that if A has
eigenvalues with distinct magnitudes, the proposed method
can be used to obtain a necessary condition for the finiteness
of the EEC. This is done by applying it to each sub-system
that contains eigenvalues with the equal absolute values.

We use the following notation. For A satisfying Assump-
tion 2.1, α denotes the magnitude of its eigenvalues. For
given N ∈ N and 0 ≤ m ≤ 2N − 1, the symbol SN

m

denotes the binary sequence of length N formed by the
binary representation of m. We also use SN

m(i), i = 1, · · · , N
to denote the i-th entry of the sequence, i.e.,

SN
m = [SN

m(1), SN
m(2), . . . , SN

m(N)] (7)

and

m =
N∑

k=1

2k−1SN
m(k). (8)

For a given sequence SN
m , and a matrix P ∈ Rn×n, we define

the map

ϕ(P, SN
m) = ΦSN

m(N) ◦ ΦSN
m(N−1) ◦ . . .ΦSN

m(1)(P ) (9)

where ◦ denotes the composition of functions (i.e. f ◦g(x) =
f(g(x))). Notice that if m is such that SN

m represents the
sequence of measurements available from t = 0 to t = N−1,
then

PN = ϕ(P0, S
N
m). (10)

We use P(SN
m) to denote the probability that the sequence

of available measurements in the last N sampling times is
as in SN

m .
Notice that the expected value of ∥PN∥ can be written as

E(∥PN∥) =
2N−1∑
m=0

P
(
SN
m

)
∥ϕ(P0, S

N
m)∥. (11)

We are interested in finding the conditions for

lim
N→∞

E(∥PN∥) <∞. (12)

III. NECESSARY AND SUFFICIENT CONDITION FOR THE
FINITENESS OF THE EEC

We define the observability matrix corresponding to the
sequence SN

m as

O(SN
m) , R(SN

m)


C
CA

...
CAN−1

 (13)

where R(SN
m) is the matrix that, when pre-multiplying,

removes the rows corresponding to lost measurements. To
simplify the notation, we will often omit the argument of O
when it is clear from the context.
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We can write the vector YN containing all the available
measurements as

YN = Ox0 + FW + V, (14)

xN = ANx0 +GW, (15)

where

YN = R(SN
m)

 y0
...
yN

 ,W =

 w0

...
wN−1

 ,
V =

 v0
...

vN−1

 , G =
[
AN−1, · · · , A, I

]
,

F = R(SN
m)


0 0 · · · 0
C 0 · · · 0

CA C
. . .

...
...

...
. . . 0

CAN−1 CAN−2 · · · C

 .
From [16, p. 39], we have that the estimation of xN

conditioned on YN produces the error covariance

PN = Σx − ΣxY Σ
−1
Y Σ∗

xY , (16)

where

Σx = ANP0A
N∗ +GΣWG∗ (17)

ΣxY = ATP0O +GΣWF ∗ (18)
ΣY = OP0O

∗ + FΣWF ∗ +ΣV , (19)

with ΣW = Q ⊗ I and ΣV = R ⊗ I , where ⊗ denotes the
Kronecker product.

Define

RN , {m : O(SN
m) does not have FCR}. (20)

The following two lemmas state an upper bound for the
growing rate of ∥PN∥, when m ∈ RN

, and a lower bound
for the case when m ∈ RN .

Lemma 3.1: Let m be such that SN
m is the sequence of

measurements received from time 0 to N − 1. If the system
satisfies Assumption 2.1, and O(SN

m) has FCR (i.e., m ∈
RN

), then, there exists a constant pN , independent of P0,
such that

∥PN∥ ≤ pN . (21)
Proof: Consider the following sub-optimal estimator

and its associated error:

x̂N = ATO†Y (22)
= ATO† (OA−NxN + (F −OA−NG)W + V

)
x̃N = xN − x̂N (23)

=
(
G−ATO†F

)
W −ATO†V

The covariance of the estimation error is given by

PN = E(x̃N x̃∗N )

=
(
G−ATO†F

)
ΣW

(
G−ATO†F

)∗
+(

ATO†)ΣV

(
ATO†)∗ . (24)

Notice that since the estimator is sub-optimal, we have
∥PN∥ ≤ ∥PN∥. Also, ∥PN∥ does not depend on the initial
error covariance P0 and its maximum value can be obtained
evaluating all the sequences of length N , that result in
O(SN

m) having FCR. The proof is concluded by making

pN = max
m

∥PN∥. (25)

Lemma 3.2: Let m be such that SN
m is the sequence of

measurements received from time 0 to N − 1. If O(SN
m)

does not have FCR, then

∥PN∥ ≥ α2N∥P−1
0 ∥−1. (26)

Proof: Suppose that the noises wt and vt are known
for 0 ≤ t < N , i.e., ΣW = 0 and ΣV = 0, and let PN be
the resulting estimation error covariance. Notice that PN ≥
PN , and therefore ∥PN∥ ≥ ∥PN∥. Let p be the smallest
eigenvalue of P0, i.e., p , ∥P−1

0 ∥−1. We have

PN = ANP0A
N∗ −ANP0O

∗ (OP0O
∗)

−1 (
ANP0O

∗)∗
≥ p

(
ANAN∗ −ANO∗ (OO∗)

−1 (
ANO∗)∗) (27)

= pAN
(
I −O∗ (OO∗)

−1
O
)
AN∗ (28)

= pAN
(
I −O†O

)
AN∗. (29)

Notice that I −O†O is a projection, hence

∥PN∥ ≥ p∥AN
(
I −O†O

)
∥2 (30)

= pα2N∥
(
I −O†O

)
∥2 (31)

= pα2N (32)
= α2N∥P−1

0 ∥−1 (33)

The following lemma is required to show the main result
of the section.

Lemma 3.3: Define

ξN (x) ,
2N∑
m=1

∥ϕ(xI, SN
m)∥P(SN

m) (34)

x⋆N , solx
{
x = ξN (x)

}
. (35)

If there exists a finite solution x⋆N , then it is an upper bound
for the EEC.

x⋆N ≥ lim
N→∞

E(∥PN∥) (36)

Proof: From the monotonicity of ϕ(·, SN
m) (see [1]),

we have that

ϕ(P0, S
N
m) ≤ ϕ(∥P0∥I, SN

m). (37)

Substituting (37) into (11), we have

E(∥PN∥) ≤
2N∑
m=1

∥∥ϕ(∥P0∥I, SN
m)
∥∥P(SN

m) (38)

= ξN (∥P0∥). (39)

It follows from the concavity of ϕ(·, SN
m) (see [8]) that

ξkN (x) ≤ ξN
(k)

(x) (40)
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where ξN
(k)

(·) is the composition of ξN (·) k times.
The proof is concluded by noting that

lim
N→∞

E(∥PN∥) ≤ lim
N→∞

ξN (∥P0∥) (41)

= lim
k→∞

ξkN (∥P0∥) (42)

≤ lim
k→∞

ξN
(k)

(∥P0∥) (43)

= x⋆N . (44)

The following theorem states the main result of the section,
namely, a necessary and sufficient condition for the EEC to
be finite.

Theorem 3.1: Consider a system satisfying Assump-
tion 2.1. If

α2 lim sup
N→∞

P
{
RN

}1/N
> 1, (45)

then
lim

N→∞
E(∥PN∥) = +∞. (46)

Also, if
α2 lim sup

N→∞
P
{
RN

}1/N
< 1, (47)

then
lim

N→∞
E(∥PN∥) <∞ (48)

Proof: Necessity: From (11), we have that

E(∥PN∥) =
2N−1∑
m=0

P
{
SN
m

}∥∥ϕ(P0, S
N
m)
∥∥

≥
∑

m∈RN

P
{
SN
m

}∥∥ϕ(P0, S
N
m)
∥∥

≥
∑

m∈RN

P
{
SN
m

}
α2N

∥∥P−1
0

∥∥−1

= α2N
∥∥P−1

0

∥∥−1 P
{
RN

}
=
(
α2P

{
RN

}1/N)N ∥∥P−1
0

∥∥−1
,

and the result follows.
Sufficiency: From (34), we have

ξN (x) =
∑

m∈RN

∥ϕ(xI, SN
m)∥P(SN

m)

+
∑

m/∈RN

∥ϕ(xI, SN
m)∥P(SN

m). (49)

Notice that

∥ϕ(xI, SN
0 )∥ = ∥ANxA′N +

N−1∑
j=0

AjQA′j∥ (50)

≤ ∥A∥2Nx+
N−1∑
j=0

∥A∥2j∥Q∥ (51)

= α2Nx+

N−1∑
j=0

α2j∥Q∥. (52)

Since SN
0 is a sequence with all measurements lost, (52)

provides an upper bound for any sequence.

Define
ξ
N
(x) ,

(
α2NP(RN )

)
x+ β (53)

where β = P(RN )
∑N−1

j=0 α2j∥Q∥+ pNP(RN
). Using (52)

and (21) in (49), we have that ξ
N
(x) ≥ ξN (x).

We have that

lim
N→∞

α2NP
{
RN

}
= lim

N→∞

(
α2P

{
RN

}1/N)N
= 0.

Then, there exists N0 such that, for all N > N0,
α2NkP(RN ) < 1. This in turn implies that there exists
x0 such that x0 = ξ

N0
(x0), and the result follows from

Lemma 3.3.

IV. COMPUTING lim supN→∞ P(RN )1/N

As pointed out in [6], when A is diagonalizable, we can
assume without loss of generality that it is diagonal. Consider
assumption 2.1, and let T be the smallest integer such that

AT = αT exp(iθT )I, (54)

for some and θ ∈ (−π, π]. Therefore, if the measurement
yt is available, the measurement yt+T will not increase the
rank of the observability matrix.

We define the cumulative arrival sequence as

GT (SN
m) = {g1, g2, . . . , gT } (55)

with

gj =

{
0, SN

m(kT + j) = 0, ∀k = 0, · · · , (N − j)/T

1, otherwise.
(56)

It follows that

rank(O(SN
m)) = rank(O(GT (SN

m))). (57)

The next lemma computes the probability that the observ-
ability matrix corresponding to the random sequence SN

m has
FCR.

Lemma 4.1: Let ST denote the set of sequences of length
T , whose associated observability matrix does not have FCR,
i.e.,

ST , {ST
m : m ∈ RT }. (58)

Let [ST ]j , j = 1, 2, . . . , J denote the j-th element of the
set ST , with [ST ]1 = ST

0 . Define the matrix M such that its
(i, j)-th entry [M ]i,j is given by

[M ]i,j , P
(
GT {SN

m , γ} = [ST ]i|GT (SN
m) = [ST ]j

)
,
(59)

where {SN
m , γ} is the sequence with length N + 1 whose

first N elements are as in SN
m and the last element is γ. We

have
P(RN ) = uMNz (60)

with
u = [1 1 . . . 1] and z = [1 0 . . . 0]′ (61)

of appropriate dimensions.
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Proof: For time N , define the vector WN containing
the probabilities of GT (SN

m) taking values in ST , i.e.,

WN =


P
(
GT (SN

m) = [ST ]1
)

P
(
GT (SN

m) = [ST ]2
)

...
P
(
GT (SN

m) = [ST ]J
)
 . (62)

We can write a recursive expression for WN as

WN+1 =MWN . (63)

Hence, for a given N > 0, the distribution WN is given by

WN =MNW0. (64)

Since [ST ]1 is the empty sequence, the initial distribution is
given by

W0 = z. (65)

Finally, we obtain the probability that O(SN
m) does not have

full column rank by adding all the entries of the vector WN ,
i.e., by pre-multiplying u to WN .

Consider the following factorization of the matrix M :

M = V


B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . BJ

V −1 (66)

where Bj , j = 1, . . . , J are the Jordan blocks of M . Define

U =
[
U1 U2 . . . UJ

]
= uV (67)

and

Z =


Z1

Z2

...
ZJ

 = V −1z (68)

such that

uMNz =
J∑

j=1

UjB
N
j Zj . (69)

Let λj exp(iθj) be the eigenvalue associated with the Jordan
block Bj ∈ RNj×Nj , with λj , θj ∈ R. We have

UjB
N
j Zj = λkjψj(N) (70)

where

ψj(N) =

Nj∑
n=1

Nj∑
m=1

[Uj ]n[Zj ]maj,n,m(N), (71)

and aj,n,m(N) is a polynomial in N given by

aj,n,m(N) =

{(
N

m−n

)
λn−m
j eiθj(n−m+N), n ≤ m

0, n > m.
(72)

We now group the Jordan blocks whose eigenvalues have the
same magnitude, to obtain

uMNz =
L∑

l=1

ΛN
l Ψl(N) (73)

with Λ1 > Λ2 > . . . ,ΛL ∈ R and

Ψl(N) =

J∑
j=0:
λj=Λl

ψj(N). (74)

Notice that Ψl(N) ̸= 0 for some l = 1, · · · , L. We can then
state the main result of this section.

Theorem 4.1: Let M be defined as in (59), u, z as in (61)
and Λl,Ψl(N) as in (73). Let l0 be the smallest integer such
that Ψl0(N) ̸= 0 for some N . Then,

lim sup
N→∞

P(RN )1/N = Λl0 . (75)

Proof: The proof is divided in six steps.
1) Define

G(N) , Ψl0(N) +
L∑

l=l0+1

(
Λl

Λl0

)N

Ψl(N) (76)

and notice that

uMNz = ΛN
l0G(N). (77)

From (60), we have

lim sup
N→∞

P
(
RN

)1/N
= lim sup

N→∞

(
ΛN
l0G(N)

)1/N
(78)

= Λl0 lim sup
N→∞

(G(N))
1/N (79)

2) Let p0 be the greatest power of N in Ψl0(N). It is
straightforward to verify that there exist K ∈ N and g ∈ R
such that

gNp0 ≥ |G(N)| , for all N > K. (80)

Now, since
lim

N→∞
|gNp0 |1/N = 1 (81)

it follows that

lim
N→∞

sup |G(N)|1/N ≤ 1. (82)

3) Notice that for every ϵ > 0, there exists a K1 such that∣∣∣∣∣
L∑

l=l0+1

(
Λl

Λl0

)N

Ψl(N)

∣∣∣∣∣ < ϵ, ∀N > K1. (83)

4) Write Ψl0(N) as

Ψl0(N) =

J∑
j=0

λj=Λl0

ψj(N) =

p0∑
p=0

Npβp(N) (84)

= Np0

(
βp0(N) +

p0−1∑
p=0

Np−p0βp(N)

)
where βp(N), p = 0, . . . , p0 are linear combinations of
complex exponential functions. Then, we have that for every
ϵ > 0, there exists K2 such that∣∣∣∣∣

p0−1∑
p=0

Np−p0βp(N)

∣∣∣∣∣ < ϵ, ∀N > K2. (85)
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5) Now, since βp0(N) is a finite linear combination of
complex exponentials, it follows from [17, Section VI.5]
that βp0(N) is an almost-periodic function. Hence, for every
0 < ϵ < supN∈N βp0(N)/2, there exists an infinite sequence
Tj ∈ N such that

|βp0(Tj)| ≥ 2ϵ. (86)

Now, define the increasing sequence T̃j ∈ N, by taking
from the sequence Tj ∈ N, the values that are greater than
max(K1,K2). Substituting (83), (85) and (86) in (76), we
have that, for all N ∈ T̃j

|G(N)| ≥ (Np0 − 1)ϵ. (87)

Hence, we have

lim
N→∞

sup |G(N)|1/N ≥ 1. (88)

6) From (82) and (88), it follows that

lim
N→∞

sup |G(N)|1/N = 1, (89)

and the result follows by substituting (89) in (79).
Combining Theorems 3.1 and 4.1, we have the following

corollary.
Corollary 4.1: Consider the system (1) satisfying As-

sumption 2.1. Let M be defined as in (59), u, z as in (61)
and Λl,Ψl(k) as in (73). Let l0 be the smallest integer such
that Ψl0(k) ̸= 0 for some k. Then,

Λl0α
2 > 1 ⇒ lim

N→∞
E(∥PN∥) = ∞ (90)

Λl0α
2 < 1 ⇒ lim

N→∞
E(∥PN∥) <∞. (91)

V. CONCLUSION AND FUTURE WORK

In this paper we studied the state estimation error covari-
ance produced by a Kalman filter whose measurements are
subject to random losses. We did so considering a class of
degenerate systems. We provided a necessary and sufficient
condition for the limit of the expected value of the norm of
the error covariance to be finite.

We pointed out how the presented result can be used to
derive a necessary condition for any arbitrary system. In a
future work, we aim to extend this to provide a necessary
and sufficient condition for general systems.
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