
White Noise Disturbance and Topological Heterogeneity Analysis for the
Hybrid Consensus Protocol

Haopeng Zhang, Sean R. Mullen, and Qing Hui

Abstract— In this note, we extend the robustness analysis
for the hybrid consensus protocol to a more general case: the
white noise disturbance effect on the hybrid system, which
is a significant measurement when considering the robustness
of control protocols. The expectation and covariance of the
states for the system are formulated, and the Lyapunov stability
for the hybrid system is developed. Furthermore, considering
attacks to the graph of the multi-agent system, the topology of
the network might be unconnected, therefore, the study of the
disconnectedness effect on the system is necessary. Hence, the
unconnected topologies are investigated for the hybrid system,
and the necessary and sufficient conditions for weak formation
and consensus are provided, respectively. Moreover, simulations
are provided to verify our theoretical analysis.

I. INTRODUCTION

The consensus problem for multi-agent systems has sig-
nificant applications in military and civil arenas including
sensor-networked systems, mobile ground vehicle systems,
and autonomous underwater vehicles (AUVs), which have
recently received a lot of attention [1]–[9]. A general survey
of the consensus problem is presented in [3], and the linear
system is well discussed. Moreover, a nonlinear consensus
protocol, based on system thermodynamic theory, is devel-
oped in [4], and the finite-time property and semistability
are investigated as well. Both the first order system and
the double integrator system are examined. In [2], based
on Newtonian mechanics, the velocity and displacement of
each agent achieve consensus as time approaches infinity
under the double integrator consensus protocol. In addition,
hybrid theory is employed to address the consensus problem
in [10], which develops a novel framework for solving the
fast consensus problem, and also develops semistability for
the hybrid consensus system as well.

Besides consensus protocol design, various non-ideal ef-
fects to the system have been widely discussed, such as time
delay [11], time-varying effects [12], [13], noise disturbance
[14] and quantization problems [6], [7], [15]–[17] for in-
formation interaction. While considering the attack to the
system, the topology of the system might be switching [13],
[18], stochastic [5]–[7], [9], or unconnected [19]. In [14],
some particular noise disturbances are investigated, and a
hybrid formation control protocol is developed. Exact con-
sensus and near consensus are achieved for the continuous
and discrete system in [15], [16]. The gossip algorithms
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that address the random topology consensus problem are
introduced in [5]. Furthermore, the quantization of the gossip
algorithms is studied and the convergence time and effect of
the quantization are developed in [6], [7], [17]. In addition to
gossip algorithms, Ergodic theory is employed to solve the
random consensus problem [9]. [19] analyzed the hetero-
geneous networks for double integrator dynamics, showed
that the topologies for position and velocity may not be the
same or connected, and proposed the necessary and sufficient
condition for consensus.

In this paper, the hybrid consensus protocol proposed in
[10] is discussed, we extend the result of [14] from some
particular noise disturbances to include white noise, since the
white noise disturbance effect on the system is a significant
observation when considering the robustness of the control
protocols. The contributions of this paper are summarized
as follows. First, the expectation and covariance matrices
are formulated for the continuous system, and, based on
Lyapunov stability theory, the stability of the hybrid con-
sensus protocol is developed. Furthermore, the connectivity
of the topologies for the hybrid system are investigated. In
[19], the authors ignore one case of the eigenvalues, which
is the one lying on the imaginary axis (a counterexample
is provided). The reason why this case is important is that
if the eigenvalue of a linear system lies on the imaginary
axis, then the system would not have asymptotic properties.
Therefore, in this paper, we develop a sufficient condition
for the case where the system has no imaginary eigenvalues.
In addition, the necessary and sufficient conditions for weak
formation and consensus of the hybrid system are presented,
respectively.

The organization of the paper is as follows: the mathe-
matical preliminaries and the hybrid consensus protocol are
reviewed in Section II, the main results are presented in
Section III, the effects of white noise are provided, and then
the connectivity of the topologies is investigated. In Section
V, the simulations are provided to illustrate the validity of the
developed results. Finally, Section VI concludes the paper.

II. MATHEMATICAL PRELIMINARIES

Firstly, some definitions are introduced. Consider the lin-
ear system given by

ẋ(t) = Ax(t) (1)

Definition 2.1: For A ∈ Fn×n, and λ ∈ spec(A), then
λ is simple if amultA(λ) = 1, where amultA denotes the
algebraic multiplicity of an eigenvalue λ of A.
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Definition 2.2: For A ∈ Rn×n, A is semistable if
spec(A) ⊂ CLHP, and if 0 ∈ spec(A), then 0 is semisimple,
where CLHP stands for closed left half plane in C.

Define EA as the eigenvector space for A. To efficiently
describe a networked environment for a control system,
graph theory is a powerful tool. In this paper, we use
graph-related notation to describe our network model. More
specifically, let G = (V ,E ,A ) denote an undirected graph
with the set of vertices V

.= {v1, v2, v3, ...} and E ⊆ V ×V
represents the set of edges. The matrix A with nonnegative
adjacency elements ai,j serves as the weighted adjacency
matrix. The node index of G is denoted by a finite index
set N = {1, 2, 3, ...}. An edge of G is denoted by ei,j =
(vi, vj) and the adjacency elements associated with the edges
are positive. We assume ei,j ∈ E ⇔ ai,j = 1 and ai,i = 0
for all i ∈ N . If there is a path from any node to any other
node in the graph, then we call the graph connected.

The hybrid consensus protocol via homogeneous topology
G we consider in this paper is given by

ẋci(t) = −
q∑

j=1,j 6=i

CG
i,j(xci(t)− xcj(t))

−
q∑

j=1,j 6=i

CG
i,j(xi(t)− xj(t)− wi,j)

(xi(t), x̄i(t), xci(t), x̄ci(t)) 6∈ Zi

xci(0) = xci0, t ≥ 0

ẋi(t) =
q∑

j=1,j 6=i

CG
i,j(xci(t)− xcj(t))

xci(t+) = argminxci(t)

q∑

j=1,j 6=i

CG
i,j ‖ xci(t)− xcj(t) ‖22

(xi(t), x̄i(t), xci(t), x̄ci(t)) ∈ Zi (2)

where the resetting set Zi is given by

Zi = {(xi, x̄i, xci, x̄ci) :
d

dt
Li(xi, x̄i) = 0

Li(xci, x̄ci) > min
xci

Li(xci, x̄ci)} (3)

or

Zi = {(xi, x̄i, xci, x̄ci) :
d

dt
Li(xci, x̄ci) = 0

Li(xci, x̄ci) > min
xi

Li(xci, x̄ci)} (4)

where Li(xi, x̄i) =
∑q

j=1,j 6=i Ci,j ‖ xi(t) − xj(t) ‖22 and
Li(xci, x̄ci) =

∑q
j=1,j 6=i Ci,j ‖ xci(t) − xcj(t) ‖22. Finally,

the matrix C is a connectivity matrix for the graph G defined
by CG

i,j = 0 if (i, j) 6∈ E , CG
i,j = 1 if (i, j) ∈ E , and

CG
i,i = −∑q

k=1, k 6=i Ci,k, i 6= j, i, j = 1, . . . , q.
This hybrid protocol is a state-dependent, dynamic hybrid

consensus protocol proposed in [10], which can be viewed as
an observer-based controller design. We call xci the observer
state and xi the plant state. Then the hybrid consensus pro-
tocol (2) describes a feedback interconnection between the
plant and observer. The motivation of this hybrid consensus

protocol comes from designing fast convergent consensus
protocols for multi-agent coordination via output feedback
using dynamic compensators. We use the idea of thermo-
dynamic stabilization with impulsive control [20] to design
such a controller. In this case, the resetting set Zi is defined
to be the set of all points in the closed-loop state space
that correspond to decreasing the Laplacian disagreement
function Li(xi, x̄i) [21] of the ith subsystem and minimizing
the Laplacian disagreement function Li(xci, x̄ci) of the ith
agent. Note that the expression of xci(t+) is equivalent to a
least squares minimization problem which has the solution

xci(t+) =
1
|Ki|

∑

j∈Ki

xcj(t),

(xi(t), x̄i(t), xci(t), x̄ci(t)) ∈ Zi, (5)

where Ki denotes the indices of all the other agents which
have a communication link with the ith agent and |Ki|
denotes the cardinality of the set Ki. Equation (5) is similar
in form to the model proposed in [22]. Furthermore, (5)
implies that the resetting dynamics are such that the state
of the controller is reset to the center of gravity or average
value of all other controller state variables. More detailed
explanation of (2), (3), and (4) can be found in [10]. Under
these consensus protocols, it is shown that the network
achieves consensus quite rapidly and even in finite time [10].

III. MAIN RESULT

In this section, we intend to investigate the robustness of
the hybrid consensus protocol in Section II with the presence
of white noise.

A. Robustness of the continuous consensus protocol

The continuous-time part of the protocol (2) can
be represented in a vector form. Defining X =[
x1 · · · xq xc1 · · · xcq

]T
, then the continuous-time

system becomes

Ẋ = ΦX + Ψ (6)

where

Ψ =




0
...
0

−∑
j∈N1

a1,jw1,j

−∑
j∈N2

a2,jw2,j

...
−∑

j∈Nq
aq,jwq,j




Φ =
[

0 1
−1 −1

]
⊗ L, and L is the Laplacian matrix for the

graph topology of the networked system.
We firstly consider a more general case. Consider the

following system

Ẋ = ΦX + Bw (7)

where Φ ∈ Rn×n is the state matrix, B ∈ Rn×n is the weight
matrix, and w ∈ Rn×1 is the vector of the standard Gaussian
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white noise process. To characterize the system,we definite
expectation of the states as E(X) and covariance of x(t)

by Q(t) , E[x(t)x(t)T] and we then present our main result
about the system (7).

Theorem 3.1: Consider the system (7) with white noise
disturbance, and assume that E(X(0)) is given. Then, the
expectation and covariance of the states are

E(X(t)) = exp Φt× E(X0), (8)

Q(t) = eΦtQ(0)eΦTt +
∫ t

o

eΦsBBTeΦTsds (9)

The following question is whether the covariance matrix
is finite or infinite, which would thus effect the robustness
of our hybrid consensus protocol. Therefore, the following
proposition presents necessary and sufficient conditions for
well-defined covariance matrix Q(t).

Proposition 3.1: Consider the system (7), and assume Φ
is semistable. Then

∫ t

o
eΦsBBTeΦTsds < ∞ if and only if

kerΦ ⊂ kerB.
Next, we narrow the scope of the general result of Theo-

rem 3.1 into our consensus case.
Corollary 3.1: Consider the system (6). If wi,j is the

Gaussian white noise process, then the explicit formulations
of the expectation and covariance are

E(X(t)) = e


 0 1
−1 −1


⊗Lt

× E(X0)

Q(t) = eΦtQ(0)eΦTt

+
∫ t

o

eΦs

[
0 0
0 1

]
⊗ LLTeΦTsds (10)

Furthermore, as t →∞,

E(∞) =

[
1
q × 11T 0

0 1
q × 11T

]
E(X0)

Q(∞) = C (11)

where C is a constant matrix.

B. Robustness of the hybrid consensus protocol

In this subsection, we investigate the jump process’s effect
on the continuous-time linear system (6).

Theorem 3.2: Under the hybrid consensus protocol (2),
the system’s expectation is Lyapunov stable under white
noise disturbances.

IV. DISCONNECTED TOPOLOGY ANALYSIS

The connectivity of the topology has a significant impact
on the system, so in this section, we explore the disconnected
topologies’ influence on the system.

A. Continuous subsystem of the hybrid protocol

The problem we consider here is

Ẋ =
[

0 L1

−L2 −L3

]
X (12)

L1, L2, and L3 are the Laplacian matrices for the topologies
G1, G2, and G3, which are the control observer topology,

plant topology, and observer topology, respectively. A ques-
tion that may be raised in relation to the three topologies
is if we should have to guarantee that all topologies of our
protocol are connected to achieve consensus for the plant.
Are there any looser assumptions that can be made about the
connectivity of the topologies? Therefore, in this subsection,
we study the connectivity of those three topologies, and
discuss two significant cases.

Firstly, let Φ̂ =
[

0 L1

−L2 −L3

]
. Next, we will investigate

the properties of the matrix Φ̂.

det (Φ̂− sI2q×2q) = det (s2Iq×q + L3s + L1L2) (13)

and define P (s) = s2Iq×q + sL3 + L1L2. The following
lemma presents the relation between the Φ̂ matrix and P (s)
matrix.

Lemma 4.1: The eigenvalues of the matrix Φ̂ are the
solution to the following equation:

vT
p p(s)vp = 0 (14)

where vp is the eigenvector of the matrix P (s) corresponding
to eigenvalue zero, and vT

p vp = 1.
Remark 4.1: In [19], the authors mentioned that P (s) and

L have the same spectra, but it is relatively straightforward
to check that they are not equal to each other. The relation
between those two matrices is that the eigenvalues of Φ̂ are
the solution to the following equation:

vT
p p(s)vp = 0 (15)

where vp is the eigenvector of the matrix P (s) = s2Iq×q +
sLẋ + Lx corresponding to eigenvalue zero, and vT

p vp = 1.
Next, the Jordan form of matrix Φ̂ is presented.
Lemma 4.2: Consider the matrix Φ̂. If there exist m vp

satisfying vp ∈ {ker(L3) ∩ EL1L2\ ker(L1L2)}, then

V −1Φ̂V =




J0 0 0 0

0
[
Jk−1 0

0 JN−k+1−2m

]
0 0

0 0 ĴIm 0
0 0 0 Ĵ




(16)

where J0 =
[
0 0
0 0

]
, Jk−1 = diag{01, 02, · · · , 0k−1},

JN−k+1−2m = diag{01, 02, · · · , 0N−k+1−2m}
ĴIm = diag(b1i,−b1i, · · · , bmi,−bmi), Ĵ =
diag{a1, a2, · · · , a2q−2−N}, k is the number of components
of G2, ai < 0, N is the dimension of kerL1L2 (i.e.,
dim(kerL1L2) = N ), and m is the number of pairs of the
imaginary eigenvalues of matrix Φ̂.

After the discussion of the eigenvalues of Φ̂, the results
of the eigenvectors are presented.

Lemma 4.3: For matrix Φ̂, V (1) = 1
q

[
1T 0T

]T
and

V (2) = 1
q

[
0T 1T

]T
are the eigenvectors corresponding

to s1 = s2 = 0, respectively. V (i) = 1
pi

[
vT

L2,i 0T
]T

where pi = ki−1 are the eigenvectors corresponding to
Jk−2m, i = 3, · · · , N − 2m, vL2,i is the eigenvector for

2120



L2 corresponding to 0, which is defined in Corollary 1 of
[19].

To avoid having eigenvalues lie on the imaginary axis for
matrix Φ̂, the sufficient condition is developed.

Lemma 4.4: For matrix Φ̂, if G3 is a connected graph,
then there are no eigenvalues lying on the imaginary axis.

The Jordan form of Φ̂ is presented in the following lemma
for connected graph G3

Lemma 4.5: Consider the matrix Φ̂, assume G3 is con-
nected, then

V −1Φ̂V =




J0 0 0
0 JN−1 0
0 0 Ĵ


 (17)

where J0 =
[
0 0
0 0

]
, JN−1 = diag{01, 02, · · · , 0N−1},

Ĵ = diag{a1, a2, · · · , a2q+1−N}, k is the number of the
components of G2, and ai < 0, and N = dim(kerL1L2).

Two important cases are discussed in the following, and
the weak formation and consensus could be achieved due to
some looser assumptions of connectivity regarding the plant
graph and observer graph.

1) Weak formation problem: Due to possible link failures
and link creations of communications between agents, the
agents may connect or disconnect with each other via wire-
less communications during the movement. Hence, the plant
topology of the multi-agent system may not be connected at
all times. However, we can guarantee a connected observer
topology since it is designed by ourselves. So the question
is: Can we achieve consensus for the multi-agent system
in this case? The answer, unfortunately, is no. Besides this
negative answer, we also want to know what this scenario
really looks like in order to remedy our design. This leads
to the following result regarding weak formation.

Theorem 4.1: Considering the system (12), assume G1

and G2 are disconnected, and that G3 is connected. It then
follows that the system becomes

X(∞) = exp Φ̂(∞)
[

X(0)
Xc(0)

]

=

[
1
q 11T +

∑k
2 v(L2),i ∗ vT

(L2),i
0q×q

0q×q 1
q 11T

]

+
p∑

j=2q−k−1

V (j)V −1(j)
[

X(0)
Xc(0)

]
(18)

where p = dim(kerL1L2)− dim(kerL2)
To achieve consensus for the observer states, we develop

the result of Theorem 4.1. Before stating the result, the
following lemma is needed:

Lemma 4.6: If graph G1 is connected, and graph G2 is
disconnected, then kerL2 = kerL1L2.

Theorem 4.2: Considering the system (12), and assuming
G3 and G1 are connected, G2 6= 0n×n are disconnected.

Then, as t approaches infinity, the system becomes

X(∞) = exp Φ̂(∞)
[

X(0)
Xc(0)

]

=

[
1
q 11T +

∑k
2 vL2,i ∗ vT

L2,i 0q×q

0q×q 1
q 11T

] [
X(0)
Xc(0)

]
(19)

Remark 4.2: The formation achieved here is determined
by the disconnected topology G2, and we cannot adjust
this formation, so it is called weak formation. However, in
[14], the constant noise disturbance can achieve arbitrary
formation for the hybrid system, therefore, we might achieve
arbitrary formation if we add a constant term into the
disconnected system.

2) Consensus problem: The weak formation control for
the networked system can not satisfy our consensus aim,
therefore, we assume the plant topology is connected. So,
the question is, can we use the limited observer to achieve
consensus?

Theorem 4.3: Consider the system (12). Assuming G1

and G2 are connected and not necessarily the same, G3 is
disconnected, and the system achieves consensus as t goes to
infinity if and only if vp 6∈ {ker(L3) ∩ EL1L2\ ker(L1L2)}

X(∞) = exp Φ̂(∞)
[

X(0)
Xc(0)

]

=

[
1
q 11T 0q×q

0q×q 1
q 11T

]
×

[
X(0)
Xc(0)

]
(20)

B. Lyapunov stability for disconnected hybrid network sys-
tems

The continuous subsystem of the disconnected hybrid
network system has been investigated in Subsections IV-A.1
and IV-A.2. In this subsection, the Lyapunov stability for the
whole disconnected hybrid protocol is discussed.

Theorem 4.4: Under the hybrid consensus protocol (2),
the system is Lyapunov stable via disconnected topologies
G1, G2, and connected topology G3.

V. SIMULATIONS

In this section, Matlab is employed to verify our theoretical
analysis for the hybrid consensus protocol. The connected
homogeneous hybrid system in ideal condition is shown as
Fig. 1, and the white noise disturbance to the connected
homogeneous hybrid system is shown as Fig. 2. Weak forma-
tion can be observed in Fig. 3, and observer consensus was
achieved in Fig. 4. In a particular case, the eigenvalue lying
on the imaginary axis is shown in Fig. 6. A counterexample
of [19] is provided in Fig. 7.

VI. CONCLUSION

In this paper, the robustness of the hybrid consensus
protocol is investigated for a more general noise disturbance–
white noise. The expectation and covariance matrices for the
system are formulated, and the Lyapunov stability theory for
the hybrid system is developed. Moreover, the connectivity of
the graph is found to play a significant role in the analysis
of the consensus protocol, and sufficient condition for the
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Fig. 1. Connected homogeneous topology for the system under ideal
condition
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(b) Observer states

Fig. 2. Connected topologies for the system with white noise disturbance

disconnected system having asymptotic property is proposed.
Weak formation and consensus could be achieved via dis-
connected graphs, thus, under some conditions, the hybrid
consensus protocol can achieve consensus via heterogeneous
topologies.
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