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Abstract— In this paper we show how the velocity of a moving
target across the visual field can be estimated using model of
a turtle retina. The model of the retinal cells is the same as
obtained earlier by the authors. Using the model, we show that
the motion direction and the speed, of a target moving along
a straight line, with constant speed, can be estimated in two
steps. The speed can be estimated independently of the angle of
the optical flow induced by the target motion. Using the speed,
the retinal (model) response can be rescaled and the angle of
optical flow (hence of the motion direction of the target) can
be estimated independently of the speed.

I. INTRODUCTION

Retina is the doorway to the visual system in any animal.
Turtle retina are interesting due to many reasons, it has many
types of cells, and are structurally different, for example
from that of humans. In addition to the cells which are only
sensitive to the intensity of the visual stimuli, some cells of
the turtle retina are sensitive to both the intensity as well as
the optical flow induced by the motion of objects incident on
the visual field [1]. The cells which are only sensitive to the
intensity of the visual stimuli are called intensity sensitive
cells or simply ‘A cells’. The cells which are sensitive to both
intensity and the optical flow are called direction sensitive
cells or simply ‘B cells’. The cells can be of several kinds
when we consider the receptor field structure [2]. The A
cells could either be with an excitatory center and inhibitory
surrounding (ON cells), or with an inhibitory center and
excitatory surrounding (OFF cells). Here, excitatory means
that cell will be inclined to produce more spikes when the
input is incident on that region and inhibitory means that the
cell will be inclined to lessen the rate of spikes it produces.
The B cells are ON-OFF type, meaning that there is an
inhibitory annulus sandwiched between an excitatory center
and another excitatory annulus further away [1]. The same
paper describes, in principle, that there are three types of B
cells according to their direction preference: 180◦, 40◦ and
−75◦. The A cells have a larger cell body size compared to
B cells [2]. The distribution of the size of retinal ganglion
cells and the spatial distribution of cells on the retina has
been studied in detail in [3] and [4].
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The authors have developed a model of the turtle retinal
cells as can be seen in [5], [6] and [7]. In [6] and [7], the
authors discuss the application of the cell model to detect
direction of motion incident on the visual space of the model
retina. In this paper we use the same model cell to estimate
the velocity of a moving target on the visual space.

A retinal cell is modeled as two synaptically coupled
stages. The first stage is a cascade of filters, modeling the
layers of rods and cones of the retina. The response of the
filter cascade projects on to the second stage, which is a
Hodgkin-Huxley spiking neuron model, as a synaptic input.
We do not intend to describe the model of the retina in
this paper since it is already reported. We refer to three
publications [5], [6] and [7] mentioned above for the details
of the cell model. The model accepts a movie of a moving
light spot as the input stimulus and produces a train of spikes
by each cell.

The cells on the turtle retina are distributed in a visual
streak structure (see Fig. 1), as opposed to a fovea as in
humans. When the cells of a retina are distributed in such
a way that the highest density of cells are along a line, we
call it a visual streak. On the other hand, if the cells are
distributed about a maximum density point, we call it a fovea.
We have chosen a patch sampled from the center of the retina
for our simulation experiments.

The resulting spike trains corresponding to a particular
input can be thought of as a counting process. In fact, we
can model this counting process as a self exciting counting
process (see [8], [9]). By pooling the several counting
processes, it is possible to model the resultant process as

Fig. 1: Distribution of cells on the retina, lighter shade
indicates a higher density. The retinal patch used for the
analysis in this paper is a circular region, roughly one tenth
the diameter of the retina and centered at the region with
highest density.
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Fig. 2: The input is a circular spot of light (drawn to scale
with respect to the size of the patch) moving from one end
of the patch to the other in a straight line as shown, through
the center of the retinal patch. Simulations are conducted for
different angles from 0◦ to 330◦ at steps of 30◦, with nine
speeds for each direction. With the nine speeds used, the
stimulus takes 0.4 to 2.0 seconds to cross the patch at steps
of 0.2 seconds.

an inhomogeneous Poisson process (see [8], [9], [7]). An
inhomogeneous Poisson process can be characterized by an
intensity function λ(t|v), which is a time (t) varying function
In the experiments described in this paper, the input condition
can be characterized by the velocity v of the motion target.
The velocity has a magnitude v and an angle θ. In this paper
we show that we can use the dependence of the intensity
function on the speed and the direction of motion can be
used to develop estimation algorithm.

II. RETINAL PATCH MODEL AND EXPERIMENTAL SETUP

As mentioned before, we use the retinal cell model de-
scribed in the two conference papers, [6] and [7] as well as
the PhD thesis [5]. The retinal cells were “sprinkled” over
the retina to match the distributions given in [3] and [4].
Then, we selected a circular patch sampled from the center
of the model retina as the model patch for these simulation
experiments. The selected patch has a total of 520 cells, 54
A ON cells, 55 A OFF cells, and 134, 136 and 141 of the
B cells sensitive to the direction of motion along 180◦, 40◦

and −75◦ respectively.
In order to generate the patch response data, we considered

a circular point light source on a dark background. The target
size is one tenth of the patch size. The patch is taken to be the
cells which are contained in a three millimeter circular disc
centered at the location with maximum cell density on the
visual streak. Nine speeds were used to study the statistical
properties of the patch. The speeds of the spots were selected
in such a way that the fastest speed will take 0.4 seconds
of simulation time to traverse the patch. The subsequent
speeds takes an extra 0.2 seconds to cross the patch, and
at the slowest speed, the input takes two seconds to cross
the patch. For each speed, twelve angles from 0◦ to 330◦,
equally spaced at 30◦ were used. Collectively, there are 108
different velocities, nine speeds each with twelve angles. For
each velocity, the light spot starts from one end of the patch

Fig. 3: An example of pooling spike events, demonstrated
using three randomly chosen cells.

and goes to the other end of the patch through the center in
a straight line (see Fig. 2). Each velocity is repeated sixty
times. See Fig. 2 for a schematic of the input set up.

The model can be implemented on any compatible plat-
form. However, in order to generate the data presented in this
paper, we implement the filter cascade stage of the model on
MATLAB [10] and the Hodgkin Huxley spiking neuron por-
tion of the model is implemented on the GENESIS (GEneral
NEural SImulation System) neural simulator platform [11].
The responses of the GENESIS environment are saved as
the time varying membrane potentials of each constituent
cell of the patch. These voltage data is read in to and further
processed in MATLAB. The spike times are identified by
thresholding and detecting the rising edge of the thresholded
voltage signal. We use these spike times as the data for our
analysis.

III. ALGORITHMS

A. Stochastic Process Model
The fundamental hypothesis of analysis is that the under-

lying point process of the spikes produced by the neurons
is a self exciting point process (see [8], [9]). After pooling
(see Fig. 3) the spiking activity of several cells (usually on a
sub patch) we can model the resulting pooled process as an
inhomogeneous Poisson process (see [8], [9]). We assume
that the intensity function on the inhomogeneous Poisson
process obtained by pooling has an intensity function λ(t),
which depends on the speed and the direction of motion.
Thus we may write λ(t) = λ(t|v) or λ(t|v, θ), where v is
the speed, θ is the angle of motion and v = v cos θi+v sin θj
is the velocity of the target. Here i and j are the unit vectors
along the left to right and bottom to top, respectively. In other
words, we assume that the response of the retinal patch due
to the motion of a light spot with speed v at an angle θ
is a realization of an inhomogeneous Poisson process with
intensity λ(t|v, θ). Hence, the probability of having n spikes
between the starting time 0 and arbitrary positive time t is
given by

Pr[N0,t = n] =
(Λ(t|v, θ))n

n!
exp (−Λ(t|v, θ)) , (1)

where Λ(t|v, θ) =
∫ t

τ=0

λ(τ |v, θ) dτ . We refer to λ(τ |v, θ)
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Fig. 4: Some estimates of λ̃(t|v, θ) as in (2) for a sub patch
sampled from the center of the patch. The diameter of the sub
patch is taken to be equal to the diameter of the light spot.
Estimates shown for one instance of 0◦ for all the speeds.
Legend is given in terms of the time the spot input takes to
cross the patch.

as the the intensity function of the inhomogeneous Poisson
process. We assume that the intensity function can be written
as follows:

λ(t|v, θ) = λ0 + λ̃(t|v, θ). (2)

The first term λ0, a constant term, which models the spikes
due to the background noise of the retina. The second term
λ̃(t|v, θ) is driven by the input stimulus parameterized by
speed v and direction θ.

The first challenge of analyzing the retinal signals under
this framework is to estimate the intensity function λ(t|v, θ).
It is customary to estimate it using binning methods (see
[12], [13], [14]). However, in our work we estimate Λ(t|v, θ)
for each v and θ combination. First for each simulation,
we obtain the cumulative spike count up to the time point
t. Then this “cumulative spike count function” is averaged
over all the repetitions of simulation for the selected v and
θ. Then that “mean cumulative spike count function” is
smoothed using a smoothing spline (it is possible to use a
low pass filter as well but the details are not provided here).
The resulting smooth function is claimed to be Λ(t|v, θ).
When applying the smoothing algorithm, (spline or lowpass
filtering) one should be careful to ensure that the Λ(t|v, θ)
function is an increasing function, since we require λ(t|v, θ)
to be non-negative. Furthermore, we can estimate the λ0 term
similarly by considering the response of the patch with no
input incident on the retina. Once we obtain the estimates
of λ(t|v, θ) for a particular v and θ, using the estimate of
λ0, we can calculate λ̃(t|v, θ) using (2). An example of the
estimates of λ̃(t|v, θ) is shown in Fig. 4.

B. Speed Estimation

The speed estimates can be obtained by observing the half
height pulse width (HHPW) of the λ̃(t|v, θ) function. We

Fig. 5: Illustration of half height pulse width

Fig. 6: Variation of half height pulse width with speed. The
half height pulse width for the different speeds, over the
different angle and multiple simulations plotted with the time
the input stimulus takes to cross the patch (the “vertical line
segments” are actually dots representing the half height pulse
width at each speed). Due to the large number of points
per speed, it appears like a line segment. The variation of
mean µ(v) and standard deviation σ(v) are also shown on
the graph. Note that the mean and standard deviation vary
linearly with the time the spot input takes to cross the patch
showing that the mean and standard deviation are inversely
proportional to the speed of the input. Also note that the
most of the data points fall within the lines µ(v) ± σ(v),
where µ(v) and σ(v) are respectively the linear regressions
of mean and standard deviation of half power pulse width
with speed.

define half height pulse width to be the width of the λ̃(t|v, θ)
function at half its maximum value (see 5). The half height
pulse width is a good measure of pulse width of a pulse-like
signal we have for λ̃(t|v, θ). From Fig. 4, it is clear that
for faster speed (when the light spot crosses the patch in
a shorter time) λ̃(t|v, θ) is narrower than for slower speed
(when the light spot takes a longer time to cross the patch)

From Fig. 6 we can see that it is possible to perform a
linear regression between the mean µ(v) and the time the
input takes to cross the patch. Similarly, we can perform
another linear regression with standard deviation σ(v) and
the time the input takes to cross the patch. Note that most
of the data points fall within the two lines µ(v) ± σ(v)
in Fig. 6. Furthermore, assuming Gaussian distribution for
the variation of half height pulse width for a particular
speed, we can write the likelihood function as a function
of speed. Therefore, given a response from the model patch,
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Fig. 7: The normalized L2 distance between the intensity
functions after linearly rescaling the time to a standard [0, 1]
time interval. Both horizontal and vertical axis contain the
angles 0◦ to 330◦ at steps of 30◦ for the different speeds
(denoted by the time to cross the patch). For example,
between ‘S 0.4’ and ‘S 0.6’, we have the twelve different
angles corresponding to the speed for which the stimulus
takes 0.6 seconds to cross the patch.

we can estimate the speed of the target. Under the Gaussian
hypothesis, the likelihood function (see [15]) is:

L(v|r) =
exp

(
−(r − µ(v))2/2σ2(v)

)√
2πσ2(v)

. (3)

Then, given an observation (i.e. the half height pulse width)
the task will be to find the speed v that will maximize the
likelihood function L(v|r). This is possible because we can
find a relation between mean, standard deviation and speed.

C. Rescaling and Estimation of Motion Direction

In our previous work, we have shown that the turtle retina
can encode the direction of motion of a target if the speed
is fixed and known. In the analysis using the model of the
turtle retina, it was found that there are certain features of the
retinal response which are preserved under different speeds,
but unique to a certain direction of motion.

Suppose that for a particular speed v and angle θ combi-
nation the light input takes Tv,θ seconds to cross the patch.
Then, the idea proposed in this paper is to linearly rescale the
time to a standard [0, 1] time interval and study the common
features of the variation of the intensity function in the
rescaled time. Fig. 7 shows that the variation of the intensity
function is ‘fairly close’ in terms of the L2 norm after
rescaling. This is a good indication that we may be able to
discriminate the angle of motion of the input stimulus using
the variation of the intensity function in linearly rescaled
time.

Principal Component Analysis (PCA) also known as the
discrete Karhunen Loeve transform (KLT) (see [16]) can be
effectively used to represent a high dimensional data (such
as the intensity function, which is infinite dimensional) as
points in a lower dimensional space. Therefore, principal
component analysis has been a popular method for analyzing
neural signals from large populations of neurons (see [17],
[18], [19], [7]).

Once the intensity functions (for the entire patch or a
smaller sub patch) is obtained, we can project them on to
a lower dimensional (usually three dimensions for display
purposes, higher dimensions for other calculations) space.
The principal component points can be assumed and verified
to (using the Lilliefors [20] test or Kolmogorov-Smirnov
(KS) test [21]) be realizations of a multivariate normal
distribution. Using mean µθ = µ(θ) and Σθ = Σ(θ)
obtained experimentally, we can write the likelihood function
(see [15]), given the k-dimensional observation r from the
principal component space to be as follows:

L(θ|r) =
exp

(
−(r − µθ)

⊤Σθ(r − µθ)/2
)√

2kπk |Σθ|
. (4)

Here again we need to find θ such that µθ and Σθ will
maximize L(θ|r), and that θ will be the maximum likeli-
hood estimate corresponding to the observation r (see [15]).
However, unlike in the case of the speed estimation problem
above, we do not have a clear simple relation between the
motion direction θ and µθ and Σθ. Therefore, we can only
perform a discrimination of the motion direction given the
observation.

When we take the principal components corresponding to
the response of the whole patch, the principal component
points cluster together. This results in a poor estimation per-
formance, in terms of the root mean square error. However,
if we look at the probability of error or the mean square
error from each sub patch (see Fig. 8), we can see that the
motion directions which cross a particular sub patch has a
lesser probability of error. The overall probability of error
on a sub patch is less than 0.5, as can be seen in Fig. 9
We can use this fact to reduce the detection error by using
a ‘voting’ method (see [22], [23]) over the sub patches. In
the voting method, we would claim that a particular angle θ
is the estimate if the majority of the sub patches detect θ to
be the maximum likelihood estimate.

IV. RESULTS

A. Estimating Speed

As shown in Fig. 6, it is possible to establish a linear
relation with the time the spot takes to cross the patch and the
half height pulse width. Therefore, we can use the likelihood
function (3) to estimate the speed of the moving target.
Fig. 10 shows the variation of the relative error

Relative Error =
|Actual Speed − Estimated Speed|

Actual Speed
. (5)

The relative error can be expressed in terms of the time
the light stimulus takes to cross the patch. Let TEST is the
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Fig. 8: Selection of sub patches from the retinal patch. The
diameter of the sub patches are approximately one third of
the diameter of the retinal patch. The sub patch in the middle
is centered at the center of the retinal patch. The twelve
surrounding sub patches are symmetrically located with the
centers on the circumference of the sub patch in the middle.

estimate (using the half height pulse width) and TACT is
the actual time to cross the patch with diameter d. Then the
speed estimate is d/TEST and the actual speed is d/TACT .
Now we can write the relative error in speed estimate as
follows:

Relative Error =
|TEST − TACT |

TEST
. (6)

Fig. 11 shows the variation of relative root mean square
error. It can be seen that the relative error is constant. The
higher speeds, signified by shorter time to cross the patch,
has a slightly less relative error of estimation. Overall, the
relative error is about 0.1, i.e. 10%. Therefore, it is possible
to estimate the speed with a reasonable accuracy. We should
note that this is an estimation problem, not a discrimination
problem.

B. Estimating the Direction of Motion

If we pool retinal cell spiking of the entire retinal patch or
if we only use one sub patch, the estimation of the motion
direction using the rescaled intensity functions becomes hard
due to the large variance. However, most of the time we are
able to discriminate the angle using the linearly time rescaled
signal. For most of the angles, the root mean square error is
between 20◦ and 40◦, which is very close to the difference
between the angles, 30◦.

However, the ‘voting’ method yields far superior results.
With the voting method, the probability of error will be
almost zero. Hence no result graphs are shown in this paper.
Over the pool of test angles used, the voting method was
able to classify the correct angle estimate 539 times out of
the 540 trials considered.

V. CONCLUSION

In this paper we present the details of a study on estimating
motion parameters using the responses of a turtle retina using
a mathematical model. In particular, we present the results

(a) Rightmost sub patch (0◦) (b) Topmost sub patch (90◦)

(c) Leftmost sub patch (180◦) (d) Bottom sub patch (270◦)

Fig. 9: Probability of error with sub patches. Shows the
variation of the error probability of detection using four
different sub patches.

on two of our current studies. First, on estimating the speed
of a target which is moving along an unknown but fixed
direction, and the second, on discriminating the direction of
motion of a target moving with an unknown yet fixed speed.

We propose an algorithm using the intensity function
of the spiking process, motivated by the theory of point
processes. We can represent the intensity function of the
underlying inhomogeneous Poisson process as the sum of
two terms: first, a constant term representing the background
noise and second, the signal dependent term. We can estimate
the integral of the intensity function under the Poisson
assumption, using the cumulative sum of the spike count
of the whole patch or a sub patch under the study.

We present two main concepts with respect to the two
problems we study in this paper. The first main concept is
that we can estimate the speed using the half height pulse
width of the intensity function. In Fig. 11 we can see that
the speed can be estimated within, on average, 10% of the
exact value.

The other main concept is the idea of rescaling the time
linearly to a standard value and using the resulting intensity
function to estimate the direction of motion. From Fig. 7,
there is a clear difference between the intensity function
estimates due to the different direction of motion of the
light input after rescaling every thing to a standard time.
However, the time rescaled intensity functions vary signifi-
cantly due to system noise. Hence the estimation of angles
using the time rescaled intensity functions is not an easy
task. By subtracting the estimate of the background noise,
the performance can be improved. But still there is a lot of
variability in the intensity function. The maximum likelihood
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Fig. 10: The variation of relative estimation error of speed
over the collection of simulations. The horizontal axis gives
the simulation index. For any given speed, we have twelve
angles and for each angle–speed combination, there are sixty
simulations. So, in this speed estimation experiment, there
are 720 simulations 12× 60 trials each. The vertical axis is
subdivided in to the different speeds, indicated by the time
the stimulus takes to cross the patch. For, each speed, the
relative estimation error is plotted, with the simulation index.

Fig. 11: Root mean square of the relative error of the speed
estimates over the different speeds. The relative root mean
square error is steady over the slower speeds (longer time to
cross the patch). The relative error of estimates of the higher
speeds are slightly less but not significantly different.

estimation over the principal component points does not give
a good estimation result. With principal component analysis
and maximum likelihood estimation, together with the voting
method over the sub patches, it is possible to achieve almost
perfect detection.

The Poisson process model opens up the possibility of
applying maximum likelihood methods for inhomogeneous
Poisson processes in [8], [9] as well as filtering methods
with the framework of ‘doubly stochastic’ Poisson processes
as described in [24], [8]. These methods will be explored in
the future.
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