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Abstract— The design of a robust nonlinear H∞ static output
feedback controller for parameter dependent polynomial sys-
tems is a hard problem. This paper presents a computational
relaxation in form of an iterative design approach. The pro-
posed controller guarantees the L2-gain of the mapping from
exogenous input noise to the controlled output is less than or
equal to a prescribed value. The sufficient conditions for the
existence of nonlinear H∞ static output feedback controller are
given in terms of solvability conditions of polynomial matrix
inequalities, which are solved using sum of squares decompo-
sition. Numerical examples are provided to demonstrate the
validity of the applied methods.

I. INTRODUCTION

The problem of designing a nonlinear H∞ controller has

attracted considerable attention for more than three decades,

see for instance [1], [2], [3], [4]. Generally speaking, the

aim of an H∞ control problem is to design a controller such

that the resulting closed-loop control system is stable and

a prescribed level of attenuation from the exogenous distur-

bance input to the output in L2/l2-norm is fulfilled. There are

two common approaches available to address nonlinear H∞

control problems: One approach is based on the dissipativity

theory [5] and theory of differential games [1]; The other

is based on the nonlinear version of the classical bounded

real lemma as developed in [6] and [7]. The underlying idea

behind both approaches is the conversion of the nonlinear H∞

control problem into solvability conditions of the Hamilton-

Jacobi equation (HJE). Unfortunately, this representation is

hard to solve and it is generally very difficult to find a global

solution.

A computational relaxation on the solvability conditions of

the HJE has been presented in [8] by using a sum of squares

(SOS) decompositions of polynomial terms. In detail, the

relaxation uses Gram Matrix methods to efficiently transform

the HJE into linear matrix inequalities (LMIs) [9]. This

representation of the NP-hard problem can in turn be solved

in polynomial time with semidefinite programming (SDP)

[10], [11]. There exist several freely available toolboxes

to formulate these problems in Matlab, for example SOS-

TOOLS [12], YALMIP [13], CVX [14], and GloptiPoly [15].

Whereas SOSTOOLS is specifically designed to address

polynomial nonnegativity problems, the latter toolboxes have

further functionality, such as modules to solve the dual of the

SOS problem, the moment problem.
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In [16], [17], [18], [19], several approaches utilizing

SOS decompositions to achieve nonlinear H∞ control are

presented. The systems discussed are represented in a state

dependent linear-like form. In addition, the authors assumed

that the control input matrix has some zero rows and the

Lyapunov function only depends on states whose corre-

sponding rows in control matrix are zeros, that is, the state

dynamics are not directly affected by the control input.

This assumption, however, leads to a conservative controller

design.

The problem of static output feedback is stated as follows:

given a system, find a static output feedback gain such

that the closed loop system is stable. The static output

formulation can be used to design a full order dynamic

controller, but the converse is not true [20]. An iterative

LMI (ILMI) procedure to compute the static output feedback

gain for linear systems can be found in [21]. The result has

been extended to nonlinear systems using a Takagi-Sugeno

(TS) fuzzy model to approximate the system’s nonlinearities

in [22]. Here, the ILMI methodology has been used to

solve bilinear matrix inequalities. Further, in [23], the ILMI

method was used to obtain a nonlinear H∞ static output

controller for TS fuzzy models. The authors assumed that

the premises variables are bounded. In general, however, the

premises variables are related to the state variables and thus

this assumption implies that the state variables also have to be

bounded. This is the main drawback of the TS fuzzy model

approach. Furthermore, TS fuzzy models are restricted to

quadratic Lyapunov functions, which adds conservatism to

the design process.

To the best of authors’ knowledge, there is no general

result on nonlinear static output feedback design for polyno-

mial systems. Even though [24] addressed this problem, it

uses the same conservative assumptions as in [19] where

control matrix and Lyapunov function have to be of a

particular form and require certain parameters to be equal to

zero. By making this assumption, it is capable of avoiding

non-convex terms in the static output feedback design, but

results in a more conservative design. The main contributions

of this paper can be summarized as follows:

• The proposed controller design avoids rational static

output feedback controllers due to the inversion of the

Lyapunov function.

• The Lyapunov function does not require to be function

of states whose corresponding rows in control matrix

are zeroes.
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• The Lyapunov function is not restricted to be in

quadratic form, but can take higher order even degree

forms.

The remainder of this paper is organized as follows:

Section II provides the preliminaries and notations used

throughout the remainder of the paper. The main results

are highlighted in section III. The validity of our proposed

approach is illustrated through examples in Section IV.

Finally, conclusions are drawn in Section V.

II. PRELIMINARIES AND NOTATIONS

In this section, we introduce the notation that will be used

in the remainder of the paper. Furthermore, we provide a

brief review on SOS decomposition. For a more elaborate

description of SOS decompositions see for example [8].

A. Notations

Let R be the set of real numbers and R
n be the n-

dimensional real space. Furthermore, let In represent the

identity matrix of size n×n. Q ≻ 0(Q � 0) is used to express

the positive (semi)definiteness of (the square) matrix Q.

When talking about partial derivatives of a Lyapunov

function V (x) in n variables, we denote
∂V (x)

∂x
as a row vector,

i.e.
∂V (x)

∂x
=
[

∂V (x)
∂x1

, ∂V (x)
∂x2

, . . . , ∂V (x)
∂xn

]

.

We use ℜm to describe the set of all polynomials in m

variables with real coefficients. A polynomial vector field

is then defined as f : Rm → R
m, f (x) = [ f1(x), . . . , fm(x)]

T
,

where each fi ∈ ℜm.

A (∗) is used to represent transposed symmetric matrix

entries.

B. SOS Decomposition

Definition 2.1: A multivariate polynomial f (x), for x∈ℜn

is a sum of squares if there exist polynomials fi(x), i= 1, ...,n
such that

f (x) =
n

∑
i=1

f 2
i (x). (1)

It is apparent from definition 2.1 that the set of SOS

polynomials in n variables is a convex cone, and it is also

true (but not obvious) that this convex cone is proper [25]. If

a decomposition of f (x) in the above form can be obtained,

it is clear that f (x)≥ 0,∀x ∈ R
n. The converse, however, is

generally not true.

The problem of finding the right hand side of (1) can be

formulated in terms of the existence of a positive semidefinite

matrix Q such that the following proposition holds:

Proposition 2.1: [8] Let f (x) be a polynomial in x ∈ ℜn

of degree 2d. Let Z(x) be a column vector whose entries are

all monomials in x with degree ≤ d. Then, f (x) is said to be

SOS if and only if there exists a positive semidefinite matrix

Q such that

f (x) = Z(x)T QZ(x). (2)

In general, determining the non-negativity of f (x) for

deg( f ) ≥ 4 is classified as a NP-hard problem [26], [27].

However, using Proposition 2.1 to formulate nonnegativity

conditions of a polynomial provides a relaxation that is

computational traceable.

III. MAIN RESULTS

In this section, we start with the derivation of an H∞

controller. The results are subsequently extended to the

robust control synthesis.

A. H∞ Static Output Feedback Control

Consider the following dynamic model of a polynomial

system:

ẋ = A(x)+Bu(x)u+Bω(x)ω

y =Cy(x)+Dy(x)u

z =Cz(x)+Dz(x)u











(3)

where ω ∈ R
p is the disturbance and z is the output to

be regulated. A(x),Cy(x),Cz(x) are polynomial vectors and

Bu(x),Bω(x),Dy(x),Dz(x) are polynomial matrices of appro-

priate dimensions. The H∞ static output feedback control

problem can be described as follows. Given a system (3),

find a controller of the from

u = K(y) (4)

such that the closed-loop system is asymptotically stable and

the L2 gain of the mapping of the energy from the exogenous

input disturbance to the regulated output is less than or equal

to a prescribed H∞ performance γ > 0, i.e.
∫ ∞

0
zT zdt ≤ γ2

∫ ∞

0
ωT ωdt. (5)

Proposition 3.1: The system (3) without noise, i.e. ω =
0 is stabilizable via static output feedback if there exists a

nonlinear function V (x) and a nonlinear matrix K(y) such

that the following conditions hold

V (x)> 0 x 6= 0

V (x) = 0 x = 0

}

, (6)

and
∂V (x)

∂x
A(x)− 1

4

∂V (x)
∂x

Bu(x)B
T
u (x)

∂V T (x)
∂x

+
Θ(x,y)Θ(x,y)T < 0,

(7)

where Θ(x,y) is defined as

Θ(x,y) =

(

1

2

∂V (x)

∂x
Bu(x)+KT (y)

)

. (8)

Proof: omitted due to space limitations.

Theorem 3.1: The system (3) is stabilizable with a pre-

scribed H∞ performance γ > 0 via static output feedback of

form (4) if there exist a nonlinear function V (x) satisfying

(6) and a nonlinear matrix K(y) such that for ∀x 6= 0 the

following holds

∂V (x)

∂x
A(x)−

1

4

∂V (x)

∂x
Bu(x)B

T
u (x)

∂V T (x)

∂x

+

(

1

2

∂V (x)

∂x
Bω(x)

)

1

γ2

(

1

2

∂V (x)

∂x
Bω(x)

)T

+

(

1

2

∂V (x)

∂x
Bu(x)+KT (y)

)(

1

2

∂V (x)

∂x
Bu(x)+KT (y)

)T

+ zT z < 0. (9)
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If conditions (6) and (9) hold, the closed-loop system is

asymptotically stable.

Proof: omitted due to space limitations.

The advantages of formulating the conditions of the static

output feedback problem with prescribed H∞ performance γ
in the form of Theorem 3.1 are twofold: 1) a more suitable

form for numerical procedures can be developed, and 2) the

static output feedback controller is no longer assumed to

be a directly dependent function of the Lyapunov function.

It is, however, not possible to directly implement (9) as a

state-depended LMI due to the non-convex negative term

− 1
4

∂V (x)
∂x

Bu(x)B
T
u (x)

∂V T (x)
∂x

. This is addressed by introducing

the nonlinear design vector ε(x) of appropriate dimension.

Using
(

ε(x)− ∂V (x)
∂x

)

Bu(x)B
T
u (x)

(

ε(x)− ∂V (x)
∂x

)T

≥ 0, for

any ε(x) and
∂V (x)

∂x
of the same dimension, we obtain

∂V (x)

∂x
Bu(x)B

T
u (x)

∂V T (x)

∂x
≥+

∂V (x)

∂x
Bu(x)B

T
u (x)ε

T (x)

− ε(x)Bu(x)B
T
u (x)ε

T (x)+ ε(x)Bu(x)B
T
u (x)

∂V T (x)

∂x
. (10)

The equality holds for ε(x) = ∂V (x)
∂x

. Using (10) and (9), we

arrive at the following theorem.

Theorem 3.2: The system (3) is stabilizable by means

of static output feedback (4) with a prescribed H∞ norm

γ if there exists a nonlinear function V (x) satisfying (6),

nonlinear matrix K(y), and nonlinear vector ε(x) such that

the following condition hold

∂V (x)

∂x
A(x)+

1

4
ε(x)Bu(x)B

T
u (x)ε

T (x)

+

(

1

2

∂V (x)

∂x
Bu(x)+KT (y)

)(

1

2

∂V (x)

∂x
Bu(x)+KT (y)

)T

+

(

1

2

∂V (x)

∂x
Bω(x)

)

1

γ2

(

1

2

∂V (x)

∂x
Bω(x)

)T

−
1

2
ε(x)Bu(x)B

T
u (x)

∂V T (x)

∂x
+ zT z < 0, ∀x 6= 0. (11)

Proof: omitted due to space limitations.

To relax the problem (11) computationally, we introduce

the term αV (x),α ∈ R on the right hand side of (11), and

note that α < 0 implies that a feasible solution has been

found. We arrive at the following proposition:

Proposition 3.2: The system (3) is stabilizable by means

of static output feedback (4) with H∞ norm γ if there exists a

nonlinear function V (x) that satisfies (6), a nonlinear vector

ε(x), and a nonlinear matrix K(y) such that ∀x 6= 0

Mα(x,y)=









M11(x)−αV (x) (∗) (∗) (∗)
M21(x,y) −I (∗) (∗)
M31(x,y) 0 −I (∗)
M41(x) 0 0 −γ2I









≺ 0, (12)

where

M11(x) =
∂V (x)

∂x
A(x)+

1

4
ε(x)Bu(x)B

T
u (x)ε

T (x)

−
1

2
ε(x)Bu(x)B

T
u (x)

∂V T (x)

∂x

M21(x,y) =

(

1

2

∂V (x)

∂x
Bu(x)+KT (y)

)T

M31(x,y) =Cz(x)+Dz(x)K(y)

M41(x) =

(

1

2

∂V (x)

∂x
Bω(x)

)T

.































































(13)

One can readily verify Proposition 3.2 by applying Schur

complement to Theorem 3.2.

B. Robust Stability Synthesis

The results presented in the previous section assume that

all system parameters are known exactly. In this section, we

investigate how the algorithm can be extended to systems in

which the parameters are not exactly known.

Consider the following system

ẋ =A(x,θ)+Bu(x,θ)u+Bω(x,θ)ω

y =Cy(x,θ)+Dy(x,θ)u

z =Dz(x,θ)+Dz(x,θ)u

(14)

where the matrices ·(x,θ) are defined as follows

A(x,θ) =
q

∑
i=1

Ai(x)θi, B(x,θ) =
q

∑
i=1

Bui(x)θ ,

Bωi =
q

∑
i=1

Bωiθ ,

Cy(x,θ) =
q

∑
i=1

Cyiθ , Dy(x,θ) =
q

∑
i=1

Dyiθ ,

Cz(x,θ) =
q

∑
i=1

Cziθ , Dz,θ =
q

∑
i=1

Dziθ .



























































. (15)

θ =
[

θ1, . . . ,θq

]T
∈R

q is the vector of constant uncertainty

and satisfies

θ ∈ Θ ,

{

θ ∈ R
q : θi ≥ 0, i = 1, . . . ,q,

q

∑
i=1

θi = 1

}

. (16)

We further define the following parameter dependent Lya-

punov function

V (x) =
q

∑
i=1

Vi(x)θi, (17)

and a parameter depended polynomial matrix Mα(x,y) =

∑
q
i=1 Mi

α(x,y)θi where Mi
α(x,y) is as in (12) for the i-th

subsystem.

With the results from the previous section, we can directly

propose the main result for robust H∞ static output feedback

control problem.

Theorem 3.3: Given SOS polynomial functions λ1(x)> 0

and λ2(x) > 0 for x 6= 0, the system (14) with static output

feedback controller (4) and H∞ performance γ is stable if

there exist a polynomial function V (x) as in (17) with each
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Vi(x) satisfying (6), a polynomial vector ε(x) = ∑
q
i=1 εi(x)θi,

and a polynomial matrix K(y) such that for x 6= 0, i= 1, . . . ,q:

Vi(x)−λ1(x) is a SOS, (18)

− vT
(

Mi
α(x,y)+λ2(x)I

)

v is a SOS. (19)

where v is of appropriate dimensions.

This theorem follows directly as a superposition of several

systems of the form (3) with (4) for a common K(y) and

Proposition 3.2.

The conditions given in Proposition 3.2 are presented in

form of state depended bilinear matrix inequalities (BMIs).

To solve (12) directly is, however, computationally hard

and would require to solve an infinite set of state depen-

dent BMIs. Further, the term − 1
2
ε(x)Bu(x)B

T
u (x)

∂V T (x)
∂x

+
1
4
ε(x)Bu(x)B

T
u (x)ε

T (x) makes (12) non-convex, hence the

inequality cannot be solved directly by SOS decomposition

and SDP. If, however, the auxiliary polynomial vector ε(x)
is fixed, (12) becomes convex and can be solved efficiently.

Unfortunately, fixing ε(x) generally does not yield a feasible

solution. Therefore, we propose the following iterative SOS

(ISOS) procedure as an iterative search for Vi(x),K(y),
auxiliary variable εi(x), and parameter α .

Iterative Algorithm of Sum of Squares (ISOS)

Step 1: Linearize each system from (14) with (15) and set

ω = 0. Use the static output feedback approach

described in [21] to find a solution to the linearized

problems without disturbance. Set t = 1,ε i
1(x) =

xT Pi, i = 1, . . . ,q.

Step 2: Solve the following SOS optimization problem in

V i
t (x) and Kt(y) with fixed auxiliary polynomial

vectors ε i
t (x):

Minimize αt

Subject to V i
t (x)+λ1(x), is a SOS,

− vT
(

Mi
α(x,y)+λ2(x)I

)

v, is a SOS,

for i = 1, . . . ,q,

where v is of appropriate dimensions.

If αt < 0, then V (x) = ∑
q
i=1 V i

t (x)θi and Kt(y) rep-

resent a feasible solution. Terminate the algorithm.

Step 3: Set t = t + 1 and solve the following SOS opti-

mization problem in V i
t (x) and Kt(y) with αt =

αt−1 determined in Step 2 and noting the SOS

decomposition of V i
t (x) = Z(x)T Qi

tZ(x) with Z(x)
being a vector of monomials in x up to some

predefined degree:

Minimize

q

∑
i=1

trace(Qi
t)

Subject to V i
t (x)+λ1(x), is a SOS,

− vT
(

Mi
α(x,y)+λ2(x)I

)

v, is a SOS,

for i = 1, . . . ,q.

Step 4: Solve the following feasibility problem with v2 ∈

R
n+1 and a predefined positive tolerance function

δ (x)> 0,x 6= 0:

vT
2

[

δ (x) (∗)
(

ε i
t (x)−

∂V i
t (x)
∂x

)T

1

]

v2, is a SOS,

for i = 1, . . . ,q.

If the problem is feasible go to Step 5. Else, set

t = t+1 and ε i
t (x) =

∂V i
t−1(x)

∂x
, i= 1, . . . ,q determined

in Step 3 and go to Step 2.

Step 5: The system (14) may not be stabilizable with H∞

performance γ by static output feedback (4). Ter-

minate the algorithm.

Remark 3.1:

• Step 1 is used to find an appropriate value of ε1(x) to

use as an initial guess to fulfill (12).

• The optimization problem in Step 2 is a generalized

eigenvalue minimization problem and guarantees the

progressive reduction of αi. Meanwhile, Step 3 ensures

convergence of the algorithm.

• The iterative algorithm increases the iteration variable t

twice per iteration. This is done to avoid confusion with

the indices used.

IV. NUMERICAL EXAMPLE

In this section, we will provide two design examples

to demonstrate the validity of the proposed static output

feedback controller with H∞ performance γ .

Example 1: Lorenz Chaotic System. The dynamics of the

Lorenz Chaotic System can be described as follows

ẋ =





−ax1 +ax2

cx1 − x2 − x1x3

x1x2 −bx3



+





1

0

0



u. (20)

The system exhibits chaotic behavior for a= 10,b= 8/3,c=
28. xi are the system states and u the control input. We

assume z = y = x2. Furthermore, we assume that there is

a disturbance present for x3 and that the system dynamics

are not exactly known an are somewhere between the two

vertexes

ẋ1 =





−ax1 +ax2

cx1 − x2 + x1x3

x1x2 −bx3



+





1

0

0



u+





0

0

1



ω

±0.1









−ax1 +ax2

cx1

−bx3



+





1

0

0



u





(21)

We select λ1(x) = λ2(x) = δ (x) = 0.01
(

x2
1 + x2

2 + x2
3

)

. Using

the described ISOS procedure, we initially choose the degree

of the Lyapunov function to be 2 and allow the polynomial

static controller to be of the form K(y) = k1y+ k2y2, but no

feasible solution could be obtained. Increasing the degree to

4, however, yields a feasible solution with k2 ≈ 0. Fixing

K(y) to be a linear static output feedback controller, the

following controller with H∞ norm γ = 1.567 was obtained

after 4 iterations:

K(y) =−20.353y, (22)
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Fig. 1. Example 1: Lorenz Chaotic System

with Lyapunov functions

V1(x) =1.7697x4
1 +0.2174x3

1x2 +2.6537x2
1x2

2

+0.9376x2
1x2

3 −1.7438x2
1x3 +48.2846x2

1

+0.1478x1x2x3 +37.3706x1x2 +0.7284x4
2

+0.1368x2
2x2

3 +0.6956x2
2x3 +31.4986x2

2

+0.0078x4
3 −0.0168x3

3 +2.2961x2
3,

(23)

V2(x) =1.9058x4
1 +0.2234x3

1x2 +1.9775x2
1x2

2

+0.5366x2
1x2

3 −2.2914x2
1x3 +71.2832x2

1

+0.0136x1x2x3 +40.411x1x2 +0.3359x4
2

+0.0859x2
2x2

3 +0.3574x2
2x3 +28.165x2

2

+0.0068x4
3 −0.0026x3

3 +2.0306x2
3.

(24)

The simulation results for both vertexes as well

as the nominal plant for the initial conditions x0 =
[

20, −10, −20
]T

have been plotted in Figure 1.

Example 2: Polynomial System. Consider the polynomial

system from [24]:

A1(x) =

[

−x1 + x2
1 −

3
2
x3

1 −
3
4
x1x2

2 +
1
4
x2 − x2

1x2 −
1
2
x3

2

0

]

,

Bu1(x) =

[

0

1

]

, Bω1(x) =

[

1

0

]

,

Cy1(x) = x1 − x2, Dy1(x) = 0, Cz1(x) = 0, Dz1(x) = 1,

A2(x) =

[

−x1 + x2
1 −

3
2
x3

1 +
1
4
x2 − x2

1x2

0

]

,

Bu2(x) =

[

0

1.2

]

, Bω2(x) =

[

1.5
0

]

, Cy2(x) = x1 − x2,

Dy2(x) = 0, Cz2(x) = 0, Dz2(x) = 1. (25)

The system is characterized by one pure integrator and

therefore the the open-loop system is clearly not stable. We

select λ1(x) = λ2(x) = δ (x) = 0.01
(

x2
1 + x2

2 + x2
3

)

, allow K(y)
to be of the form K(y) = k1y+ k2y2 + k3y3 and look for a

Lyapunov function of degree 4. The algorithm terminates

with a feasible solution and very small coefficients k2 and
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Fig. 2. Example 2: Polynomial System. Constant disturbance

k3. Thus, we decide to investigate whether a feasible solution

can be obtained while limiting the controller to be of linear

nature. After 6 iterations the algorithm terminates and the

following H∞ static output feedback controller γ = 1.514 has

been obtained

K(y) = 0.380y. (26)

The corresponding Lyapunov functions are as follows

V1 =0.1083x4
1 +0.0088x3

1x2 +0.0564x3
1

+0.0484x2
1x2

2 +0.0852x2
1x2 +0.2817x2

1

+0.1796x1x3
2 −0.0602x1x2

2 −0.1084x1x2

+0.1219x4
2 −0.069x3

2 +0.621x2
2,

(27)

V2 =0.0834x4
1 +0.0864x3

1x2 +0.0346x3
1

+0.0195x2
1x2

2 +0.0584x2
1x2 +0.2806x2

1

+0.0072x1x3
2 −0.0122x1x2

2 −0.156x1x2

+0.0484x4
2 −0.0426x3

2 +0.5302x2
2.

(28)

The simulation result are shown in two steps to allow a

comparison with the results presented in [24]. Figure 2 shows

the system response of the system from a steady state to a

constant disturbance ω = 1 for the two vertexes and a system

that lies in between. It can be seen that our controller is

stabilizing the system and the attenuated output is always

less than 0.3. Comparing our results to the ones presented in

[24], one can see that the disturbance has a smaller influence

on the attenuated output. This result is to be expected, as

our γ is smaller than their result of γ = 1.8071. Since our

controller has a smaller gain compared to the one in [24],

our states settle to steady state that is further from the origin.

In Fig. 3, we show the system response for the vertexes

and a system in between the two from the initial conditions

x0 =
[

1, 1
]T

. The controller proposed in [24] as well as

ours show similar system trajectories. It should be noted,

however, that due to the lower γ-value for our H∞ static

output feedback controller the attenuated output is generally

lower compared to the controller from [24].
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Fig. 3. Example 2: Polynomial System. Closed-loop behavior

V. CONCLUSION

We have introduced and discussed the concept of a robust

H∞ static output feedback control design for polynomial

systems. In detail, we have introduced an iterative algorithm

to solve the state-dependent BMIs efficiently. By introduc-

ing a less restrictive choice of the form of the Lyapunov

function by allowing higher degree polynomials, we were

able to formulate a less conservative approach. Furthermore,

removing the direct coupling of the Lyapunov function and

the controller matrix in the problem formulation facilitates

the design of linear controllers for higher order polynomial

systems. Additionally, the simulation results indicate that the

result is less conservative than previous approaches.
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