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Abstract— The trade-off between the cost and accuracy of a
decentralized discrete-event control solution with synchronously
communicating controllers is explored as a multiobjective
optimization problem. We examine a class of problems where
communication protocols are necessary to realize the exact con-
trol solution. In certain circumstances, it may be advantageous,
from a cost perspective, to reduce communication, but incur a
penalty for synthesizing an approximate control solution. A
widely-used evolutionary algorithm (NSGA-II) is adapted to
examine the set of Pareto-optimal solutions that arise for this
family of decentralized discrete-event systems.

I. INTRODUCTION

Quantitative optimal control has been examined from the
perspective of centralized discrete-event control [9], [12],
[21]. Costs are assigned to control decisions, and the goal
is to synthesize a controller with an overall minimal cost
with respect to the control strategy. An alternate technique
for measuring the cost of centralized control was introduced
in [16]. Although not developed with control theory applica-
tions in mind, a new class of quantitative languages (based
on weighted automata) has also been proposed [3]. Optimal
decentralized control in the absence of communication, using
Nash equilibrium as the optimization criterion, was studied
in [13]. In [23] the notion of fictitious play is employed
to find quantitatively optimal decentralized control strategies
for an intruder/detection problem. An algorithm for calcu-
lating Nash equilibrium of multi-agent systems was adapted
for the quantitative analysis of communication protocols in
decentralized discrete-event control [20].

We are interested in a class of quantitative decentralized
discrete-event control problems where we want to optimize
more than one function or objective: giving rise to a mul-
tiobjective optimization problem [22]. When incorporating
communication into the decentralized control problem, there
may be a cost advantage to synthesizing only part of the
specification, instead of realizing the entire specification with
a costly communication protocol. To that end we want to
investigate the trade-off between the cost of an exact control
solution achieved with communication and an approximate
solution, where penalties are assessed for achieving a sublan-
guage of a desired controllable and observable specification,
with a possibly cheaper communication policy. We examine
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our multiobjective optimization problem using evolutionary
algorithms [1].

Evolutionary algorithms, inspired by biological processes,
are ideal for optimization problems when (i) exhaustive
search is computationally prohibitive, and (ii) there are
multiple objectives to optimize. An initial population of
possible solutions are considered, and a measure of their
fitness determines whether a member of the population will
be involved in the formulation of the next generation of the
population. Just as in natural adaptation, over a period of
many generations, a population of solutions evolve that are
“closer” to an optimal solution than their predecessors. We
use a modified version of the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [5], which has already proven useful
for a diverse range of control problems (e.g., [7], [24]).

The paper is organized as follows. The next section
contains terminology and notation of discrete-event systems,
decentralized admissible control laws and communication
protocols. Decentralized control and communication costs
are defined in Section III to present the multiobjective op-
timization problem in decentralized discrete-event systems.
An example is given in this section to find the trade-off
between the cost and precision of a control solution using
an evolutionary algorithm.

II. BACKGROUND

Supervisory control of discrete-event systems proposed
in [15] uses formal language theory to model the behavior
of an uncontrolled system as well as the desired behavior
(specification) for the controlled system. Specifically, the
system behavior is described by a regular language L, which
can be represented by a finite automaton, ML:

ML = (Q,Σ, δ, q0, Qm),

where Q is a finite set of states; Σ is a finite set of symbols
called the alphabet; δ is the transition function defined as
δ : Q×Σ→ Q and we write δ(q, σ)! when ∃q′ ∈ Q such that
δ(q, σ) = q′; q0 is the initial state; and Qm ⊆ Q is a set of
marked states. The specification is denoted by the language
K, where K ⊆ L ⊆ Σ∗, and an automaton marking K is
MK . Finite automata are also used to model the controllers
that issue commands to ensure that the system adheres to
a given specification. We are interested in systems where n
controllers (let I = {1, . . . , n}) independently issue control
commands to ensure that the specification is met.

The prefix closure of a language K is defined as K :=
{s ∈ Σ∗ | (∃t ∈ Σ∗) such that st ∈ K}. When K is prefix-
closed K = K. The marked language of ML, denoted by
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Lm, is defined as Lm := {s ∈ L | δ(q0, s) = q′ ∧ q′ ∈ Qm}.
K is said to be Lm-closed if K = K ∩ Lm.

The synchronous product of two automata Mi = (Qi, Σi,
δi, q0i, Qmi), for i = {1, 2}, is denoted by M1||M2 and
is defined as the reachable subgenerator of the automaton
M1×M2 = (Q1×Q2,Σ1∪Σ2, δ1||2, (q01, q02), Qm1×Qm2),
where

δ1||2((q1, q2), σ) =



(δ1(q1, σ), δ2(q2, σ)), if δ1(q1, σ)!∧
δ2(q2, σ)!
∧σ ∈ Σ1 ∩ Σ2;

(δ1(q1, σ), q2), if δ1(q1, σ)!∧
σ ∈ Σ1 \ Σ2;

(q1, δ2(q2, σ)), if δ2(q2, σ)!∧
σ ∈ Σ2 \ Σ1;

undefined, otherwise.

In the context of the supervisory control problem, Σ is
partitioned into two sets for each controller: controllable
events that can be prevented from occurring, denoted by
Σc,i(for i ∈ I) and uncontrollable events that controller i
cannot prevent from occurring, denoted by Σuc,i. The overall
set of controllable events is Σc := ∪ni=1Σc,i and the overall
set of uncontrollable events is Σuc := Σ\Σc. For all σ ∈ Σc,
we define Ic(σ) = {i ∈ I | σ ∈ Σc,i}. The specification K
is controllable wrt L and Σuc if

KΣuc ∩ L ⊆ K. (1)

Another aspect of the control problem involves the notion
of partial observation: there are some events that controller i
can observe, namely Σo,i for i ∈ I , while the rest of the
events in Σ are unobservable to controller i, denoted by
Σuo,i.

To formally capture the notion of partial observation, we
define a canonical projection πi : Σ∗ → Σ∗o,i. Thus for t =
σ1σ2 . . . σm ∈ Σ∗, the partial observation πi(t) will contain
only those events σi ∈ Σo,i, since unobservable events are
removed. The specification K is co-observable [19] wrt L,
Σo,i, and Σc,i if

(∀t ∈ K)(∀σ ∈ Σc)tσ ∈ L \K ⇒ (2)
(∃i ∈ Ic(σ))π−1

i [πi(t)]σ ∩K = ∅.

When I = {1}, K is said to be observable [10].
A decentralized control law for controller i is a mapping

Γi : πi(L) → Pwr(Σ) that defines the set of events that
controller i believes should be enabled based on its partial
view of the system behavior. While controller i can choose to
enable or disable elements in Σc,i, it must enable all events
in Σuc,i.

(∀i ∈ I)(∀t ∈ L) Γi(πi(t)) = {γ ∈ Pwr(Σ) | γ ⊇ Σuc,i}.

Admissible decentralized control laws Γi allow local de-
cisions to be taken in an observationally-equivalent fashion:

(∀t, t′ ∈ L)(∀i ∈ I) πi(t) = πi(t′)⇒ (3)
(σ ∈ Γi(t)⇒ σ ∈ Γi(t′)).

To find a solution to the decentralized control problem in
the absence of communication between controllers, we want
to find Γi (∀i ∈ I) such that ∀t ∈ K:

(∀σ ∈ (Σc ∨ Σuc))tσ ∈ K ⇒ σ ∈ ∩i∈IΓi(πi(t)) ∧
(∀σ ∈ Σc)tσ ∈ L \K ⇒ σ 6∈ ∩i∈IΓi(πi(t)).

From the results of [19], such Γi (∀i ∈ I) exist if the
specification K is co-observable (wrt L, Σo,i and Σc,i),
controllable (wrt L and Σuc), and Lm-closed.

When K does not satisfy Eq. (2) and n ≥ 2, it may
still be possible to find a control solution by introducing
synchronous communication between controllers. We know
from [2], [18] that we can synthesize synchronous commu-
nication protocols when K is controllable (wrt L and Σuc),
Lm-closed, observable (wrt L, Σo and Σc) but is not co-
observable (wrt L, Σo,i and Σc,i). From now on in this paper,
we assume that K is controllable, observable and Lm-closed.

The synthesis of communication protocols requires the
introduction of a set of messages ∆ that controllers send to
each other. Let ∆ =

⋃
i,j∈I

i6=j

∆i,j , where a ∈ ∆i,j is a message

that controller i sends to controller j. For the problem that we
consider here, ∆i,j ⊆ Σo,i\Σo,j . It could be the case that no
message is sent, in which case the controller is silent (ε). Let
∆ε
i,j := ∆i,j ∪ {ε}. A synchronous communication protocol

between controllers i, j ∈ I is a mapping φi,j : L → ∆ε
i,j

and indicates the message that is synchronously sent from
controller i to controller j.

The latest information that a controller can keep through
a sequence can be defined as ψi : L → ∆ε

i,j ∪ (∪j∈I

i 6=j
∆j,i),

such that when t = σ1 . . . σm ∈ L occurs, each controller i
keeps track of communication it receives about t along with
its own observations of t.

ψi(t) =


σm, if σm ∈ Σo,i or

σm /∈ Σo,i and ∃j ∈ I s.t. φj,i(t) 6= ε;
ε, otherwise.

The canonical projection π is extended to include received
messages: π∆

i : Σ∗ → (Σo,i ∪ (∪j∈I

i6=j
∆j,i))∗, where

π∆
i (ε) = ε, and π∆

i (t) = ψi(σ1) ψi(σ1σ2) . . . ψi(σ1 . . . σm),
for t = σ1 . . . σm.

Finally, it must be the case that communication occurs in
an observationally-equivalent manner. Communication pro-
tocols φi,j are admissible if

(∀t, t′ ∈ L)(∀i ∈ I) π∆
i (t) = π∆

i (t′)⇒ (4)
(∀j ∈ I \ {i}) φi,j(t) = φi,j(t′).

We extend the decentralized control law to a communi-
cating controller i as follows Γ∆

i : π∆
i (L) → Pwr(Σ). To

find a solution to the decentralized control problem with
synchronous communication protocols Φ = {φi,j} for all
controllers i, j ∈ I , we have to find Γ∆

i (∀i ∈ I) such that
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∀t ∈ K:

(∀σ ∈ (Σc ∨ Σuc))tσ ∈ K ⇒ σ ∈ ∩i∈IΓ∆
i (π∆

i (t)) ∧
(∀σ ∈ Σc)tσ ∈ L \K ⇒ σ 6∈ ∩i∈IΓ∆

i (π∆
i (t)). (5)

From the results of [17], we can find such Γi when K is
co-observable with respect to L, π∆

i , and Σc,i, controllable
(wrt L and Σuc), and Lm-closed.

III. MULTIOBJECTIVE OPTIMIZATION OF
DECENTRALIZED DES WITH COMMUNICATION

A multiobjective optimization problem is characterized by
the requirement to optimize multiple conflicting objectives.
Evolutionary algorithms are used for solving multiobjective
optimization problems. The idea of such algorithms is as
follows: beginning with an initial population of possible
solutions, each solution is assigned a fitness value indicating
its quality. The fitness value determines which solutions will
be selected for breeding the next generation. These candi-
dates are mutated and combined to produce new “children”
candidate solutions. The evolutionary process continues until
either an optimal set of solutions is determined or a pre-
determined number of generations is exceeded.

There may not exist a single best solution in the multi-
objective optimization problem. Instead, evolutionary algo-
rithms define a set of best solutions. The class of evolutionary
algorithms that we are using produces a Pareto front of
the candidate solutions. Solutions that comprise the front
are said to be Pareto-optimal or non-dominated. A solution
x1 is said to be dominated by another solution x2, if x1

is not better than x2 in any objectives, and x1 is strictly
worse than x2 in at least one objective. Most evolution-
ary multiobjective optimization approaches such as strength
Pareto evolutionary algorithm (SPEA) [25], non-dominated
sorting genetic algorithms (NSGA-II) [5], and the Pareto-
archived evolution strategy (PAES) [8] use the concept of
domination. To solve our multiobjective DES problem, we
use NSGA-II. Unlike some of the other approaches, NSGA-
II keeps an archive of the best b solutions generated so
far: all children of generation k compete for membership
in generation k + 1 with generation k. In this way, good
solutions from a previous generation are preserved. The
algorithm also features a strong fitness assignment procedure.

For decentralized DES with communication, we have two
objectives to optimize: each decentralized controller i must
optimize the cost of its local control law vi and the cost
of its local communication policy ui. Ideally, we would
like the joint decisions of the controllers in the presence
of the full communication protocol to allow exactly K to
occur; however, in the presence of a costly communication
protocol, it might be more efficient to allow some subset
of K to occur. But it may be the case that the penalty
for disabling certain sequences within K is more than the
communication required to enable the same sequence. We are
interested in a quantitative analysis of the trade-off between
the cost of imperfectly controlling the system by removing
some (potentially costly) communications and the cost of

taking exact control solution with the full communication
protocol.

We adapt the centralized control cost function of [21]
to the case of the control cost function for a decentralized
controller i (for i ∈ I). We consider three basic costs that
controller i (for i ∈ I) can incur to control a system:

1) We assume that there is a basic cost for an event to
occur, which can be considered to be the cost to enable
an event , denoted by ei : Σ→ R+ ∪ {0}.

2) There is a cost to disable an event that would otherwise
take the system out of K, di : Σ→ R+ ∪ {0,∞}.

3) Since our control objective is to have the collection
of Γi (for i ∈ I) allow exactly K to occur, when a
transition is disabled that would otherwise keep the
system in K, the cost to disable is incurred, plus an
additional penalty is assessed: pKi ∈ R.

We assume that a disablement (and any associated penalty) or
an enablement cost lies in the range of [0,∞). When a con-
troller tries to disable an uncontrollable event, a penalty of
∞ is levied. When a controller is not sure whether or not the
system leaves K via a controllable event, corresponding to an
“uncertain” decision for controller i, the default decision is to
enable the event. We consider the cost of an uncertain control
decision to be cost of enablement. Because we will consider
only control laws that keep the system within K, it will not
be possible that all controllers enable same event that takes
the system out of K. Note that the costs considered here are
associated with a controller’s local decision regarding the
occurrence of an event, and not for the eventual fusion of
the control decisions.

The control cost vi : Γ∆
i ×K×Σ→ R+∪{0,∞} describes

the cost incurred by controller i for the occurrence of event
σ ∈ Σ for t ∈ K such that δ(q0, tσ)!:

vi(Γ∆
i , t, σ) =



ei(σ), if σ ∈ Γ∆
i (π∆

i (t));

di(σ), if σ 6∈ Γ∆
i (π∆

i (t)) and
π∆−1

i [π∆
i (t)]σ ∩ K̄ = ∅;

di(σ) + pK
i , if σ 6∈ Γ∆

i (π∆
i (t)) and

π∆−1

i [π∆
i (t)]σ ∩ K̄ ⊆ K̄;

∞, otherwise.

(6)

The total control cost for controller i (for i ∈ I) is then
Vi(Γ∆

i ,K,Σ) =
∑
t∈K

∑
σ∈Σ

vi(Γ∆
i , t, σ).

Each decentralized controller i has a communication pro-
tocol Φi = 〈φi,1, . . . , φi,j , . . . , φi,n〉. We assume that a basic
cost for communication is incurred each time controller i
sends a message to controller j, denoted by comi : Σ →
R+∪{0}. The cost of controller i’s communication protocol
ui : Φi×K×Σ→ R+∪{0} assumes that a cost is incurred
only when a communication is sent by controller i:

ui(Φi, t, σ) =

{
comi(σ), if (∃j ∈ I) φi,j(π∆

i (t)) = σ;
0, otherwise.

(7)

It is possible that two identical messages sent by different
controllers incur different local costs. There is no cost for
the reception of a message and it may be the case that
the cost for a point-to-point communication differs from
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that of a broadcast. For simplicity, we assume that when
controller i communicates the same message to more than
one controller, a single cost is incurred, regardless of the
number of recipients.

The communication cost for all t ∈ K for controller i (for
i ∈ I) is then Ui(Φi,K,Σ) =

∑
t∈K

∑
σ∈Σ

ui(Φi, t, σ). Note that

when considering the costs for control and communication
in cyclic systems, the total cost function should be updated
accordingly to those calculating average cost [17] over an
infinite horizon.

To ensure that the objective functions are defined across
the same domain, we adjust the definition of Ui and Vi
accordingly, so that both functions are defined over Γ∆

i ×
Φi ×K × Σ.

Objective 1: The first objective function is the cost of
the control decisions each controller i ∈ I makes for its
observation of K:

O1,i(Γ∆
i ,Φi,K,Σ) = Vi(Γ∆

i ,Φi,K,Σ). (8)
Objective 2: The second objective function is the cost of

the communication protocol that each controller uses to assist
the other controllers in reaching the control objective for K:

O2,i(Γ∆
i ,Φi,K,Σ) = Ui(Γ∆

i ,Φi,K,Σ). (9)
We consider an optimization problem with a finite set

of control laws Γ∆, and a finite set of communication
protocols Φ. We want to find the trade-off in minimizing
the cost of imposing a costly communication protocol Φ on
the uncontrolled system L to reach our control objective as
compared to eliminating some of the communication and
taking a penalty for not reaching the control objective.

Problem 1: Given K ⊆ L, find Γ∆
i and Φi (∀i ∈ I) to

min
Γ∆

i ×Φi

fi(Γ∆
i ,Φi,K,Σ) = [O1,i(Γ∆

i ,Φi,K,Σ),

O2,i(Γ∆
i ,Φi,K,Σ)]T ,

subject to ∅ ⊂ ∩ni=1Γ∆
i (π∆

i (K)) ⊆ K, and Γ∆ = 〈Γ∆
1 , . . .,

Γ∆
n 〉,Φ = 〈Φ1, . . .,Φn〉 are admissible.
We address Problem 1 by applying the evolutionary algo-

rithm NSGA-II [5]. The main algorithms required to describe
NSGA-II are presented in [11]. We create an initial popu-
lation of pairs of possible control laws and communication
protocols 〈Γ∆

i ,Φi〉 that satisfy the constraints of Problem 1.
In accordance with NSGA-II, each member of the population
is assigned a fitness value, calculated wrt the values of
the two objective functions. From the initial population,
candidate members for the Pareto front are calculated: those
members of the population that are non-dominated. The next
generation is calculated following a “breeding” process of
elements from the preceding generation. Admissibility of
potential control and communication solutions is determined
during breeding. Those members of the previous and current
population with the best fitness values are then ranked and
reorganized into a new candidate set for the Pareto front.
This process continues until either we exceed the number of
pre-specified generations or the ideal Pareto front is found.

Note that at the conclusion of the algorithm, we have a

set of optimal solutions from which to choose. In particular,
solutions to Problem 1 provide Pareto optimal costs with
respect to communicating controller i. Thus, the designer
is free to choose a solution that favours one controller
over another, based on the Pareto-fronts produced for each
controller. One possible strategy to arrive at a set of global
solutions for the locally optimal possibilities from the DES
adaptation of NSGA-II is the Hierarchization Algorithm
from [6].

A. Example:

Let us consider a problem in the space science where a
number of robots navigate to explore an area of a planet. The
area map is divided into square boxes, where the robots can
move from one box to another, either horizontally (left-right),
or vertically (up-down). Each movement is represented by an
event, and each event occurs at a cost. The event cost in one
direction may be higher than the other direction, e.g., if the
surface is steep in one direction, then the robots need more
energy to move than the other direction. In general, we can
divide the area into m×m square boxes. Suppose there are
n robots to explore the area, and more than n target states
where the robots want to reach. Their actions are subject to a
single constraint: no two robots can occupy the same target
state at any time.

For simplicity, in this example, we consider a 3×3 map (m
= 3) and n = 2 robots, denoted by R1 and R2, each having 2
target states to reach. The automaton for each robot is shown
in Fig. 1. An event xyi ∈ Σi corresponds to a move from
state x to state y by Ri. All events are locally controllable
(e.g., Ri controls only events that end in i). Similarly, all
events are locally observable (e.g., Ri observes only events
that end in i). R1 starts from state 1 and has target states are
7 and 8 whereas R2 starts from state 3 and has target states
8 and 9. According to the constraint noted above, R1 and
R2 cannot be in state 8 at the same time.

The system behavior L is the language generated by the
synchronous product of R1||R2. The corresponding automa-
ton ML has 81 states and 234 transitions1. The specification
automaton MK is a subautomaton of ML, missing only (8,8)
from ML and the transitions associated with that state.

The robots have a map of the area, but no robot knows in
which target state it will end up. For instance, if R1 reaches
state 7, then R2 can go to either state 8 or state 9. But if R1
has already reached state 8, then R2 must be informed about
the position of R1, so that R2 can move to state 9. In fact,
to avoid the situation when both R1 and R2 are in state 8, it
is necessary that each robot inform the other whenever the
following events occur: 58i, 78i or 98i, for i ∈ {1, 2}.

1We used the software DESUMA to calculate the synchronous product.
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Fig. 1: The automaton model for (a) R1; (b) R2.

Three basic costs are assigned for the control cost function:

e1(σ) =


50, if σ ∈ {121,141,231,251,361};
100, if σ ∈ {451,471,541,561,581,651,691};
150, if σ ∈ {781,981}.

e2(σ) =


100, if σ ∈ {142,212,252,322,362};
150, if σ ∈ {452,472,542,562,582,692};
200, if σ ∈ {782,982}.

d1(σ) =


2000, if σ ∈ {121,141,231,251,361};
1500, if σ ∈ {451,471,541,561,581,651,691};
1000, if σ ∈ {781,981}.

d2(σ) =


1500, if σ ∈ {142,212,252,322,362};
1000, if σ ∈ {452,472,542,562,582,692};
500, if σ ∈ {782,982}.

and

pK1 = 3000,
pK2 = 4000.

The cost of a communication is defined as below.

com1(σ) =


500, if σ ∈ {581};
10000, if σ ∈ {781};
900, if σ ∈ {981};
0, otherwise.

TABLE I: Non-dominated solutions of Controller 1.

u∗1(·) v∗1(·) u2(·) v2(·)
0 37,700 106,000 291,200

2300 26,700 105,800 1,306,300
1000 27,450 87,200 2,321,500
3300 26,150 107,200 1,294,500
12800 21,200 86,000 291,200

Fig. 2: Pareto fronts of rank 1,2,3 for Controller 1 after 100
generations.

com2(σ) =


500, if σ ∈ {582};
700, if σ ∈ {782};
20000, if σ ∈ {982};
0, otherwise.

We illustrate Algorithm NSGA-II for R1||R2. The initial
size of the population, |P | is 40 and the algorithm was run
for 100 generations. The first three ranks of the Pareto front
for Controller 1 are shown in Fig. 2. The non-dominated
solutions for Controller 1 (the solutions in the front of rank 1)
are shown in Table I, which represents the best compromises
for Robot 1. In particular, the five Pareto-optimal solutions
offer a variety of possible costs for a communication policy
for Controller 1, ranging from a cost of 0 up to a cost
of 12,800. It is interesting to note that when Controller 1
does not communicate anything to Controller 2, the resulting
solution for Controller 2 incurs a communication cost of
106,000. Whereas when Controller 1 increases its commu-
nication so that the cost of communicating Φ1 is 1000, the
communication cost for Controller 2 decreases to 87,200, but
the control cost increases nearly eight-fold.

The first three ranks of the Pareto front for Controller
2 are shown in Fig. 3. The non-dominated solutions for
Controller 2 (the solutions in the front of rank 1) are shown in
Table II, which are the best compromises for Robot 2. Again,
it is interesting to examine the Pareto-optimal solutions for
Controller 2: when Controller 2 does not communicate at all,
the control cost for Controller 1 is 1,265,700. Whereas when
Controller 2 communicates a bit more with a cost of 500,
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TABLE II: Non-dominated solutions of Controller 2.

u1(·) v1(·) u∗2(·) v∗2(·)
55,100 1,265,700 0 42,050
46,000 1,280,300 1900 35,400
26,100 1,325,800 2400 29,000
54,300 1,248,650 500 36,000
56,500 308,500 21,900 25,250

Fig. 3: Pareto fronts of rank 1,2,3 for Controller 2 after 100
generations.

the control cost for Controller 1 only goes down by about
1.3%.

Ultimately, we use NSGA-II as an initial guide to aid
in the selection of local Pareto-optimal communication and
control policies for decentralized DES. For instance, there
may be compelling physical arguments to insist that one
decentralized site assumes the bulk of the communication
during the operation of system tasks, despite the site incur-
ring a high communication cost (wrt other sites). Similarly,
we may be willing for some degree of approximation on
one or more sites to reduce the cost of communication to
achieve a precise control decision. Modeling the trade-off as
a multioptimization problem gives us a better selection of
optimal solutions from which to chose communication and
control policies for this class of DES problem.
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