
  

 

Abstract—Normally, Reverse Osmosis desalination plants (RO 
plants) include one or two PID (Proportional, Integral, and Deriva-
tive) controllers. These controllers usually are not optimally tuned 
because models are not constant for a long time due to the fact 
that plant parameters change often. In the current work, the PID 
controller of the flow rate control loop for permeate is designed 
by using multi-objective parametric optimization so that the control 
loop is less sensitive to parameter changes of the plant. Simulation re-
sults on a model of a real plant show that the proposed method yields 
satisfactory performance for wide range of operation conditions.  

I. INTRODUCTION 
EVERSE osmosis desalination plants use sensible compo-
nents, which are also prone to parameter changes because 

membranes are sensitive to temperature of feed water, fouling, 
scaling and pressure variations. RO plants are normally controlled 
by using PID control laws, which are tuned but not optimized.  

In 1989, the first complex control system, which was based on 
two pH controllers and an additional pressure controller, was 
presented in [3]. Model based control has not been intensively 
used for the control of desalination plants and only few 
contributions regarding this topic can be found in the literature. 
Hence, a simple dynamic model was derived for an industrial 
plant in [4]. DMC (Dynamic Matrix Control) and PID are 
compared in [21]. Control loops are decoupled in [20] and in 
[1]. Some ideas of using hybrid control in desalination plants are 
proposed in [14] and the simultaneous design of two PI controllers 
for a RO plant by using multi-objective optimization is the subject 
of [15]. A nonlinear control approach for a high recovery RO 
system is proposed in [18]. A FTC (Fault Tolerant Control) 
approach is presented in [17]. 

Recently, the activities in the field of control of RO plants have 
been increased. For example in [10], a nonlinear model predictive 
controller is proposed in order to control a RO plant with feed flow 
reversal characteristic, an optimization-based control approach is 
used in [9] for minimizing energy consumption and [5] studies the 
application of robust control to a tubular RO plant. 

A particular control problem with small RO plants consists in 
that plant parameters change very fast because of fouling and 
membrane cleaning has to carried out often (e.g. once a week). 
Thus, process parameters obtained after cleaning are different 
from the parameters obtained one week later before the next 
cleaning. Therefore, the control performance deteriorates fast in 
the course of the week, when the controller was optimal 
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adjusted by using one of these models.  
There are basically two approaches in the control engineering 

literature, which have been designed thinking in the class of prob-
lems mentioned above: The adaptive control approach (see e.g. [8]) 
on one hand, and the robust control approach on the other hand 
([23]). However, both control strategies receives a high resistance 
from plant manufacturers at time that the approach has to be applied 
in the control praxis. The main reason for that is that the available 
hardware and software in the RO system were dimensioned for one 
or two simple control loops and companies rarely agree with intro-
ducing a more powerful computational unit. On the contrary, they 
expect that the control system is not modified in its complexity and 
structure. Thus, the unique tool for improving the control system 
performance is the parameter tuning of the PID controllers. 

In [16], a procedure for finding the set of all stabilizing PID 
controllers is proposed but no mechanism for selecting a unique 
controller is given. In the present work, a methodology based on 
multiobjective optimization (MOO) is applied to choose a unique 
set of controller parameters, which shows an acceptable perfor-
mance and robustness for a wide family of models of a RO plant. 

In Section 2, the methodology for the controller design is 
described. The RO plant and its dynamic characteristic are 
presented in Section 3. Section 4 is devoted to design the 
controller for the RO plant. Simulation results are shown and 
analyzed is Section 5. The last Section 6 is dedicated to 
present the conclusions.  

II. ROBUST OPTIMAL PID CONTROLLER DESIGN 
A.  PID control law 

 The classic PID control law is normally given in the form 

 1( ) 1 ( )d
i

u s K sT e s
sT

 
   

 
, (1) 

where the controller parameters are the proportional gain K, 
integral time Ti and derivative time Td. This law can also be 
described by the rational function 

 ( ) ( )  ( ) ( )P s u s Q s e s , (2) 
where P and Q are the polynomials 

 ( )P s s  and 2
0 1 2( ) Q s q s q s q   . (3) 

Hence, the coefficients of polynomial Q(s) are defined as 

 0 1 2, and /d iq T K q K q K T   . (4) 

This control law is currently used for the control system 
design based on parameter optimization. However, this 
control law is practically never used in practice. In [7], it is 
pointed out that a more convenient description for the PID 
control law is given by 
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 1( ) ( ) ( ) [ ( ) ( )] ( )
1 /

d

i d

sTu s K br s y s r s y s y s
sT sT N

 
      

. (5) 

where 0  b  1 and 8  N  20. Eq. (5) leads to a 
polynomial description given by 
 ( ) ( )  ( ) ( ) ( ) ( )P s u s T s r s Q s y s  , (6) 
where 

 2
0 1 2( ) P s p s p s p   , (7) 

 2
0 1 2( ) T s t s t s t    and (8) 

 2
0 1 2( ) Q s q s q s q   . (9) 

 The coefficients are now  
 0 1 21, / , 0dp p N T p   , (10) 

 0 1 2, / / , / ( )i d i dt b K t K T b K N T t K N T T    , (11) 

0 1 2( 1), / / and / ( )i d i dq K N q K T K N T q K N T T     (12) 

 Finally, parameters of the PID controller can be calculated 
back by using the following formulas 

  2
1 1 2 1 0 1 2( ) / , / , /iK q p q p b t K T K p q     (13) 

 0 1/ 1 and /dN q K T N p    (14) 

 It is important to remark here that this simple change in 
the control law that includes an additional parameter (p1) 
leads to a more complicated optimization problem as it will 
be described later.  

B. Closed loop transfer functions 
If the process is now modeled by 

 ( ) ( ) ( ) ( )A s y s B s u s  (15) 

and the control error is defined as e(s) = r(s) – y(s), then the 
closed loop transfer function from r(s) to e(s) and to u(s) are  

  ( ) ( ) [ ( ) ( )] ( )( )
( ) ( ) ( )  ( ) ( )

A s P s Q s T s B se s
r s A s P s B s Q s

 



 (16) 

and 

  ( ) ( ) ( )
( ) ( ) ( )  ( ) ( )

u s A s T s
r s A s P s B s Q s




, (17) 

respectively. Both equations are necessary for solving the opti-
mization problem. 

C. Controller design 
The controller design follows the steps proposed in [13] 

for the performance index constituted by the Integral of the Square 
Time-weighted Square Error (ISTSE) and Control (ISTSC), 
which is defined by 
 e uJ J J  , (18) 

with 

 2 2

0

1 ( ) ( )( )
2

j

e j

de s de sJ t e t dt ds
j ds ds

 

 

        
    , (19) 

 2 2 2

0

1 ( ) ( )( )
2

j

u j

du s du sJ t u t dt s ds
j ds ds

 

 

         
     (20) 

 is a free weighting parameter used to limit the amplitude of 
the control signals. The model of the process be now defined 
as interval polynomials denoted by 

 # #( ) ( ) ( ) ( )A s y s B s u s  (21) 

where the polynomials A#(s) and B#(s) are given by 

 # 1
1, 1, , ,( ) [ , ] [ , ]m m

lo up m lo m upB s s b b s b b     (22) 
and 
 # 1

1, 1, , ,( ) [ , ] [ , ]n n
lo up n lo n upA s s a a s a a    . (23) 

with m < n. Thus, the PID controller is obtained by using the 
lower and upper polynomials. This leads to two set of equations, 
which are formally identical but distinguished by subindices lo 
and up. Hence, only one set of equations is presented in the 
following under the subindex ind, which means, given the case, 
either lo or up. 

 1
1, ,( ) b bn n

ind ind m indB s s b s b     and (24) 

 1
1, ,( ) a an n

ind ind n indA s s a s a    , (25) 

and the joint optimization of the performances indices  

 , ,ind e ind u indJ J J  , (26) 

where ind means lo or up, respectively. For Jind, one has 

 ,
( ) ( )1

2
j ind ind

e ind j

de s de s
J ds

j ds ds


 

       
    (27) 

with 

 
 ( ) ( ) [ ( ) ( )] ( )

( ) ( )
( ) ( )  ( ) ( )

ind ind
ind

ind ind

A s P s Q s T s B s
e s r s

A s P s B s Q s
 




 and (28) 

 2
,

( ) ( )1
2

j ind ind
u ind j

du s du s
J s ds

j ds ds


 

        
    (29) 

where 

 
( ) ( )

( ) ( )
( ) ( )  ( ) ( )

ind
ind

ind ind

A s T su s r s
A s P s B s Q s




. (30) 

Coefficients of polynomials P(s), T(s), and Q(s) are obtained 
solving the multi-objective optimization problem defined by 
(Jlo, Jup) taking into account the four Kharitonov’s polynomials as 
constraints in order to guarantee the stability of the closed loop 
system. The numerical evaluation of the algorithms is carried out 
by using the modified Åström-Jury-Agniel algorithm given in 
[13]. The final parameters are obtained by decision making. 

D. Normal Boundary Intersection (NBI) 
This method was proposed in [12] as an answer to the 

problems presented by the weighted sum approach. It is 
formulated as follows: 

 minimize  respect to uU, 
 subject to   + nJ(u,) - J° . 

nf nf is a pay-off matrix, in which its ith column is defined as  

 (:, ) ( , )ii    Φ J u α J , (31) 

7046



  

where J(ui°,) is the vector of objective functions, which is 
calculated at the minimum of the ith objective function. Moreover, 

 ( , ) 0i i Φ . (32) 

Since ui° is the minimizer of Ji(u,) over uj°, j = 1,…, nf, it follows 

 ( , ) 0,j i j i Φ . (33) 
Components of vector  are positive scalars satisfying 1 1nf

i i  . 
The quasi-normal vector n is defined as 

 n = −Φe, (34) 
where nfe   is a column vector of ones in the criterion 
space. Since each component of Φ is positive, the negative 
sign guarantees that n points to the origin of the criterion 
space. Thus, NBI has the property that a solution point is 
independent of how the objective functions are scaled for any . 
As  is continuously modified, the solution presents a nearly 
uniform distribution of Pareto optimal points representing 
the complete Pareto set.  

The NBI method may also yield non-Pareto optimal points. 
Therefore, it does not provide a sufficient condition for 
Pareto optimality but this cannot necessarily be seen as a 
drawback, since such points facilitate obtaining a smoother 
approximation of the Pareto boundary ([12]). On the other 
hand, the method overlooks some Pareto optimal points, 
when nf > 2, which cannot always used as a necessary condition 
for Pareto optimality. However, such points tend to lie near the 
periphery of the Pareto set and in general are not significant. 
Thus, its main advantages are a Pareto front with equal spaced 
distributed points and the relative slow computational burden. 

E. Decision making 

All points that belong to the Pareto front are solutions of the 
multi-objective optimization problem. Since only a solution has to 
be found, a decision maker has to be included. The most common 
decision maker chooses the Compromise Solution (CS) as the final 
one, i.e. the solution with minimum distance to the utopia point. 

Another way is to use bargaining games ([22]). This kind of 
games yields a practical technique for selecting a unique point 
from the Pareto front (see Fig. 1). In the following four bargaining 
games are described as decision makers. the Nash solution of the 
game (NS) corresponds to a point of the Pareto set which yields 
the largest rectangle (c, B, NS, A), the Kalai-Smorodinsky 
solution (KS) is situated at the intersection of the Pareto front 
and the straight line, which connects the threat point and the utopia 
point, and the egalitarian solution (ES) yields the point given 
by the intersection of the Pareto front and a 45°-line through the 
threat point. In the current work, solutions yielded by bargaining 
games are studied. 

F. Parameters initialization 
The evaluation of the performance indices requires that all roots 

of the characteristic polynomial of the closed loop system 
have negative real part (i.e. the closed loop system has to be 
stable). However, this fact does not guarantee the stability in 
the case of an interval polynomial system, which has to 

satisfy the Kharitonov’s stability conditions (see e.g. [11]). 
Therefore, a stability test according to the Kharitonov’s theorem is 
included as constraint in the optimization procedure. 

Moreover, the search procedure can take a very long time 
or it could not converge at all, if possible solutions are 
always taken from a subspace in the parameter space, which 
yield an unstable closed-loop system. In [16], a procedure for 
finding out the set of all stabilizing PID controllers is proposed but 
no mechanism for selecting a unique controller from this set is 
given. This allows searching in the stabilizing parameter subspace 
saving time and guarantying a stable final solution. However, this 
procedure cannot be used in the current work due to several 
reasons: i) it is based in the stability condition for single transfer 
functions and the formulation here is given for an interval 
polynomial; ii) an ideal PID controller is used (i.e. P(s) = s) while 
here a real controller is considered, and an additional 
parameter (p1) has to be included in the optimization process, and 
iii) the stabilizing parameter subspace results to be convex, but this 
is not necessary the case when the system is modelled by interval 
polynomial. 

Thus, an extensive search procedure is introduced in the present 
work based, which checks the Kharitonov’s stability conditions 
in order to determine the stabilizing parameter subspace. This 
finally depicted in a 3D graphic (q0, q1, q2), which is parameterized 
in p1 (see Fig. 5 for an example). Hence, the search algorithm has 
to determine first the next value for p1 in order to select the 
subspace in which 3-tuples (q0, q1, q2) will be selected. 

III. REVERSE OSMOSIS DESALINATION SYSTEM 
A. Experimental plant 
The reverse osmosis plant considered here is a very small plant 

for high purification of tap water. Therefore, it has no energy 
recovery device and no post-treatment stage is necessary. The 
conductivity of permeate is adjusted by mixing the product with 
a small amount of feed water (i.e. tap water). Permeate flow rate 
is controlled by a valve at the exit of retentate stream. The plant 
has been designed for a normal operation with a valve opening 
of 100% and a nominal pressure of 16 bars. In order to avoid 
damages in the membranes the valve should not be completely 
closed for a long time. For a valve opening of 10% the pressure 
increases up to 20 bars with the pump’s temperature increasing 
between three and five degrees. They are still very safe values of 
pressure and temperature. Thus, the safe valve’s excursion is 10-
100%. Notice that all these characteristics are proper of this kind 

J1

J2

Pareto 
front

Utopia point 
J2°

J1° 

45°J2*

J1* 

CS
ES 

KS

Threat 
point c

NS A 

B

Criterion space  2 

 
Fig. 1. Different criteria for the decision making 
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of plants. Plants for sea water desalination have completely differ-
ent design and safety operation conditions, where pressure values 
of 80 bars are normal and a post-treatment stage is essential. 

The laboratory plant consists basically of a vertical centrifugal 
high pressure pump, an active carbon filter, a security cartridge 
filter and three membranes assemblies. The plant supplies in 
nominal operation 250 l/h permeate with a conductivity value of 
7 µS/cm for 500 l/h feed water at 800 µS/cm. The schematic 
diagram of Fig. 2 shows the placement of sensors and actuators 
as well as the serial/parallel configuration of the pressure vessels. 

 

LP 
Pump 

HP 
Pump 

Filter 

Brine 

Permeate

Feed 
water 

P 

P C C F 

F 

T T

Valve 2

Valve 1 

C Conductivity 
 T Temperature 
 P Pressure 
 F Flow rate 

Sensor Labels 

 
Fig. 2.  Schematic representation of the RO plant 

B. Dynamic Characteristics of the Plant   
Normally, two inputs and two outputs are defined for this 

kind of RO desalination plants, namely flow rate and concentra-
tion value (sometimes also the conductivity) of permeate as 
outputs and the transmembrane pressure and bypass flow rate.  

For this study, the plant is however simplified to a SISO system, 
where the input is the valve position (Valve 2) that manipulates the 
brine flow rate and the output the permeate flow rate. The valve 
on the bypass pipeline (Valve 1) is maintained closed all the time.  

The operating point was set at 250 l/h permeate flow rate for a 
50% of valve opening. As it was mentioned in the introduction, it 
very difficult to obtain a unique constant model of the plant 
because the membrane permeability changes very often due to 
changes in the feed water temperature (this is typical when the 
pump becomes warmer) fouling and scaling. System identification 
several times after-before cleaning using the N4SID algorithm 
([19]) yields different models, which can be summarized as 
interval polynomials denoted by 

 # #( ) ( ) ( ) ( )A s y s B s u s  (35) 

where A#(s) and B#(s) are given by 

 # ( ) [-139.26, -131.77] [-56.51,-47.35]B s s   (36) 
and 

 # 3 2( ) [0.71,0.96] [0.112,0.635] [0.003,0.071]A s s s s    . (37) 

A nominal model is randomly obtained and presented for infor-
mation but later it is not used for the controller design. This 
nominal model is  

 ( ) [ 134.3615 49.414]B s s    (38) 

and 
 3 2( ) 0.8157 0.3274 0.0492A s s s s    . (39) 

The model before the cleaning is called “lower model” and 
the model after cleaning will be the “upper model”. These models 
are not constant between several cleaning cycles and therefore 
parameters should be updated after two or three cycles.  

Dynamic properties obtained by analyzing the models are 
shown in Fig. 3. Notice that lower and upper models have 
very different pole-zero maps, where the real pole of the 
lower model is dominant. Moreover, step responses are negative 
for positive steps, i.e. a positive step moves Valve 2 in the opening 
direction increasing the retentate flow rate and consequently 
decreasing the permeate flow rate. The settling time for the 
lower model is about 30s while for the upper model 20s. 
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Fig. 3. Process characteristics for models before and after cleaning as well 

as nominal model 

IV. CONTROLLER DESIGN FOR THE RO PROCESS 
The procedure for the controller design described in Section 2 is 

used for the plant presented in Section 3. The corresponding closed-
loop system is shown in Fig. 4, where the PID controller consists 
of three polynomial whose parameters are summarized in the 
vectors q = [q0 q1 q2]T , p = [1 p1 0]T and t = [t0 t1 t2]T, with t2 = q2. 

 #

#

( )
( )

p

p

B s
A s

u(s) 
–+ 

y(s)( )
( )

T s
P s

r(s)

( )
( )

Q s
P s

 
 

Fig. 4.  Close-loop system with modified PID controller  

The first activity is to determine the stabilizing subspace in the 
parameter space for the model given in the form of interval polyno-
mials of eq. (36) and (37). The result is shown in Fig. 5. 
Hence, the search domain for each parameter is defined 
as follow: 
 0 1 1-0.75 0.12, 2.0 0.09, 0.1 0.02q q q           , (40) 

 1 08 15, 5 5p t     ,  (41) 

 Parameter  was chosen equal to 0.5 in order to maintain 
the control signal bounded under the maximum allowed value. 
Notice that this parameter cannot be included in the optimization 
process because the optimizer will produce at the end a value 
as close as possible to zero. 
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Fig. 5. Stabilizing subspace in the parameter space 

Parameters are now computed by using the ISTSE as 
well as the ISTSC performance indices of eq. (27-29). The NBI 
algorithm yields the Pareto front of Fig. 6. The parameters are 
selected by using CS, KS, ES and NS. 

0.646 0.647 0.648 0.649 0.65 0.651 0.652 0.653
0.524

0.525

0.526

0.527

0.528

0.529

0.530

Jlo

Jup

ES 

CS 

NS=KS 
Jup, min

Jlo, min 

 
Fig. 6. Pareto front for the case ISTSE+ ISTSC 

Controller parameters and minimum values of J are summarized 
in Table 1. Moreover, the following performance index is used for 
the evaluation of the controllers during the simulation  

 2 2

0
[ ( ) ( )]ft

evalJ e t u t dt  . (42) 

Results show that the index ISTSE yields the best performance 
at least for the presented example. Computation burden of the NBI 
algorithm is very small (6s) if it is compared with genetic 
algorithms (about 37 s). 

Parameters obtained by using different decision makers are 
considered and the compromise solution is selected because of its 
best performance.  

V.  SIMULATION RESULTS 

The approach described above has been studied in a simulation 
environment. The operating point was set to 250 l/h for a 
valve opening of 50%. At this point, the flow rate and the 
valve opening are assumed to be zero. Hence the reference is 

changed to 285 l/h (i.e. 35 l/h over the set point) and after 20 
second the set point is changed again to the value of 270 l/h 
(20 l/h regarding the operating point). This experiment is carried 
out considering the optimal controller obtained by the NBI algo-
rithm and for the simulation three different models are used: the 
lower and upper models as well as an additional model obtained 
randomly in the parameter intervals. The simulation result is 
shown in Fig. 7. As it is possible to observe the controller 
performs satisfactory for all three models. 

TABLE 1.  Results for Different Parameter Sets 
ISTSE +  ISTSC 

 CS Lower controller 
& upper model 

Upper controller 
& lower model 

o
lo
J 0.5261 0.524 0.5298 
o
up
J 0.6474 0.6537 0.646 
Jeval 994.1 1114.6 1029.4 
q0 - 0.17 - 0.164 -0.18    
q1 - 0.217   - 0.231   -0.221 
q2 - 0.0055 - 0.0045 -0.0071 
p1 6.7310 7.241 5.354 
t0 0.00985   0.0121    0.0082 
t1 - 0.2187   - 0.2187    -0.225 
t2 -0.0055 -0.0043 -0.0071 

The second study consists in analyzing the behavior of the 
controllers obtained for the absolute minimums, i.e. Jlo,min 
and Jup,min. In order to simplify Fig. 8, the model obtained in 
the random way is not considered in this case. Performances 
can be compared by using eq. (42) (5th row in Table 1). 
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-10

0
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40
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u1 valve opening  

y1 Permeate flow rate in l/h 

-0.6
-0.4
-0.2

0
0.2
0.4

Lower model  Upper model  Random model  
Fig. 7. Permeate flow rate and control signals for the optimal PID controller 

and several models of the plant 

Fig. 8 shows that controllers, which are optimized for a 
particular model, do not perform correctly in the case of model 
mismatch. The controller designed by using multiobjective 
optimization as an optimal compromise for a family of models 
performs better in particular in the presence of model mismatch. 
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Fig. 8. Example of mismatch between controller and model used for the design 

VI. CONCLUSIONS 
In this work, the control problem of a reverse osmosis 

desalination plant, whose parameters are uncertain is solved 
by using the multi-objective NBI algorithm without to have to 
modify neither the hardware nor the software. From the practical 
experience, it is observed that the plant can be modeled by 
means of interval polynomials. 

For the design, a practical version of the controller is used. 
This leads to a general form of controllers given by the 
polynomials (Q T P). The stabilizing region in the parameter 
space is computed by searching systematically the controller’s 
parameters and verifying the stability condition of Kharitonov. 
This result is applied in order to accelerate the search of the 
optimization algorithm.    

The simulation results shown the good performance of the 
controller for several plants, which are randomly chosen in 
the region defined by the intervals. The next step is the 
implementation in real-time. 
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