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Abstract— Real-time decimeter accuracy GPS positioning can
be achieved using carrier phase measurements. This requires
fast and reliable on-the-fly integer ambiguity resolution. How-
ever, in GPS challenged areas (e.g. Urban canyons, tunnels,
thick canopy etc.) the GPS receiver may not be able to track a
sufficient number of satellites to resolve the integer ambiguities
within one epoch. In this paper, we would like to find the
optimal solution by combining the measurements from several
epochs.

In this paper, we present the theoretical derivation for a fast
and efficient method for GPS integer ambiguity resolution with
multiple GPS epoch measurements. Simulation results show the
effectiveness of the proposed approach.

I. INTRODUCTON

Integrated GPS/INS (Inertial Navigation System) is a
popular tool for localization [3], [2]. Localization accuracies
of a few centimeters can be achieved using carrier phase
processing assuming rapid and accurate on-the-fly integer
ambiguity resolution.

However, in GPS challenged areas (e.g. Urban canyons,
tunnels, thick canopy etc.) the GPS receiver may not be able
to track a sufficient number of satellites to resolve the integer
ambiguities within one epoch. In this paper, we would like
to find the optimal solution by combining the measurements
from several epochs.

For example, if there are few satellites in view, it will
be difficult to solve the integer ambiguity with single epoch
data. As we will discuss later, the single epoch GPS ambi-
guity problem has 4 degrees of freedom, assuming we have
K (K > 4) satellites in view each second, combining each
additional epoch will add another 4 degrees of freedom but
will also add K extra measurements. Therefore, combining
GPS measurements from multiple epochs will help with GPS
integer ambiguity resolution.

In this paper, we extend the approach in [1] with GPS
measurements on multiple epochs. We present the theoretical
derivation for a fast and efficient method for GPS integer
ambiguity resolution. Two sets of simulation results show
the effectiveness of the proposed approach.

II. MEASUREMENTS MODEL

A. DGPS Measurements

Through this paper, we consider single difference GPS
(DGPS) measurements [5]. For simplicity of notation, we
assume that the DGPS approach completely removes all
common-mode errors (e.g., ionosphere, troposphere, satellite
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clock and ephemeris). The DGPS code and carrier phase
measurements for satellite i can be modeled as

ρ(i) = R(i)+ cδ tr + ε(i) (1)
λϕ (i) = R(i)+ cδ tr +λN(i)+η(i) (2)

where R(i) = ∥X (i)−Xa∥ is the geometric distance between
the satellite i position X (i) and receiver antenna position Xa.
The symbol cδ tr is the receiver clock bias. The symbol
λ represents the signal wavelength. The symbols ε(i) and
η(i) represent the measurement noises in code and phase
measurements. The symbol N(i) represents the unknown
integer ambiguity that is to be determined. The index i =
1, · · · ,K, where K is the number of available satellites.

B. Residual Measurements

This document will work with residual measurement com-
puted relative to a position X0 assumed to be sufficiently ac-
curate so that the h.o.t.’s can be neglected in the linearization
process. The residual measurements are

δρ(i) = ρ(i)−∥X (i)−X0∥ (3)

λδϕ (i) = λϕ (i)−∥X (i)−X0∥. (4)

The linearized residual measurements are modeled as

δρ(i) = h(i)xa0 + cδ tr + ε(i) (5)
λδϕ (i) = h(i)xa0 + cδ tr +λN(i)+η(i) (6)

where xa0 = (Xa −X0)
⊤ ∈ R3 and h(i) = Xa−X0

∥Xa−X0∥
∈ R3. We

assume that ε(i) ∼N (0,σ2
ρ ) and η(i) ∼N (0,σ2

Φ). In typical
GPS applications, with σρ is at the meter level and σΦ is
at the centimeter level. All the noise terms are uncorrelated
with each other.

The phase residual measurements can be put in matrix
form as

λδϕϕϕ = Hx+λN+ηηη (7)

where ϕϕϕ =
[

ϕ (1) · · · ϕ (K)
]⊤

, x =
[
x⊤a0 cδ tr

]⊤,

H =

 h(1) 1
...

...
h(K) 1

, ηηη =
[

η(1) · · · η(K)
]⊤

, and

N =
[

N(1) · · · N(K)
]⊤ ∈ ZK is the integer ambiguity

vector that is to be determined.

C. Measurements over multiple epoches

For the simplicity of notation in the integer ambiguity
problem, we rewrite (7) at time t j as:

y j = G jx j +N j +v j (8)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7281



where y j = δϕϕϕ ∈ RK represents the DGPS phase measure-
ments at time t j, x j ∈ Rn and N j ∈ ZK are the parameters
to be estimated, and n = 4. G j = λ−1H j ∈ RK×n is the
observation matrix characterizing the satellite-user geometry,
the noise term v j = ηηη j/λ ∈ RK and v j ∼ N (0,ΣΣΣvv), the

covariance matrix of v j is ΣΣΣvv =
σ2

Φ
λ 2 I.

Assume from time t1 to time tM , the receiver maintains
lock to the satellites, i.e., N = N1 = · · · = NM , then the
measurements from t1 to tM can be grouped as:

ȳ = ḠX+LN+ v̄ (9)

where the measurement ȳ⊤ =
[

y⊤1 · · · y⊤M
]
∈RMK ; the

state vector X⊤ =
[

x⊤1 · · · x⊤M
]
∈ RMK ; the measure-

ment noise v̄⊤ =
[

v⊤1 · · · v⊤M
]
∈ RMK with cov(v j) =

ΣΣΣvv j ,

Ḡ =

 G1 0
. . .

0 GM

 , (10)

L⊤ =
[

I · · · I
]
, (11)

where I represents K-by-K identity matrix, and Ḡ∈RMK×Mn

and L ∈RMK×K .
Assuming that the GPS carrier phase measurement noise

is uncorrelated over time, the covariance matrix of the noise
vector v̄ is

ΣΣΣ =

 ΣΣΣvv1 0
. . .

0 ΣΣΣvvM

 .

By forming the problem as (9), we would solve the GPS
integer ambiguity using measurements over the interval from
t1, · · · , tM . In this problem definition, we attempt to solve
the integer ambiguity problem at t = t1, if we succeed, then
we have a real time solution. If we fail, then at t = t2, we
attempt to solve the problem using y1 and y2, etc. If the
problem is solved at time t > t1, the answer is attained in
near real time, etc.

III. INTEGER AMBIGUITY PROBLEM

A. Problem Statement

GPS integer ambiguity problem in near real time can be
solved as a Maximum Likelihood (ML) estimation problem:
given the GPS measurements, we would like to find the
estimate of N and x that maximize the conditional probability
f (y|N,x).(
N̂, X̂

)
= arg max

N∈ZK ,X∈Rn
f (y|N,x)

= arg max
N∈ZK ,X∈Rn

ln f (y|N,x)

= arg max
N∈ZK ,X∈Rn

ln

e−
1
2 (ȳ−ḠX−N)

T ΣΣΣ−1(ȳ−ḠX−N)

(2π)m/2 |ΣΣΣ|1/2


= arg min

N∈ZK ,X∈Rn

(
ȳ− ḠX−N

)TΣΣΣ−1(ȳ− ḠX−N
)

(12)

Therefore, the near real time GPS integer ambiguity
problem can be solved as an Integer Weighted Least-Square
(IWLS) problem [7]. Our objective is to find N ∈ ZK , X ∈
RMn that minimize the cost function

c(X,N) =
(
ȳ− ḠX−N

)T ΣΣΣ−1 (ȳ− ḠX−N
)
. (13)

B. Generating Searching Candidates

One of the leading algorithms in integer ambiguity prob-
lem is LMS [6]. Following the very useful insight from [4],
that inspired LMS, although (9) contains (K +Mn) unknown
variables, there are only n degrees of freedom. Given any
x j, all the integer ambiguities can be resolved. On the other
hand, given any n integers, the states X can be computed
accurately. These remarks show that not all combinations of
integers are admissible and the challenge is to reformulate
(9) properly to find admissible integer vectors efficiently. The
basic idea of LMS is to search only over the admissible
combinations of integer candidates so that the search space
can be decreased. The original LMS procedure is presented
in [6]. Alternative implementations are presented in [2], [5],
[11].

Divide the integer vector N into two subvectors NC and
ND, where ND contains n integers and NC contains the
remaining (K−n) integers. The integers in ND are searched
exhaustively over some range of d integers, the remaining
integers are computed as real value estimates and are rounded
to an optimally selected integer (described below) to get the
estimate of NC. This yields dn integer vectors in ZK . We can
evaluate each integer vector candidate to find the one with
least cost. As in LMS, this decreases the search dimension
from K to n, which decrease the integer vector candidates
from dK to dn.

Starting from (9), for a given integer ambiguity N, the
weighted least square estimate of x would be:

X̂ =
(

ḠT ΣΣΣ−1Ḡ
)−1

ḠT ΣΣΣ−1 (ȳ−LN) (14)

and the residual vector is

ε̂εε = ȳ− Ḡ · X̂−LN

=

(
I− Ḡ

(
ḠT ΣΣΣ−1Ḡ

)−1
ḠT ΣΣΣ−1

)
(ȳ−LN)

= Q̄ΣΣΣ (ȳ−LN) . (15)

where

Q̄ΣΣΣ = I− P̄ΣΣΣ, (16)

P̄ΣΣΣ = Ḡ
(

ḠT ΣΣΣ−1Ḡ
)−1

ḠT ΣΣΣ−1. (17)

Note that both P̄ΣΣΣ and Q̄ΣΣΣ are idempotent and that
Rank(P̄) = Mn and Rank(Q̄) = M(K −n).

Proof: Because ΣΣΣ > 0 is a covariance matrix, ΣΣΣ−1 is
symmetric and positive definite. Thus it can be factored as

ΣΣΣ−1 = W⊤M⊤MW, (18)

where W ∈ RMK×MK is a unitary matrix (i.e., WW⊤ =
W⊤W = I) and M⊤ = M is a diagonal matrix with positive
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elements on the diagonal. Substituting Eqn. (18) into Eqn.
(17), we have

P̄ΣΣΣ = G(Ḡ⊤ΣΣΣ−1Ḡ)−1Ḡ⊤ΣΣΣ−1

= Ḡ(Ḡ⊤W⊤M⊤MWḠ)−1Ḡ⊤W⊤M⊤MW
= Ḡ(A⊤A)−1A⊤MW
= W−1M−1A(A⊤A)−1A⊤MW
= W−1M−1PMW, (19)

where P = A(A⊤A)−1A⊤ and A = MWḠ. Eqn. (19) shows
that P̄ΣΣΣ is similar to P where P is a projection matrix onto the
range of A; therefore, rank(P) = rank(A). Because M and
W are both nonsingular, rank(A) = rank(Ḡ) = Mn; hence,
rank(P) = Mn yields rank(P̄ΣΣΣ) = Mn.

Let Q = I − P, then Q is a projection matrix onto the
subspace orthogonal to the range space of A, and has rank
M(K −n). The following analysis shows that Q̄ΣΣΣ is similar
to Q:

Q̄ΣΣΣ = I− P̄ΣΣΣ

= I−W⊤M−1PMW
= W⊤M−1(I−P)MW
= W−1M−1QMW. (20)

Therefore, Q̄ΣΣΣ also has rank M(K −n).
From (13), the cost function evaluated from candidate N

is

c(N) = ∥ȳ− Ḡ ·x−LN∥2
ΣΣΣ

= ∥Q̄ΣΣΣ(ȳ−LN)∥2
ΣΣΣ

= (ȳ−LN)⊤Q̄⊤
ΣΣΣ ΣΣΣ−1Q̄ΣΣΣ(ȳ−LN)

= (ȳ−LN)⊤Q̄0(ȳ−LN) (21)

where

Q̄0 = Q̄⊤
ΣΣΣ ΣΣΣ−1Q̄ΣΣΣ

=
(
I− P̄ΣΣΣ

)⊤ ΣΣΣ−1 (I− P̄ΣΣΣ
)

(22)

= ΣΣΣ−1 −ΣΣΣ−1P̄ΣΣΣ − P̄⊤
ΣΣΣ ΣΣΣ−1 + P̄⊤

ΣΣΣ ΣΣΣ−1P̄ΣΣΣ

= ΣΣΣ−1 −2ΣΣΣ−1Ḡ(Ḡ⊤ΣΣΣ−1Ḡ)−1Ḡ⊤ΣΣΣ−1

+ΣΣΣ−1Ḡ(Ḡ⊤ΣΣΣ−1Ḡ)−1Ḡ⊤ΣΣΣ−1Ḡ(Ḡ⊤ΣΣΣ−1
vv Ḡ)−1Ḡ⊤ΣΣΣ−1

= ΣΣΣ−1 −ΣΣΣ−1Ḡ(Ḡ⊤ΣΣΣ−1Ḡ)−1Ḡ⊤ΣΣΣ−1

= ΣΣΣ−1 (I− P̄ΣΣΣ
)

= ΣΣΣ−1Q̄ΣΣΣ (23)

Proposition 3.1: Rank(Q̄0) = M(K −n).
Proof: First we should notice that by use of (18) and

(20), Q0 can be written as:

Q̄0 = Q̄⊤
ΣΣΣ ΣΣΣ−1Q̄ΣΣΣ

= (W−1M−1QMW)⊤

(W−1M⊤MW)(W−1M−1QMW)

= W−1M⊤QM−T WW−1M⊤MWW−1M−1QMW
= W−1M⊤QMW. (24)

Following (19), we stated that Q is a projection matrix with
rank M(K − n). Because M and W are nonsingular, Q̄0 is
similar to Q; therefore, rank(Q0) = M(K −n).

Let the SVD (single value decomposition) of Q̄0 be

Q̄0 = ŪS̄2Ū⊤
,

where Ū is unitary and S̄ is diagonal with diag(S̄) =
[s̄1, . . . , s̄M(K−n),0, . . . ,0] with all s̄i > 0 for i = 1, . . . ,M(K −
n). Define B̄ = S̄Ū⊤ such that

Q̄0 = B̄⊤B̄ (25)

where the last Mn rows of B̄ are zero.
Given the above analysis, the cost function of (21) can be

rewritten as

c(N) = (ȳ−LN)⊤B̄⊤B̄(ȳ−LN)

= ∥B̄(ȳ−LN)∥2. (26)

Because B̄ does not have full rank, the null space of B is
not empty. Therefore, there exists (non-unique) N̂ ∈Rm such
that (ȳ−LN̂) is in the null space of B̄:

B̄(ȳ−LN̂) = 0. (27)
B̄ȳ = B̄LN̂ (28)

The matrix B̄ can be represent as

B̄ =

[
Ā
0

]
,

where Ā ∈RM(K−n)×MK .
Our goal is to find an integer vector N̂ such that[

Ā
0

]
ȳ =

[
Ā
0

]
LN̂

Āȳ = ĀLN̂ (29)

As ĀL ∈ RM(K−n)×K , let ĀL =
[

C̄ D̄
]
, where C̄ ∈

RM(K−n)×(K−n) and D̄ ∈RM(K−n)×n.
Let the last n elements of N̂ to be integers. We denote

this subvector as N̂D and the first K − n elements of N̂ are
denoted as N̂C. Then (29) can be rewritten as

Āȳ =
[

C̄ D̄
][ N̂C

N̂D

]
Therefore, if we decompose y as y =

[
y⊤C y⊤D

]⊤ with
yC ∈ R(K−n) and yD ∈ Rn and given a hypothesized vector
N̂D ∈Zn, then the real-value estimate of N̂C is:

N̂C =
(

C̄⊤C̄
)−1

C̄⊤ (
Āȳ− D̄N̂D

)
(30)

The integer candidates ND can be searched exhaustively
over some finite range of integers using n “for” loops as
shown in Fig. 1. For each integer vector ND, Eqn. (30)
provides a float estimate N̂C.

7283



A = C−1D
for i =−d : d

for j =−d : d
for k =−d : d

ND = [i, j,k,0]⊤

N̂C =
(

C̄⊤C̄
)−1

C̄⊤ (
Āȳ− D̄N̂D

)
. . . use N̂C to compute ŇC minimizing J(NC)
N =

[
ŇC ND

]
if c(N)< current minimum

Save N
current minimum = c(N)

...

Fig. 1: Triple ‘for’ loop to compute N̂C and N for the case
where n = 4.

C. Rounding N̂C

Having N̂C, to get the optimal integer estimate of NC,
we would like to find an integer vector ŇC which is close
to N̂C in an appropriate sense. As discussed in [8], [9], as
the integer estimation error vector can be highly correlated,
visualized by the level curve of the cost function being a
tilted and elongated ellipse, directly rounding N̂C to ŇC may
yield incorrect integer estimates and cause a significant cost
increase.

Proposition 3.2: Consider the cost function

J(NC) = ∥NC − N̂C∥2
ΣΣΣN̂C

= (NC − N̂C)
⊤ΣΣΣ−1

N̂C
(NC − N̂C), (31)

where from (30)

ΣΣΣN̂C
= C−1AΣΣΣA⊤C−⊤. (32)

Then the cost function c(N) defined in (13) will be mini-
mized by the same integer estimate that minimize J(NC).

Proof: From Eqn. (26), for any N ∈Zm,

c(N) = (ȳ−LN)⊤B⊤B(ȳ−LN)

= (ȳ−LN̂−LN+LN̂)⊤B⊤B(ȳ−LN̂−LN+LN̂)

= ∥B(ȳ−LN̂)∥2 +∥BL(N− N̂)∥2

−2(N− N̂)⊤L⊤B⊤B(ȳ−LN̂) (33)

where N̂ is the optimal real-valued estimate of N, which by
(27) satisfies B(ȳ−LN̂)) = 0 and therefore

c(N) = ∥BL(N− N̂)∥2. (34)

From (10) and (16), we know

Q̄ΣΣΣ =

 QΣΣΣ1 0
. . .

0 QΣΣΣ1

 , (35)

where

PΣΣΣ j = G j
(
G j

T ΣΣΣ−1G j
)−1 G j

T ΣΣΣ−1
vv , (36)

QΣΣΣ j = I−PΣΣΣ j , (37)

PΣΣΣ j ∈RK×K and PΣΣΣ j ∈RK×K .
Let

QΣΣΣ j =

[
Q̄CC j Q̄CD j

Q̄DC j Q̄DD j

]
where QCC j ∈R(K−n)×(K−n), QDD j ∈Rn×n and QCD j ,Q

⊤
DC j

∈
R(K−n)×n. Let

M

∑
1

QCC j = QCC

M

∑
1

QCD j = QCD

M

∑
1

QDC j = QDC

M

∑
1

QDD j = QDD

Similarly, for the covariance matrix As the covariance
matrix ΣΣΣvv is block diagonal, let

ΣΣΣvv =

[
ΣΣΣCC 0

0 ΣΣΣDD

]
,

where ΣΣΣCC ∈R(K−n)×(K−n) and ΣΣΣDD ∈Rn×n. Let
M

∑
1

ΣΣΣCC = ΣΣΣCC

M

∑
1

ΣΣΣDD = ΣΣΣDD

Then, from (25)

L⊤B⊤BL = L⊤Q0L
= L⊤ΣΣΣ−1Q̄ΣΣΣL

=
[

I · · · I
] ΣΣΣvv 0

. . .
0 ΣΣΣvv


 QΣΣΣ1 0

. . .
0 QΣΣΣ1


 I

...
I


=

[
Q̄CC Q̄CD
Q̄DC Q̄DD

][
ΣΣΣ−1

CC 0
0 ΣΣΣ−1

DD

]
=

[
ΣΣΣ−1

CCQCC ΣΣΣ−1
CCQCD

ΣΣΣ−1
DDQDC ΣΣΣ−1

DDQDD

]
. (38)

By the method that N is generated, N̂D = N is an integer
vector. Hence, the cost function c(N) can be written as

c(N)=∥BL(N− N̂)∥2

=(N− N̂)⊤L⊤B⊤BL(N− N̂)

=

[
NC − N̂C

0

]T [ ΣΣΣ−1
CCQCC ΣΣΣ−1

CCQCD
ΣΣΣ−1

DDQDC ΣΣΣ−1
DDQDD

][
NC − N̂C

0

]
=(NC − N̂C)

⊤ (
ΣΣΣ−1

CCQCC
)

NC − N̂C). (39)

Comparison of (31) and (39) shows that if we can prove
ΣΣΣ−1

CCQCC = ΣΣΣ−1
N̂C

, then these two cost functions are equivalent.
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From (27), we know that BLN̂ = Bȳ. Multiplying on
the left by B⊤ yields B⊤BLN = B⊤Bȳ which provides the
following constraint on the covariance

B⊤BLΣΣΣNNL⊤B⊤B = B⊤BΣΣΣB⊤B (40)

where

ΣΣΣNN =

[
ΣΣΣN̂C

0
0 0

]
as there is no uncertainty in ND.

From (23) and (25), (40) can be written as

ΣΣΣ−1Q̄ΣΣΣLΣΣΣNNL⊤Q̄⊤
ΣΣΣ ΣΣΣ−1 = ΣΣΣ−1Q̄ΣΣΣΣΣΣQ̄⊤

ΣΣΣ ΣΣΣ−1. (41)

Because ΣΣΣ is nonsingular, Eqn. (41) reduces to

Q̄ΣΣΣLΣΣΣNNL⊤Q̄⊤
ΣΣΣ = Q̄ΣΣΣΣΣΣQ̄⊤

ΣΣΣ (42)
= Q̄ΣΣΣΣΣΣ. (43)

Therefore,

Q̄ΣΣΣ

(
LΣΣΣNNL⊤Q̄⊤

ΣΣΣ −ΣΣΣ
)
= 0, (44)

Q̄ΣΣΣ j

(
ΣΣΣNNQ⊤

ΣΣΣ j
−ΣΣΣ

)
= 0, (45)

which can be written as[
Q̄CC j Q̄CD j

Q̄DC j Q̄DD j

][
ΣΣΣN̂C

Q⊤
CC j

−ΣΣΣCC ΣΣΣN̂C
Q⊤

DC j

0 −ΣΣΣDD

]
= 0.

From Sylvesters rank inequality: If A is a m-by-n matrix and
B n-by-k, then

rank(A)+ rank(B)−n ≤ rank(AB).

As QΣΣΣ j ∈RK×K , ΣΣΣNNQ⊤
ΣΣΣ j
−ΣΣΣ∈RK×K and rank(Q̄ΣΣΣ) = (K−

n). Therefore, rank
(

ΣΣΣNNQ⊤
ΣΣΣ j
−ΣΣΣ

)
≤ n.

As the block −ΣΣΣDD has rank n, therefore,

ΣΣΣN̂C
Q⊤

CC j
−ΣΣΣCC = 0

ΣΣΣN̂C
Q⊤

CC j
−ΣΣΣCC = 0

ΣΣΣN̂C
Q⊤

CC j
= ΣΣΣCC

ΣΣΣN̂C
= ΣΣΣCCQ−⊤

CC j

ΣΣΣ−1
N̂C

= Q⊤
CC j

ΣΣΣ−1
CC

ΣΣΣ−⊤
N̂C

= ΣΣΣ−⊤
CC QCC j

ΣΣΣ−1
N̂C

= ΣΣΣ−1
CCQCC j

c(N) = (NC − N̂C)
⊤ΣΣΣ−1

N̂C
NC − N̂C),

which completes the proof.
To find the integer vector that minimizes Eqn. (31), we fol-

low the idea of LAMBDA to find a matrix ZZZ ∈Z(m−n)×(m−n),
such that ZZZ−1 ∈ Z(m−n)×(m−n), and (ZZZΣΣΣN̂C

ZZZ⊤)−1 is nearly
diagonal. The procedure to find the Z-transformation is
described in detail in [10].

Let M̂C = ZN̂C, then the cost function written in terms of
MC is

J(MC) = (MC −M̂C)
⊤ΣΣΣ−1

M̂C
(MC −M̂C), (46)

where ΣΣΣM̂C
= ZZZΣΣΣN̂C

ZZZ⊤. Because ΣΣΣ−1
M̂C

is nearly diagonal,
J(MC) can be minimized by rounding M̂C to the nearest
integer; therefore, the integer-valued estimate of NC can be
computed as:

M̂C = ZZZN̂C (47)
M̌C = [M̂C]roundo f f (48)

ŇC = ZZZ−1M̌C (49)

At this point we have an integer vector candidate
[
Ň⊤

C N⊤
D

]⊤
.

One such candidate will be generated for each iteration of
the ‘for’ loop in Fig. 1. We can compare each integer vector
candidate using eqn. (21). Selecting the candidate vector with
fragment the lowest cost (subject to validity tests) as the best.
By rounding off the float estimate N̂C in the decorrelated
domain of M̂C, we have a better chance to achieve optimal
integer estimate ŇC.

From Eqn. (30), the integer candidates N̂D can be searched
exhaustively over some finite range of integers as described
in Fig. 1.

IV. TEST RESULT

In the MATLAB simulation, the test is epoch-by-epoch
with a set of 6 single difference GPS L1 (λ ≈ 0.19m)
carrier phase measurements at different noise level. For each
noise level, 1000 measurement epochs with randomly picked
satellite elevation and azimuth angles were generated. We
compared the success rate of getting all the integers correctly
with different number of GPS epochs. The success rates of
GPS integer ambiguity resolution by using different number
of epochs with different level of covariance are plot versus
different noise level in Fig. 2.
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Fig. 2: Rate of Correct Integer Resolution vs. Phase
Measurement Noise

Fig. 2 shows that by combing measurements from multiple
epochs, we achieve a higher rate of estimating the correct
integer vector at each covariance level.
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A. Test over different number of satellites

The second set of test is performed to analyze the perfor-
mance of the proposed approach as a function of the number
of satellites. For each number of satellites, 1000 measure-
ment epochs with randomly picked satellite elevation and
azimuth angles were generated with the standard deviation
of each phase measurement equal to 0.01m. We compared
the success rate of getting all the integers correctly in one,
two and three epoches. The success rate of each scenario is
plotted in Fig. 3.
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Fig. 3: Rate of Correct Integer Resolution vs. Number of
Satellites

From Fig. 3, we can see that by combing measurements
from multiple epochs, we achieve a substantially higher rate
of getting the right integer vector, especially when there are
few satellites. We can see that with as few as 5 satellites,
we have a 90% chance of getting the right integer within 3
epochs if we combine the measurements over epochs. With
6 or more satellites, we will get the right integer within 2
epochs with probability of higher than 95%.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we extended the approach in [1] with GPS
measurements from multiple epoches. We introduced a fast
and efficient method for GPS integer ambiguity resolution
with a theoretical derivation. Two sets of simulation result
shows the effectiveness of the proposed approach.

B. Future work

Test with real-world data will be done in near future.
We note that the vehicle state at different epochs are

not independent. Integrated GPS/INS (Inertial Navigation
System) [3], [2] and integrated GPS/Encoders [2] are popular
tools for localization. With such high rate sensors, we will
have extra constraints on the vehicle states over epochs which
can be used to facilitate GPS integer ambiguity resolution.
In future research, we will extend the approach in this paper
with auxiliary position estimate from INS or encoders.
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