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Abstract— This paper proposes a new class of smooth closed
form Navigation Functions that are derived from harmonic
functions. The resulting functions are by construction free of
local minima. Utilizing the underlying structure of harmonic
functions a tuning controller is proposed to establish the non-
degeneracy of critical points. The construction of this new
class of Navigation Functions was made possible due to the
recently introduced Navigation Transformation. In addition to
the theoretical guarantees, the effectiveness of the proposed
Navigation Functions is demonstrated through non-trivial com-
puter simulations with systems with first and second order
dynamics in a non-trivial workspace.

I. INTRODUCTION

Harmonic potentials have always been considered as an
attractive option for robotic navigation. The engineering
intuition for using harmonic potentials for robotic navigation
stems from the fact that potential flows of incompressible
fluids that flow along the solutions of Laplace’s equation,
exhibit no local minima, apart from isolated stagnation
points. Hence if a robot could be made to follow the
trajectory of such a fluid particle, it would avoid collisions
with nearby objects or getting trapped, and it would flow to
an appropriately located sink at its destination configuration.

Following the above mentioned intuition, several solutions
were given to the motion planning problem that were based
on harmonic potentials. The first reported attempts in the
robotic literature to use harmonic functions to solve the
motion planning problem was reported in [2], [3] where
the authors propose a numerical construction of a harmonic
potential using Dirichlet and Neumann boundary conditions.
In [5] an analytic construction of harmonic potential func-
tions is proposed that is based on the panel method. In [4]
harmonic potentials are implemented for path planning in
dynamic environments. More recently Harmonic Functions
have been used for multi-robot navigation [8].

In this paper we propose a closed form solution for the
case of single robot navigation problem in a two-dimensional
workspace, that was made possible due to the recently intro-
duced Navigation Transformation, which initially appeared in
[7]. Using this transformation, it is shown in the current paper
that it is possible to construct a Navigation Function that
is based on harmonic potentials for a 2-D workspace. The
resulting function is proven to satisfy all the requirements set
forth in [6] for a function to be a Navigation Function. This
is the first to the author’s knowledge closed form Navigation
Function that is based on an underlying harmonic potential.
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There are several advantages of using closed form harmonic
potentials to construct a closed form Navigation Function,
that are in addition to the ones found in literature regarding
closed form Navigation Functions. These include the capa-
bility to naturally decouple the influence of every obstacle in
the environment and the destination configuration and most
importantly for practical implementations, the absence of a
tuning phase, allowing one to add and remove obstacles on
the fly without worrying about introducing local minima.

The rest of the paper is organized as follows: Section II
presents some preliminary notions while section III describes
the Navigation Transformation. Section IV presents the con-
struction of the proposed Navigation Function, while section
V analyzes the properties of the constructed function. Section
VI proposes and studies controllers that can be developed
based on the proposed Navigation Function, while section
VII presents simulation results. The paper concludes with
section VIII.

II. PRELIMINARIES

In this section we introduce the necessary terminology and
definitions for the development of the methodology.

If K is a set, then K̄ denotes the closure of the set, Kc

denotes the complement of the set and
◦
K the interior of

the set. We denote with ∂K the boundary of K. Let Sn

denote the n dimensional sphere. We will denote with Sn
the n dimensional sphere world as this is defined in [6]. If
we have a function f(·) : Rn → Rn, we denote the Jacobian
matrix of this function as Jf (·) and the Jacobian determinant
by ‖Jf (·)‖. Given a function φ : Rn → R we denote by the
matrix Hφ (·) the Hessian matrix of φ.

We will need the following:
Definition 1: Let Pi ∈ Rn, i ∈ {1, . . .M} be M discrete

elements of Rn. Then a point world is defined as a manifold

Pn ⊆ Rn \
M⋃
i=1

Pi.

Definition 2: A point world with spherical boundary is a

manifold P̃n ⊆ P \
(
◦
Sn
)c

where
M⋃
i=1

Pi ∈
◦
Sn.

We will restrict our attention to workspaces that are as
follows:

Definition 3: The workspace W ⊂ Rn is a manifold such
that

◦
W is diffeomorphic to Pn or P̃n.

A workspace is valid if there is a non-zero minimum
distance between different obstacles.

Let O = ∂W . Then O consists of the mutually disjoint
sets of the obstacle boundaries, Oi, i ∈ {1, . . .M} and
the (also disjoint) “external” boundary O0, such that O =⋃
i=0...M

Oi.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6361



A system with holonomic kinematics is modelled as:

ẋ = u (1)

where x ∈ Rn is the robot’s position and u ∈ Rn is
the velocity input. The initial configuration of the robot is
denoted as x0 and the destination configuration as xd.

The dynamic model of a holonomic system is given by:

mẍ+ cẋ = f (2)

where f is the force input to the system, m is the mass of
the system and c is the viscous damping coefficient.

Instead of the original definition of a Navigation Function,
proposed in [6], a smooth version will be considered:

Definition 4: Let W ⊂ Rn be a compact connected
smooth manifold with boundary. A map ϕ : W → [0, 1],
is a navigation function if it is:

1) Smooth on W
2) Polar on W , with minimum at qd ∈

◦
W

3) Morse on W
4) Admissible on W

III. THE NAVIGATION TRANSFORMATION

The definition and properties of the Navigation Transfor-
mation as well as a construction of a Navigation Trans-
formation are described and studied in [7]. We will repeat
in the current section some results from [7] for reasons of
completeness:

The Navigation Transformation can be defined as follows:
Definition 5 ([7]): A Navigation Transformation is a dif-

feomorphism Φ :
◦
W→ Pn, (or Φ :

◦
W→ P̃n) that maps Oi to

M discrete elements Pi, i ∈ {1, . . .M} of
◦
Sn and (if such

exists) O0 to ∂P̃n \
⋃

i∈{1,...M}
Pi.

As was shown in [7] a Navigation Transformation that
operates on a star-shaped world [9] can be constructed as
follows:

Let hλ : W → Sn be the diffeomorphic transformation
from the robot’s workspace to a sphere world, as this is
described in [9].

Let q = hλ (x). Then bi (q) = ‖q −Oi‖ − ri where i ∈
{1, . . .M}, is the distance from the boundary of the i’th
sphere. Oi is the center of the i’th sphere in Sn. Define the
smooth function

σs (x) =

{
e−1/x x > 0
0 x ≤ 0

Let

µa = min
i,j∈{1,...M}

i 6=j

{‖Oi −Oj‖ − (ri + rj)}

and
µ0 = min

i∈{1,...M}
{r0 − ‖Oi −O0‖ − ri}

Then define
µ =

1

2
min {µa, 2µ0}

that is the minimum distance between any two spheres.

Define the smooth switch function:

η (x, δ) =
σs (x)

σs (x) + σs (δ − x)

Define the function:

s (δ, x) =
x

δ
(1− η (x, δ)) + η (x, δ)

Now define the contraction transformation:

vi (q) = (1− s (µ, bi (q))) (Oi − q)

Then the transformation from a sphere world to a point
world is achieved through the transformation:

T (q) = q +

M∑
i=1

vi (q)

Then the composition:

Φ (x) = (T ◦ hλ) (x) (3)

is a Navigation Transformation [7].

IV. CONSTRUCTION OF THE HARMONIC FUNCTION
BASED NAVIGATION FUNCTION

A. Infeasibility of harmonic Navigation Functions

Let us first point out that a search for a closed form
harmonic Navigation Function would be fruitless, due to the
following:

Lemma 1: A harmonic Navigation Function is not possi-
ble.

Proof: This can be seen by implication of the Maximum
Principle:

Definition 6 (Maximum Principle [1]): Suppose Ω is
connected, u is real valued and harmonic on Ω, and u has
a maximum or a minimum in Ω. Then u is constant.
Hence since a Navigation Function is both polar and ad-
missible, a harmonic Navigation Function would have to be
constant.

The result above in conjunction with the Navigation Trans-
formation, motivates the construction a Navigation Function
that is not harmonic itself but is based on harmonic functions.

B. Construction

The construction proposed in this paper is for the two-
dimensional case. The basic idea here is to map the obstacle
boundaries in a domain where a harmonic function with
navigation-like properties can be constructed. We will refer
to this domain as the harmonic domain. The next step is to
generate the gradient vector field in the harmonic domain
and pull-back a vector field from the harmonic domain to
the initial workspace.

Let h be the robot’s position and hi be the position of the
i’th obstacle’s boundary in the harmonic domain. Then

φi (h) = −ai ln (‖h− hi‖)

is the i’th obstacle’s potential, where ai a positive parameter.
Define the destination potential as

φd (h) = ad ln (‖h− hd‖)
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where ad a positive parameter and hd denotes the destination
configuration.

In order to ensure global attractivity of the destination, we
impose the following condition:

lim
‖h‖→∞

φ (h) = +∞ (4)

This can be achieved by selecting ad = 1 +
∑
i

ai. Hence

by choosing ai = 1 and ad = k ≥ 1 + M , condition (4) is
satisfied.

The harmonic function is then:

φ (h) = φd (h)−
M∑
i=1

φi (h) (5)

The domain of this harmonic function is infinite. However
the workspace where a robot is operating is usually bounded.
The transformation c : Pn → P̃n defined as:

c (q) , ρ
q

1 + ‖q‖
(6)

maps the harmonic domain to the sphere with radius ρ. The
inverse transformation is

c−1 (x) =
x

ρ− ‖x‖
(7)

The Jacobian of the transformation is ‖Jc‖ =
ρ2 (1 + ‖q‖)−3 which is non-zero and since both c(·), c(·)−1
and their derivatives are continuous within their domains, the
transformation is a diffeomorphism.

Since by using the Navigation Transformation, we have
mapped the workspace into the point world, we need to map
the point world into the harmonic domain. This is achieved
by implementing the transformation (7).

The image of the i’th obstacle’s boundary in the harmonic
domain becomes:

hi = c−1 (pi) .

Define the switch function:

σ (x) ,
ex

1 + ex
(8)

This function maps the extended real number line to the
interval [0, 1].

Finally define the distortion function:

σd (x) , x2/k (9)

that will be used to render the destination configuration non-
degenerate.

The final closed form Navigation Function is then con-
structed as the following composition:

Θ (·) =
[
σd ◦ σ ◦ φ ◦ c−1 ◦ Φ

]
(·) (10)

V. ANALYSIS

In this section we will analyze the properties of the
proposed function. In order to prove that the function (10)
is a Navigation Function, we will need the following result:

Proposition 1 (Proposition 2.7 in [6]): Let f1, f2 ⊆ R be
intervals, φ : Pn → f1 and σ : f1 → f2 be analytic. Define
the composition

ϕ , σ ◦ φ.

If σ is monotonically increasing on f1, then the set of critical
points of φ and ϕ coincide, Cφ = Cϕ and the index of each
point is identical, i.e. index(φ)|Cφ = index(ϕ)|Cϕ .
Note that the functions in (5) and (8) are analytic. The
following result is adapted from [6].

Proposition 2 (see also Proposition 2.6 in [6]): Let ϕ :
Pn → [0, 1] be a navigation function on Pn, and η : W →
Pn be a smooth diffeomorphism. Then

ϕ̃ , ϕ ◦ η

is a navigation function on W .
The proof is the same as the one found in [6] since the
requirements for the original proof are merely C2 continuity.

Corollary 1 (see also Proposition 2.6 in [6]): Let ϕ :
Pn → [0, 1] be a smooth Morse function on Pn, and
η :W → Pn be a smooth diffeomorphism. Then

ϕ̃ , ϕ ◦ η

is a Morse function on W , the critical points Cϕ = η (Cϕ̃)
of and index of the corresponding critical points is identical,
i.e. index(ϕ̃)|Cϕ̃ = index(ϕ)|Cϕ .
The proof of this Corollary is part of the proof of Proposition
2.6 in [6] and will not be repeated here.

Proposition 3: For every valid workspace, there exists a
finite k0(d, n) such that for any k > k0(d, n), function φ in
(5) is Morse.

Proof: From the definition of harmonic functions we
have that trace (Hφ) = ∆φ , 0. Since the analysis is
performed in 2 dimensions, in order for a harmonic function
to have a degenerate critical point pc, both eigenvalues of
Hφ (pc) have to be zero. Since the Hessian is symmetric,
this implies that the Hessian will be identically zero.

At a critical point we have that ∇φ = 0. Denote with
ri = h − hi and rd = h − hd and r̂i, r̂d their unit vectors
respectively. From eq. (5), we have that at a critical point it
will hold that:

k
r̂d
‖rd‖

=

M∑
i=1

r̂i
‖ri‖

(11)

The hessian of φ is given by:

Hφ =
k

‖rd‖2
(
I − 2r̂dr̂

T
d

)
−

M∑
i=1

1

‖ri‖2
(
I − 2r̂ir̂

T
i

)
(12)

From eq. (11) we get:

k2

‖rd‖2
r̂dr̂

T
d =

M∑
i=1

1

‖ri‖2
r̂ir̂

T
i + 2As
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where with the index s we denote the symmetric matrix,
i.e. As = 1

2

(
A+AT

)
and A =

∑
i 6=j

1
‖ri‖‖rj‖ r̂ir̂

T
j .

Substituting the last in eq. (12) we get:

Hφ =

(
k

‖rd‖2
−

M∑
i=1

1

‖ri‖2

)
I+2

k − 1

k

M∑
i=1

1

‖ri‖2
r̂ir̂

T
i −

4

k
As

Let m = argmin
i
{ri}. Moreover assume that d (k) =

min
i 6=j
{‖hi − hj‖} to be the minimum allowable distance

between hi, hj under the current selection of k. In order
to show that Hφ is non-degenerate, it suffices to show that
there is at least one non-zero eigenvalue. We have that:

r̂TmHφr̂m =
k

‖rd‖2
+
k − 2

k

1

‖rm‖2
− . . .

. . .−
M∑

i=1,i6=m

1− 2k−1k
(
r̂Ti r̂m

)2
‖ri‖2

− 4

k
r̂TmAsr̂m

As can be seen by eq. (11), as k increases, the same will
be happening for 1

‖rm‖ , since the rest 1
‖ri‖ ’s are bounded

by 1
d , where d > d(k) is a fixed value denoting the current

minimum distance between hi’s. Assuming k > 3 we have
that:

r̂TmHφr̂m >
k

‖rd‖2
+

1

3

1

‖rm‖2
− n− 1

d2
− 4

3

n− 1

drm

=
k

‖rd‖2
+

1

3

1

‖rm‖

(
1

‖rm‖
− 4 (n− 1)

d

)
− n− 1

d2

Hence for every choice of d, there is a choice of k ≥ k0
such that ‖rm‖ can become arbitrarily small rendering the
above expression positive.

Remark 1: Proposition 3 does not exclude the possibility
of φ being Morse for values of k < k0.

We have the following major result:
Proposition 4: For a valid workspace, there exists a posi-

tive k0 such that for any k > k0, function (10) is a Navigation
Function.

Proof: Property (1) of Definition 4 is satisfied since
Θ (·) is a composition of smooth functions.

For Properties (2) and (3), first let us note that φ is
undefined at singular points. However function ϕ = σd◦σ◦φ
can be continuously extended to include the singular points
where +∞ is mapped to +1 and −∞ is mapped to 0 as
can seen by taking the limit of function (8) as x tends
to ±∞. So even though function φ which is a harmonic
function has no minima or maxima in its interior (property
of harmonic functions [1]), function ϕ when continuously
extended to include the destination configuration, it will have
a minimum there. Since hd is the unique singular point
where φ→ −∞ then hd will be the unique minimum of the
continuously extended ϕ. Hence and ϕ is polar. This is true
since the critical points that are inherited from the interior
of the harmonic function φ by means of Proposition 1 are
necessarily either saddle points or degenerate critical points.

Since according to Proposition 3, function φ is Morse for
k > k0, there will be no degenerate critical points of φ. This
in turn according to Proposition 1 implies that ϕ excluding
hd, will be Morse with the same critical points and with
identical index of each critical point. To establish the non-
degeneracy of the destination configuration, note that

ϕ =
‖rd‖2(

n∏
i=1

‖ri‖+ ‖rd‖k
)2/k

Hence at the destination configuration we have that

Hϕ (hd) = 2

M∏
i=1

‖ri‖−2/k · I

which is a non-degenerate critical point. Then according to
Corollary 1, since c−1 and Φ are diffeomorphisms, functions
ϕ◦c−1 as well as Θ will be Morse (Property 3). The polarity
(Property 2) is inherited by Θ from ϕ by means of Corollary
1.

Regarding Property 4, note that φ (h) → ∞, whenever
h approaches the boundary of the harmonic domain. More
specifically this happens when ‖h‖ → +∞ (according to
condition 4) or when h→ hi. However these are the points
where the boundary of the workspace has been mapped
through the diffeomorphic transformation c−1 ◦ Φ. Now at
these points ϕ → 1 due to the properties of function σ
defined in 8. Hence Θ (∂W) = 1 and the admissibility of
Θ (·) (Property (4)) has been established.

VI. CONTROLLER DESIGN

Define
c0 (h) , ‖∇φ (h)‖2

θ (h) , − k

‖rd‖2
−

M∑
i=1

1

‖ri‖2
+ 2

M∑
i=1

(
r̂Ti r̂d

)2
‖ri‖2

û =
1√
2

[
1 1
−1 1

]
r̂d

η (h) = −
M∑
i=1

1

‖ri‖2
+ 2

M∑
i=1

(
r̂Ti û

)2
‖ri‖2

Hε (x) =

{
0 x > ε
1 x ≤ ε

We propose the following parameter update law:
Proposition 5: Let ε = 0 and K a positive gain. Then

parameter k under the parameter update law:

k̇ = K ·Hε (c0 (h)) ·Hε (|θ (h)|+ |η (h)|) (13)

will remain bounded.
Proof: Choose hc to be a critical point satisfying eq.

(11) and as k is increasing, move hc such that eq. (11) is
satisfied. This means that Hε (c0 (h)) = 1. Let k(0) = M+1.
If hc is a non-degenerate critical point, then the Hessian (eq.
12) will be non-degenerate. This means that the Hessian has
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a couple of non-zero eigenvalues of equal magnitude and
the Hessian is sign indefinite. This implies that there exists
a direction v̂ such that v̂THφv̂ = 0 and due to the symmetry
of the Hessian and the orthogonality of the corresponding
eigenvectors, it will also be true that v̂⊥THφv̂⊥ = 0.

However selecting the direction ẑ = 1√
2

[
1 1
−1 1

]
v̂ we

will get that ẑTHφẑ 6= 0. Hence creating two quadratic
forms v̂THφv̂ and ẑTHφẑ we are guaranteed that at least
one of the two will be non-zero. Now observe that θ(hc) =
r̂TdHφr̂d (hc) and that η (hc) = ûTHφû (hc). According to
the previous analysis at least one of the two will be non-
zero, hence Hε (|θ (hc)|+ |η (hc)|) = 0 and k̇ = 0. Now
in the case of a degenerate critical point the hessian will
become zero, so both θ(hc) = 0 and η(hc) = 0. Hence
Hε (|θ (hc)|+ |η (hc)|) = 1 and k̇ = K. However, according
to Proposition 3 there exists a value of k = k0, such that
all the critical points are non-degenerate. This implies that
under the proposed parameter adaptation law, parameter k
will become at most k0.

Remark 2: Due to φ being a smooth function, there exists
an ε-neighborhood around the critical point where the Hes-
sian will have a behavior similar to that at the critical point.
Hence for practical implementations, by choosing an ε small
enough, the proposed parameter update law will perform “on-
the-fly” tuning of φ when the system is in the neighborhood
of a critical point that is (or is close to be) degenerate.

We have the following result about the kinematic system:
Proposition 6: Assume a workspace with n obstacles.

Then system (1) under the control law:

u = −k1∇Θ (x)

where k1 a positive gain and Θ is a Navigation Function
based on harmonic potentials as defined in (10), imple-
menting the parameter update law defined in Proposition 5
with initial condition k(0) = M + 1, converges globally
asymptotically.

Proof: By construction Θ with k = M + 1 is free
of local minima. However if a system starts in the attractive
submanifold of a critical point, it will converge to this critical
point, where the parameter update law eq. (13) will be
activated. Since k will increase the current position will no
longer be a critical point, since the critical point condition
eq. (11) will no longer be satisfied. If this procedure is
repeated, an upper bound will be reached on k where the
Θ is now guaranteed to be a Morse function. Hence the
attractive submanifold for the saddle point will become a set
of measure zero and by using V = Θ as a Lyapunov function
candidate, we have that:

V̇ = −k1 ‖∇Θ‖2
a.e.
< 0

and the system will be globally asymptotically stable, almost
everywhere1.

For the dynamic system we have the following result:

1a.e.: almost everywhere except from a set of measure zero

Proposition 7: system (2) under the control law:

f = −k1∇Θ (x)− c1ẋ

where k1, c1 are positive gains and Θ is a Navigation
Function based on harmonic Potentials as defined in (10),
implementing the parameter update law defined in Propo-
sition 5 with initial condition k(0) = M + 1, converges
globally asymptotically.

Proof: By construction Θ with k = M + 1 is free of
local minima. However if a system starts in the attractive
submanifold of a critical point, it will converge to this
critical point, where the parameter update law eq. 13 will
be activated. Since k will increase the current position will
no longer be a critical point, since the critical point condition
eq. (11) will no longer be satisfied. If this procedure is
repeated, an upper bound will be reached on k where the
Θ is now guaranteed to be a Morse function. Hence the
attractive submanifold for the saddle point will become a
set of measure zero and by using V = k1Θ + m

2 ẋ
T ẋ as a

Lyapunov function candidate, we have that:

V̇ = ẋT (k1∇Θ +mẍ)

Using eq. (2) we have that:

V̇ = ẋT (− (c+ c1) ẋ) = − (c0 + c1) ẋT ẋ ≤ 0

By substituting the control law on eq. (2) we see that for
ẋ = 0 this implies necessarily that ∇Θ = 0. But this is only
true at the destination and at a set of measure zero. Hence
we can write that:

V̇
a.e.
< 0

and the system is globally asymptotically stable.

VII. SIMULATION RESULTS

In order to demonstrate the effectiveness of the proposed
approach, we have set up two sets of simulations, one with
a kinematic system and one with a dynamic system.

In the first case, the control law of Proposition 6 was
applied to system (1). The system was initially located at
x0 = [3 3.1]T and the destination was xd = [0 0]T . The gain
was selected as k1 = 1. Figure 1 depicts the workspace and
the trajectory of the system under the proposed control law.
As can be seen from Figure 1 the proposed methodology
is successful in driving the system to its destination. In this
simulation parameter k remained at its initial value, i.e. k = 3
throughout the evolution of the system. This means that
either the system was sufficiently away from the attractive
manifold of critical points or that Θ was indeed a Morse
function when k = 3.

In the second case, the control law of Proposition 7 was
applied to system (2). The system is initially located at x0 =
[3 3.1]T and the destination is xd = [0 0]T . The controller
parameters were selected as k1 = 2 and c1 = 0.2. System
parameters were selected as m = 1, c = 1. Figure 1 depicts
the workspace and the trajectory of the system under the
proposed control law. As can be seen from Figure 2 the
proposed methodology is successful in driving the dynamic
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Fig. 1. Workspace and trajectory for the kinematic system

system to its destination. And in this simulation parameter k
remained unchanged throughout the evolution of the system.
This means that either the system was sufficiently away from
the attractive manifold of critical points or that Θ was indeed
a Morse function when k = 3.

A 3-D plot of the function Θ is shown in Figure 3.

VIII. CONCLUSIONS

In this paper a novel class of closed form Navigation
Functions has been proposed that are based on harmonic
potentials. This is the first time to the author’s knowledge
that closed form harmonic potentials functions are used to
construct Navigation Functions and this was made possible
due to the recently introduced Navigation Transformation.
The constructed Navigation Functions are guaranteed by
construction to be free of local minima due to the prop-
erties of the underlying harmonic functions without the
need to tune any parameter. Moreover, it is shown that the
proposed functions are guaranteed to be Morse functions
under an appropriate choice of a parameter. A parameter
tuning controller with performance guarantees is proposed
to automatically tune the parameter in case the system
evolves in the vicinity of a non-degenerate critical point. The
performance of the proposed methodology is demonstrated
through non-trivial computer simulations with systems with
first and second order dynamics in a non-trivial workspace.

Further research includes extending the methodology to
arbitrary dimensions, and to the case of moving obstacles
and of multiple robots.
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