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Abstract— In this paper we present a framework for design-
ing feedback controllers for directing a group of agents adopting
consensus-type algorithms over random networks. In this di-
rection, we first examine the pertinent necessary and sufficient
conditions for controllability and observability of protocols over
random networks. We then proceed to explore conditions on
the underlying distribution for guaranteeing optimal infinite
horizon linear quadratic regulators. The implementation of
the proposed methodology is then discussed via an illustrative
example.

Index Terms— Linear quadratic regulator (LQR), consensus,
cooperative control, controllability, random networks

I. INTRODUCTION

Distributed cooperative control for multiple autonomous

dynamic system is an active research topic in systems and

control theory [1]–[6]. The distributed nature of the control

architecture necessitates an information-exchange network

that affects the system theoretic properties of the over all

networked system. It thus becomes pertinent to examine the

behavior of the system as a function of the network structure,

which in many situations of practical interest is dynamic.

There are a number of venues to model dynamic networks,

including viewing them as state-dependent, switching, and

random. The latter approach can for example be used to

model failures in the information exchange links between the

agents. On the one hand, significant communication delays

and data loss across the network are also common features

of real systems. Such delays and packet drops have a neg-

ative impact on the performance of the designed networked

systems. These types of inefficiencies can be considered with

stochastic models. On the other hand, randomness might

also be included by design in the operation of networked

systems. For example, constraints on battery sources can

motivate the network to switch on and off a group of

sensors randomly during certain intervals. The randomness

assumption on the existence of the information-exchange

link between two dynamic units offers a natural modeling

framework for situations of practical interest. However, this

framework may be considered conservative in general. The

ability of a pair of agents to pass relative states information

among themselves depends on a number of factors, e.g.,

link failures, and packet drop-outs. In such a setup, the
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available bandwidth, power, and sensor geometry determine

the parameters in the probabilistic model.

In this paper, we take a probabilistic approach to design a

feedback control mechanism over a random network adopt-

ing a consensus protocol. Related to our work is the paper

by Cao and Ren [8] that has studied optimal linear consensus

algorithms for multi-vehicle systems in both continuous-time

and discrete-time settings. We have been particularly inspired

by Kalman in [7] which examined the linear-quadratic-

regulator (LQR) for a random linear dynamic system in

discrete-time setting. The organization of the paper is as

follows. First, we explore the notion of controllability of

random networks. Equipped with the stochastic notion of

controllability and algebraic and probabilistic conditions for

ensuring it, we then proceed to discuss the linear quadratic

regulator problem for the controlled consensus over random

networks. The rate of convergence of the protocol is also

studied for special cases. An example demonstrating the

application of the developed approach to control of random

networks concludes the paper.

We use standard notation and terminology. We denote by

G = (V, E) the undirected simple graph with vertex set V
and edge set E . Two vertices u and v are called adjacent if

{u, v} ∈ E . The normalized Laplacian matrix for the graph

G is denoted by L(G); G(n, p) denotes the sample space of

random graphs on n vertices while the existence of a pair of

vertices in the set E is determined randomly with probability

p ∈ (0, 1] [9]–[11]. The operators E(w) and P{w = w̄}
refer to the expected value (ensemble average) of the random

variable w and the probability that the random variable w is

equal to w̄, respectively. The notation M(wt) denotes that

matrix M is a function of a random variable wt which is

written as Mt for the simplicity of the notation.

The transpose of vectors and matrices are denoted by the

prime; thus (x′)′ = x. The norm ||x|| is equal to (x′x)1/2

and for a positive semidefinite matrix M , we use the special

notation ||x||M = (x′Mx)1/2. The eigenvalues of a matrix

M are denoted by λi[M ]. The following operations will

prove to be useful throughout the paper.

Definition 1.1: Let mi ∈ R
m denote the columns of the

matrix M ∈ R
m×p such that M = [m1,m2, . . . ,mp]. Then

forming the mp−vector by stacking the columns of M on

top of each other defines the operator vec(M), i.e.,

vec(M) =







m1

...

mp






∈ R

mp;
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we refer to the resulting vector as Mv . The operator mat

maps from vectors to matrices of prescribed dimensions, i.e.,

m×p, formed by concatenating entries of the mp-vector, read

from top to bottom, from left to right and putting them in p
columns; thus mat(Mv) = M = [m1,m2, . . . ,mp].

The computation of covariances in the linear quadratic

design presented in this paper is facilitated by using the

tensor notation. The tensor product x ⊗ y is defined as the

outer product vec(xy′). The tensor product M ⊗N is equal

to the Kronecker product of M and N. The tensor product

of two linear transformation M and N is given by

(M ⊗N)(x⊗ y) = Mx⊗Ny = vec(Mxy′N ′).

For any three matrices M,N, and R by which the product

matrix MNR is defined, we have

vec(MNR) = (R′ ⊗A)vec(N).

We note that one can apply the mat operator on both sides

of a vector identity to obtain a matrix identity.

II. PROBLEM STATEMENT

Consider the graph G = (V, E) with |V| = n and the

weighted consensus protocol

ẋi(t) =
∑

{i,j}∈ E

1√
deg i deg j

(xj(t)− xi(t)), (1)

adopted by n-nodes, where deg i is the degree of node i
and xi is the state of the i-th node, e.g., its position, speed,

heading, voltage, etc., evolving according to the weighted

sum of the differences between the i-th node’s state and its

neighbors. Next, let a group of agents I ⊂ V with cardinality

|I| = rI , “excite” the underlying coordination protocol

by injecting signals to the network. Hence, the original

consensus protocol from node i’s perspective assumes the

form

ẋi(t) =
∑

{i,j}∈ E

1√
deg i deg j

(xj(t)− xi(t)) +Biui(t), (2)

where Bi = βi if i ∈ I, and zero otherwise. Without loss

of generality, we can always assume that βi = 1 and modify

the control signal ui(t) as βiui(t) if necessary. The weights

are defined to be 1√
deg i deg j

for each neighbor node j. We

arrive at the compact form of a linear time-invariant system,

ẋ(t) = −L(G)x(t) +Bu(t), (3)

where L(G) ∈ R
n×n is the normalized Laplacian matrix.

The input matrix B ∈ R
n×rI where the jth column has

1 at {ij} entry if i ∈ I and zero otherwise and u(t) =
[u′

1, u
′
2, . . . u

′
rI ]

′. Let us call F = {v ∈ V such that v /∈ I}
as the set of follower nodes and relabel the graph such that

the nodes in I are the first rI nodes and partition L(G) as

follows

L(G) =
[

∆I δI
δ′I LF

]

,

where ∆I , δI , and LF capture the information-exchange

links between the input nodes, the links between the input

nodes and the set of followers, and the links between the

followers, respectively.

A. Random Networks

In a random network, the existence of an edge between

a pair of vertices in the set V is determined randomly with

probability p ∈ (0, 1] and independent of other edges. The

sample space of such random graphs will be denoted by

G(n, p). Note that the value of edge probability can be the

same or distinct for all potential edges. This probability can

also be fixed, or in more interesting scenarios, a function of

the order of the graph, p(n). Having embedded a random

network in the dynamic system (3), it is convenient to

consider an arbitrary sampling of the time axis at intervals

δ > 0 and monitor the trajectory x(t) := x(δt) where t’s are

now assumed to be integers. We thus consider a random

interactive network with associated normalized Laplacian

matrix L(wt), where wt is a sequence of mutually inde-

pendent random events. It is assumed also that the random

process is stationary, i.e., that the probability distribution of

L(wt) does not depend explicitly on t.
The dynamics considered in (3) can be expressed in the

sampled-data form

x(t+ 1) = A(wt)x(t) +B(wt)u(t), (4)

where A(wt) = e−L(wt)∆, and

B(wt) =

(

∫ t∆

(t−1)∆

e−L(wτ )τdτ

)

B.

In order to consider the sampled-data setting for the Dirich-

let dynamics, we need to partition the matrix exponential

e−L(wt)∆. If the input nodes set, I, is labeled as the first rI
nodes, the matrix exponential e−L(wt)∆ can be partitioned

as
e−L(wt)∆ =

[

∗ B(wt)
′

B(wt) A(wt)

]

. (5)

In a more general case, when the input nodes are not

the first rI nodes, the partitioning can be accomplished in

the same manner as (5). Therefore, the dynamic system

can be expressed as (4) with matrices described in (5). It

is assumed also that (4) is stationary, i.e., the probability

distributions of A(wt) and B(wt) do not depend on t.
Whether we consider the consensus (3) or Dirichlet dynamics

(5), we have a dynamic system described by random matrices

A(wt) and B(wt), changing at every time interval based

on the independent random events wt. For the simplicity of

notation, A(wt) and B(wt) will subsequently be referred to

as At, and Bt, respectively.

III. CONTROLLABILITY OF STOCHASTIC SYSTEMS

Controllability and its dual notion of observability for

networked systems are of fundamental importance among

the many topics of interest in coordinated control. The basic

issue in controllability for protocols evolving on random

networks is whether it is possible to transfer any initial state

to the desired state, in some stochastic sense, by applying

judicious control input. This issue comprises the focus of

this section.

In [13], it has been proven that a weak observability

condition is necessary for the Kalman filter over a random
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network to converge almost surely (a.s.). Following the

duality principle, in this section, we explore the notion

of controllability of random networks. Equipped with the

stochastic notion of controllability and algebraic and proba-

bilistic conditions for ensuring it, we then proceed to discuss

the linear quadratic regulator problem for the controlled

consensus over random networks. We now introduce the

weak controllability condition as follows.

Definition 3.1: Let St = BtB
′
t. Then the linear system

(4), or equivalently, the sequence {(At, Bt), t ∈ Z}, is called

weakly controllable if for some t ≥ 1,

P{det{St + AtSt−1A
′
t + . . .

+ (At . . . A2)S1(A
′
2 . . . A

′
t)} 6= 0} 6= 0. (6)

To explore the notion of controllability for random net-

works, let us first provide general definitions on stochastic

controllability.

Definition 3.2: A stochastic system is said to be:

• Weakly state controllable if for all x0, x1 ∈ R
n, and

all ǫ ≥ 0, there exists a random time T a.s. finite and a

control law u defined on [0, T ] such that

P{||x(T ;xo, u)− x1|| ≤ ǫ} > 0,

where x(T ;xo, u) denotes the value at t = T of the

trajectory starting in xo at t = 0 under the control u.

• State controllable if the above probability can be made

equal to one.

• Strongly state controllable if the hitting time TH =
inf{t > 0; ||x(t;xo, u)− x1|| ≤ ǫ} has a finite expecta-

tion, i.e., E{TH} < +∞.

The above notions of controllability are referred to as

“weakly controllable,“ “controllable,“ and “strongly con-

trollable,“ respectively, in the jump-parameter systems lit-

erature [14], [15]. This convention is partially adopted to

avoid confusion with Definition 3.1. As we proved in [13],

the condition in Definition 3.1 is the appropriate notion to

guarantee that the state error defined as x(T, x0, u) − x1

converges almost surely, that is, for all x0, x1 ∈ R
n, and

ǫ ≥ 0, there exists T such that

P{||x(T, x0, u)− x1|| > ǫ} = 0,

or P{||x(T, x0, u)− x1|| ≤ ǫ} = 1. (7)

Thus weak controllability implies the system is state control-

lable with probability 1. In the next step, we give an insight

that weakly state controllability might not be the appropriate

notion for the development of a feedback regulator theory

over random networks. In order to do this, we first notice

that state controllability, strong state controllability and weak

state controllability are analogous to controlled version of

recurrence, positive recurrence, and nondegeneracy (or weak

recurrence), respectively, of the Markov chain defined by

(4). To clarify the analogy, let us start with recalling the

classification of states in a Markov chain. A Markov chain

on D, the domain of its states, is called

• recurrent, if for all i ∈ D and for all t0, there exists

an almost surely finite random time t > t0 such that

P{x(t) = i|x(t0) = i} = 1, or equivalently, a state i

is recurrent if P{x(t) = i for infinitely many t} = 1.

The Markov chain is called recurrent if this condition

holds for all i ∈ D,
• weak recurrent or nondegenerate, if P{x(t) = i|x(t0) =

i} > 0, or equivalently, a state i is weak recurrent

if P{x(t) = i for infinitely many t} > 0. Then, the

Markov chain is called weakly recurrent if this condition

holds for all i ∈ D,
• transient, if P{x(t) = i|x(t0) = i} = 0, or

equivalently, if a state i is transient if P{x(t) =
i for infinitely many t} = 0. The Markov chain is

called transient if this holds for all i ∈ D,

• positive recurrent, if in addition, the return time TR =
inf{t > 0, x(t) = i, x(0) = i} has a finite expectation.

Theorem 3.3 below shows that every state is either recur-

rent or transient. Let us define the random variable Ti as the

first passage time to state i as

Ti(wt) = inf{t ≥ 1 : x(t) = i}. (8)

We now define inductively the rth passage time T
(r)
i to

state i by T
(0)
i (wt) = 0, T

(1)
i (wt) = Ti(wt), and, for

r = 0, 1, 2, . . . ,

T
(r+1)
i (wt) = inf{t ≥ T

(r)
i (wt) + 1 : x(t) = i}. (9)

Let us also introduce the number of visits Vi to i, which can

be written in terms of the indicator function

Vi =

∞
∑

t=0

1{x(t)=i}, (10)

and note that

E(Vi) =

∞
∑

t=0

P{x(t) = i}. (11)

Now we are ready to state the theorem.

Theorem 3.3: [7] The following dichotomy holds:

• If P{Ti < ∞} = 1, then the state i is recurrent.

• If P{Ti < ∞} < 1, then the state i is transient.

In particular, every state is either transient or recurrent.

Proof: If fi = P{Ti < ∞}, then we can prove by

induction that we have P{Vi > r} = fr
i . Assuming this, if

P{Ti < ∞} = 1, then

P{Vi = ∞} = lim
r→∞

P{Vi > r} = 1

so i is recurrent and E(Vi) = ∞.
On the other hand, if P{Ti < ∞} < 1, then

E(Vi) =

∞
∑

t=0

P{Vi > r} =

∞
∑

t=0

fr
i = 1/(1− fi) < ∞, (12)

and hence P{Vi = ∞} = 0 and i is transient.

Therefore if the state i is weakly recurrent and

1 > P{x(t) = i for infinitely many t} > 0,

essentially the analogous controlled Markov chain built on

(4) does not hit the desired state infinitely often. Now the

question is whether weak state controllability or state con-

trollability is a necessary condition for designing a feedback
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controller. In order to answer this question, let us restate the

control problem of interest. The considered control problem

is in fact a regulator problem, where we consider choosing a

suitable control function u(t) to ensure that every initial state

x(t0) = x0 is returned to the reference signal x = 0 in a

way that a performance index is minimized and the reference

state is asymptotically stable. The reference signal x = 0 of

(4) is asymptotically stable in the mean square sense (or in

the norm) if

E(||x(t, x0)||2) < ∞ for all t ≥ 0

and lim
t→∞

E(||x(t, x0)||2) = 0 for all x0. (13)

Similarly, we have asymptotic stability with probability 1 if

the relations
||x(t, x0)|| < ∞, for all t ≥ 0

and lim
t→∞

||x(t, x0)||2 = 0 (14)

hold with probability 1.

Let Cw consists of states that satisfy the weak state

controllability in Definition 3.2. In the next step, following

the same line of reasoning used in the classification of

Markov chains, we prove that all states from the weak state

controllability subset, Cw, do not hit the desired subspace

infinitely often.

Theorem 3.4: If x1 ∈ Cw, equivalently having

P{||x(T ;xo, u) − x1|| ≤ ǫ} > 0, then there is no T
a.s. finite, such that x(T ;xo, u) hits Cw infinitely often.

Proof: Let us introduce T1 = inf{t ≥ 1 : x(t) = x1}
and V1 as the number of times that x(T ;xo, u) hits the disk

Dǫ(x1) when ||x(T + δ;xo, u)− x1|| ≤ ||x(T ;xo, u)− x1||
for δ > 0. By Dǫ(x1), we mean a disk with radius ǫ centered

at x1. Then, define V1 as

V1 =
∞
∑

t=0

1{||x(T ;xo,u)−x1||≤ǫ} (15)

and note that

E(V1) =

∞
∑

t=0

P{||x(T ;xo, u)− x1|| ≤ ǫ}. (16)

We claim that P{T1 < ∞} < 1. The claim holds since

x1 ∈ Cw and we know that P{||x(T ;xo, u)−x1|| ≤ ǫ} > 0.
If f1 = P{T1 < ∞} < 1, then

E(V1) =
∞
∑

t=0

P{V1 > r} =
∞
∑

t=0

fr
1 = 1/(1− f1) < ∞,

therefore, P{V1 = ∞} = 0 and the system does not hit

Dǫ(x1) infinitely often.

Therefore, for the control problem one should require that

all states be in state controllability subset and not the weak

controllability subset.

The next theorem provides an algebraic condition, in the

probabilistic sense, for checking the weak controllability

defined in Definition 3.1.

Theorem 3.5: The system (4) is weakly controllable if and

only if for some t ≥ 1,
P{rank (Bt, AtBt−1, AtAt−1Bt−2, . . . ,

At . . . A2B1) = n} 6= 0. (17)

Proof:

Sufficiency: The stochastic linear system (4) can be written

as
x(t+ 1) = Atx(t) +Btu(t)

= AtAt−1 . . . A0x(0) +At . . . A1B0u(0)

+ At . . . A2B1u(1) + . . .+Btu(t)

= AtAt−1 . . . A0x(0)+

[

At . . . A1B0, At . . . A2B1, . . . , Bt

]











u(0)
u(1)

...

u(t)











. (18)

If for some t ≥ 1,

P{rank (Bt, AtBt−1, AtAt−1Bt−2, . . . At . . . A2B1) = n}

is not identically zero, then for that specific t, the input

vector
[

u′(0) u′(1) . . . u′(t)
]′

can be determined

with probability 1, making the system (18) controllable.

Necessity: From (18), one may conclude that

the controllable subspace is the range of C =
[

At . . . A1B0, At . . . A2B1, . . . , Bt

]

for a given t.
The selected u(i) in this way cannot generate a subspace

larger than the range of the controllability matrix C.
Therefore, rank C ≤ n. If rank C < n, then there exists

some x1 and t > 0 that does not belong to the range of C
and, for that x1, one has

P(||x(T, x0, u)− x1|| ≤ ǫ) = 0,
for any u, T , and x0, which contradicts the assumption.

Therefore, rank C = n.
In [13], we considered the scenario when Ai’s are invertible.

In this case, if
∑t

i=1 BiB
′
i is full rank, the rank condition in

(17) can be replaced by checking the irreducibility of Ā =
E(At) which holds for certain classes of networks such as

Erdős-Renyi and Watts-Strogatz models [11].

IV. LQR OVER RANDOM NETWORKS

The control problem we now consider is choosing a

suitable control function u(t) to ensure that every initial state

x(t0) = x0 is returned to the reference signal x = 0 in a

way that the performance index

E{ρT ||x(T, x0)||2S +

T−1
∑

t=t0

ρt||x(t, x0)||2Q},

ρ > 0, Q > 0, S ≥ 0, (19)

is minimized and the reference state is stable, in a probabilis-

tic sense, as previously discussed. Since wt is a sequence of

mutually independent random events, u(t) depends only on

x(t) and the knowledge of x(t− 1), x(t− 2), . . . carries no

additional information about the future evolution of (4). Let

the control law be the feedback

u(t) = −K(t)x(t), (20)

leading to the closed loop matrix Act defined as

Act = At −BtK(t). (21)

Given the feedback law in (20), the system (4) generates

the random sequence x(t0), x(t0+1), . . . , referred to as the

“motion“ of (4) and denoted by x(t ≥ t0, x0).
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It is well known that if the control law is stationary, the

motion of (4) is asymptotically stable in the mean square

sense if and only if

|λi[E(A
′
ct ⊗A′

ct)]| < 1 (i = 1, . . . , n2). (22)

In [7], it has been shown that, for the specific system

considered here, the same condition also implies asymptotic

stability with probability 1.

Let the minimum value of (19) be V (x0, t0, T ), t1 = t0+
1, x(t1) = x1. The principle of optimality [17] and the

mutual independence of wt now imply that

V (x0, t0, T ) = min
u

{ρE[V (x1, t1, T ] + ||x0||2Q},
= min

u
{ρE[ρV (Ax0 +Bu, t1, T )] + ||x0||2Q}.

We see from (19) that V (x, T, T ) = ||x||2S . Assume by

induction that

V (x, t, T ) = ||x||2P (t,T ) = min
u

{ρE[||Ax + Bu||2P (t+1,T )]

+ ||x||2Q},

where P (T, T ) = S. The solution of the optimization

problem in (19) for T < ∞ has been introduced in [7] as

u(t) = K(t)x(t)

= −E[B′P (t+ 1, T )B]†E[B′P (t+ 1, T )A]x(t),

P (t, T ) = ρE[A′
ctP (t+ 1, T )Act ] +Q, (23)

where Act is defined in (21) and † denotes the generalized

inverse operator. Considering the stationarity of wt we can

now write

P (t, T ) ≡ P (0, T − t) ≡ P (T − t)
and from (23), it can be seen that

P (T + 1) = ρE[A′
cP (T )Ac] +Q, and P (0) = S. (24)

The more interesting case for us is where T = ∞. Let us

also set S = 0. The next theorem describes this case.

Theorem 4.1: [7] Equation (24) has a fixed point P∗ if

and only if the regulator problem has an optimal solution in

the limit T = ∞; P∗ is necessarily unique and all iterates of

P (t, P0) of (24) starting at P0 ≥ 0 converge to P∗. Moreover,

||x0||2P∗
is the optimal index. The optimal control law is

constant and is given by

K∗ = (E[B′
tP∗Bt)

−1
E[B′

tP∗At], (25)

where P∗ = ρE(ActP∗Act) +Q

= ρmat[E(A′
ct ⊗A′

ct)vec(P∗)] +Q

=

∞
∑

t=0

ρt mat[(E[A′
c∗ ⊗A′

c∗ ])
′vec(Q)]. (26)

The existence of the fixed point P∗ and the optimality

of the solution (25) have been discussed in [7]. Now the

essential question is whether there exists a control law which

provides closed loop stability. The next theorem provides the

necessary and sufficient condition to answer this question. It

also provides necessary and sufficient conditions for when

the regulator problem has an optimal solution.

Theorem 4.2: [7] Let us denote the maximum degree of

stability for the system (4) as ρmax. The optimal regulator

problem in the limit T = ∞ has a unique solution if and

only if ρ < ρmax. The system (4) can be made asymptotically

stable in the mean square sense if and only if ρmax > 1. Any

optimal system with 1 ≤ ρ < ρmax is asymptotically stable

in the mean square sense and is therefore asymptotically

stable with probability 1.

We note that ρmax can be evaluated by successive iterations.

Furstenburg and Kesten [16] have also suggested an expres-

sion for calculating ρmax. In this direction, let us define µ(K)
as

µ(K) = lim
q→∞

q−1{E log ||Acq . . . Ac1 ||},

which can also be defined as

lim
q→∞

q−1 log ||Acq . . . Ac1 ||}

with probability 1. Given K, there is a corresponding µ(K),
such that one can determine ρmax as

ρ−1/2
max = inf

K
{eµ(K)}. (27)

Let us now proceed to get a better understanding of the

parameter ρmax. In order to estimate ρmax, the first step

is estimating ||Act || = ||At − BtKt||. Let us consider the

case where Kt = K∗ and Bt = I where I is n× n identity

matrix. Therefore,

BtK∗ = Bt[E(B
T
t P∗Bt)]

−1
E(BT

t P∗At)

= [E(P∗)]
−1

E(P∗)E(At) = E(At).

Consequently,

||Act −BtK∗||2 = ||At − E(At)||2 = λmax{At − E(At)}.

The next step is to estimate λmax{At−E(At)}. Assume 0 <
δ ≪ 1 and estimate At ≈ I − δLt. Therefore, E(At) can be

estimated as I−δE(Li). Now let us estimate ||At−BtK∗||2
where Bt = I as

||At −BtK∗||2 = λmax(At − E(At))

= λmax(I − δLt − I + δE(Lt))

= −δλmax(Lt − E(Lt)).

Chung in [18] has shown that if pn ≫ lnn, then with

probability at least 1− 1/n, one has

|λk(Lt)− λk(E(Lt))| ≤ 3

√

6 ln 2n

pn
,

where Lt is the normalized Laplacian. Then,

−3

√

6 ln 2n

pn
≤ λmax(Lt)− λmax(E(Lt))

≤ λmax (Lt − E(Lt)) . (28)

Now by multiplying (28) by −δ we get

3δ

√

6 ln 2n

pn
≥ −δλmax(Lt − ELt) = ||At −BtK∗||2.

Let us estimate q−1
E{log ||Acq . . . Ac1 ||} as

q−1
E{log ||Acq . . . Ac1 ||} ≤ q

−1
E{

q
∑

t=1

log ||Act ||} ≤

q−1 {q log

(

3δ

√

6 ln 2n

pn

)

} = log

(

3δ

√

6 ln 2n

pn

)

.
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For the problem set-up in (4) with normalized Laplacian,

we can show µ(K) < 0 where the control gain K = 0.

Therefore log
(

3δ
√

6 ln 2n
pn

)

< 0 and 3δ
√

6 ln 2n
pn < 1 which

implies that

p >
54δ ln 2n

n
and p >

lnn

n
.

Briefly, if p > max{ 54δ ln 2n
n , lnn

n }, then µ(K∗) ≤
log
(

3δ
√

6 ln 2n
pn

)

. Therefore,

1√
ρmax

= inf
K
eµ(K) ≤ eµ(K∗) ≤ 3δ

√

6 ln 2n

pn
,

which provides an upper bound for ρmax ≥ pn
54δ2 ln 2n .

In the next section, we implement the proposed controller

for a randomly evolving network according to the Erdős-

Renyi distribution.

V. AN EXAMPLE

Consider a group of seven agents, coordinating their

orientations to achieve a particular alignment over a random

information-exchange network. Values of K∗ and P∗ in (25)

and (26) can be calculated off-line based on the distributions

for the matrices At and Bt.

Fig. 1 shows the evolution of the information graph with

the edge probability p = 0.3 for the first 6 seconds of the

simulation. The crossed node at each interval acts as the

input to the network, which is selected uniformly from the

set of possible input nodes. Fig. 2 (a) and (b) demonstrate the

convergence of the states to the reference signal x = 0 when

the random network is running the consensus protocol with

different rates of convergence dictated by the parameter ρ.

The proposed analysis suggests that with probability at least

6/7 the maximum degree of stability, ρmax, is greater than

1600 if the input matrix is the identity matrix.

time: 0 to 1 (sec) 1 to 2 2 to 3

3 to 4 4 to 5 5 to 6

Fig. 1. Behavior of the random network evolving based on Erdős- Renyi
distribution with p = 0.3 in the first 6 intervals. The crosses are the input
nodes.

VI. CONCLUSION

The necessary and sufficient conditions for the control-

lability of random consensus networks generated based on

Erdős-Renyi distribution are examined in this paper. Based

on the controllability condition, the stability properties of the

optimal linear quadratic regulator are also discussed.
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Fig. 2. Convergence of the states to the reference signal x = 0 with
p = 0.3 with different rates of convergence.
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