
  

  

Abstract — To maintain the maximum achievable efficiency 
for the photovoltaic (PV) systems, it is crucial to achieve the 
maximum power point tracking (MPPT) operation for realistic 
illumination conditions. This paper presents the application of 
the adaptive extremum seeking control (AESC) scheme to the 
PV MPPT problem. A state-space model is derived for the PV 
system with buck converter. The AESC is used to maximize the 
power output by tuning the duty ratio of the pulse-width 
modulator (PWM) of the DC-DC buck converter. To address 
the nonlinear PV characteristics, the radial basis function (RBF) 
neural network is used to approximate the unknown nonlinear 
I-V curve. The convergence of the system to an adjustable 
neighborhood of the optimum is guaranteed by utilizing a 
Lyapunov-based adaptive control method. The performance of 
the controller is verified through simulations.  

I. INTRODUCTION 

OLAR power has experienced dramatic growth in the past 
decade, and the Solar Energy Industries Association 

(SEIA) predicts that the global capacity will reach 980 GW 
by 2020 [1]. A photovoltaic solar power system directly 
converts solar irradiation into electricity [2] [3]. In order to 
reduce the cost of energy (COE), it is ideal to maintain the PV 
operation at its maximum efficiency any time, and such goal 
is complicated by uncertain nonlinear current-voltage (I-V) 
and power-voltage (P-V) characteristics due to the changes in 
intrinsic and environment conditions [4]. The so-called 
Maximum Power Point tracking (MPPT) is a crucial aspect of 
control design for PV system operation [2].  

Many MPPT techniques have been proposed [2, 5-8], and 
most of them utilize the feedback of power measurement of 
the PV array. Typical MPPT methods are essentially static 
search, such as the perturbation and observation (P&O) 
method [6], the incremental conductance (IncCond) method 
[9] and the hill climbing (HC) method [10]. Such methods 
may be limited when the system undergoes quick change of 
the environment conditions. More dynamic MPPT control 
methods [11-13] have been investigated. The dither- 
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demodulation type of Extremum Seeking Control (ESC) 
strategy has received a lot of attention, as capable of nearly 
model-free search of the optimal input [14, 15]. The dither 
ESC based MPPT methods have been investigated in the past 
several years [7, 16]. Lei et al. [7, 16] have demonstrated the 
application of such ESC for the PV MPPT, which can 
simultaneously detects the change in internal resistance from 
the dithered transient. However, the drawback of such ESC 
scheme is its validity limited to the neighborhood of the 
optimum (equilibrium) point, and the controller design is 
based on certain assumed functions e.g. quadratic. Variation 
in the actual nonlinear mapping cannot be taken into account 
explicitly, which may limit its performance. The PV 
power-voltage characteristic (Fig. 2b) presents a good 
example of such situation. The curve bears very different 
slopes at both sides of the MPP. As a safe choice, the ESC 
loop gain has to be limited by the steeper side, which may 
lead to slow convergence if searching from the low-voltage 
side.  

Such problem is approached from a different perspective in 
this study, by following  the Adaptive Extremum Seeking 
Control (AESC) recently developed by Guay and his 
co-workers [17-19]. The AESC controller is designed based 
on the knowledge of system model structure and certain 
objective function [20]. A parameter learning law is used to 
approximate the unknown nonlinear relationship between 
states, and a Lyapunov based inverse optimal design 
technique is used to ensure the convergence to the optimum. 
Such ESC scheme searches for both the actual parameters and 
the optimal input simultaneously. As the asymmetry of the 
nonlinear map is dealt with by the parameter learning process, 
the AESC is expected to achieve better transient performance 
in the PV MPPT. In particular, the PV output power is simply 
the product of the terminal voltage and current, thus the 
objective function is hinged on the nonlinear characteristics 
of I(V) . The radial basis function (RBF) with Gaussian 
kernels [21] is used to approximate the unknown I(V) 
characteristics. A Lyapunov-based adaptive learning control 
technique [22] is applied to guarantee the convergence of the 
overall system output to an adjustable, approximation error 
dependent neighborhood of the optimum.  

The remainder of this paper is structured as follows. 
Section II presents the PV simulation model used, along with 
the DC-DC converter. The AESC design framework is briefly 
reviewed in Section III. In Section IV, the AESC and the 
parameter estimation algorithm are developed based on  the 
approximated analytical modeling of PV dynamics following 
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the spirit of [22]. Simulation results are shown in Section V, 
with conclusion given in Section VI. 

II. PHOTOVOLTAIC SYSTEM MODEL 

The equivalent circuit of the PV system is shown in Fig. 1 
[3], and its current-voltage relation can be modeled as [3] 

 0 exp 1s s
PV

t p

V R V R
I I I

V a R

I I  + +
= − − −  

   
 (1) 

where V and I are the output voltage and current, respectively, 
and I0 is the reverse saturation (or leakage) current of the 
diode. Vt = NskT/q is the thermal voltage of the array with Ns 
cells connected in series, q = 1.60217646 1910−× C is the 

electron charge, and k =  1.3806503 × 2310− J/K is the 
Boltzmann constant. Np is the number of cells in parallel, a is 
the ideality factor, and Rs and Rp are the equivalent series and 
shunt resistance, respectively. IPV is the photocurrent 
proportional to the irradiance, and is also influenced by the 
temperature [3]: 

 ( ),PV PV n I
n

I I
G

K T
G

= + Δ  (2) 

where IPV,n is the light generated current at the nominal 
condition (25oC and 1000W/m2) , and ΔT = T − Tn , with T 
and Tn being the actual and nominal temperatures, 
respectively. G and Gn are the actual and nominal irradiance 
rate on the device surface. KI is the short-circuit temperature 
coefficient. The leakage current is [3]: 

 
3

0 0,

1 1
exp gn

n
n

qET
I

T ak T
I

T

 
= − 

 

  
  

    
 (3) 

where Eg is the bandgap energy of the semiconductor and I0,n 

is the nominal saturation current. 
 The simulation in this study adopts a PV array with 

15 2×  modules, and each module has 54 cells in series. RP = 
322Ω and RS = 0.075Ω. Figure 2 shows the I-V and P-V 
characteristics at 25 °C under different irradiances, while 
Figure 3 shows the I-V and P-V characteristics under nominal 
irradiance rate 1000W/m2 at different temperatures. The 
power output decreases with the increase of device 
temperature. Notice that the MPP voltage is also shifted for 
all cases in Figs. 2 and 3, while the temperature change leads 
to more pronounced changes. This indicates that the adaptive 
MPPT could be more beneficial for temperature change.  

Practical PV Device

Ideal PV Cell

IPV
Id Rp

Rs
V

I

 
Fig. 1. PV Cell Equivalent Circuit.  

As this study aims to validate an MPPT control algorithm, 
a simple scenario of DC resistive load is adopted, as shown in 
Fig. 4. The duty ratio D of the pulse-width modulator (PWM) 

is used to adjust the input voltage of the buck DC-DC 
converter to achieve MPPT. 
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(a) I-V Curves 
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(b) P-V Curves 

Fig. 2 I-V and P-V Curves at 25 °C under Different Irradiance Rates 
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(b) P-V Curves 

Fig. 3 I-V and P-V Curves at Irradiance Rate 1000W/m2, under Different 
Temperatures  
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Fig. 4. PV Array with Front-end Buck Converter. 

III. REVIEW OF ADAPTIVE EXTREMUM SEEKING CONTROL 

The adaptive extremum seeking control is to find the 
unknown operating set-points that optimize the desired 
objective function [20]. Consider the dynamic system form of 
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[22]: 

 ( ), ,x f x x uμ=     (4) 

 ( ),y h x xμ=     (5) 

where the objective function output y is assumed not to be 
directly measureable for feedback, the explicit structure 
information for objective function f[x,μ(x), u) and h[x, μ(x)) 
are required for the controller design with the observable 
system states nx R∈ and unknown nonlinear function μ(x). 
The inverse optimal design technique is used to develop the 
extremum seeking controller.  

The RBF neural network was proposed in [21, 22] to 
approximate the nonlinear relation μ(x), i.e.  

 ( ) ( ) ( )*T
lx t W S x t tμ μ= +        (6) 

where μl(t) is the approximation error, and the ideal weight 
W* is obtained by 

 ( ) ( ){ }* : arg min sup
wW

TW S x xW μ
∈Ω

= −  (7) 

where { }|w mW wW=Ω ≤
,
and wm is a positive constant 

represents the upper bound of the weights, which is to be 
chosen at the design stage. 

An adaptive learning technique using projection algorithm 
is used to online estimate the unknown parameters. A 
Lyapunov-based controller is designed to ensure the 
convergence of the system to an adjustable neighborhood of 
the optimum depends on the approximation error μl(t). The 
detailed formulation of the problem and the design procedure 
of the controller will be described in Section IV. 

IV. AESC BASED PV MPPT CONTROL DESIGN 

The dynamics of the PV system in Fig. 4 can be described 
by two sets of differential equations based on different 
position of the switch [12]. The state equations with the 
switch on (State 1) can be given as 

 
( ) L

i V idV

dt C C
= −  (8) 

 L Ldi iV

dt L R
= −  (9) 

where i(V) represents the complex nonlinear mapping 
between the output current and the terminal voltage of the PV 
array, iL is the inductor current. If the switch is turned off 
(State 0), the state equations become 

 
( )i VdV

dt C
=  (10) 

 L Ldi i R

dt L
= −  (11) 

To obtain a unified system dynamics, Eqs. (8) through (11) 
are combined into a pair of state equations via a typical 
averaging method for PWM based switching circuits [23].  

 
( ) L

i V idV

dt C
D

C
= −  (12) 

 L Ldi i R V

dt L L
D= − +  (13) 

where duty ratio D is defined as the portion of State 1 within a 
period. To ensure a better approximation of the nonlinear 
relation i(V) in the parameter updating process, the ranges of 
the PV output voltage V and the inductor current iL are 
normalized, i.e. divided by 100 V and 10 A, respectively, 
which yields the following state and output equations 

 1kdx R

dt L
x su

L
= − +  (14) 

 ( )2

1 1

1kds

dt k C
s u

k C
xμ= −  (15) 

 ( )1 2ky k s sμ=  (16) 

where x=iL, s=V/k1 with k1=100, μ(s)=i(V)/k2 with k2=10, 
y=P=iV is the power output of the PV array, and u=D(0≤u≤1) 
is the control input to be designed by MPPT control. 

At the steady state, the power output of the PV array can be 
expressed by 

 ( )1 2e e esy k k sμ=  (17) 

Following (6), the steady-state PV power output can be 
approximated by 

 ( )*
1 2

T
e e ey k k W S s s=  (18) 

with the first- and second-order derivatives being 

 ( ) ( )*
1 2

Te
e e e

e

dS s
y

k k W
s

s S s
∂

=
∂

+    (19) 

 ( ) ( )
2

* 2
1 22

2Te
e e e

e

y
k k W d S s s dS s

s

∂
 = + ∂

 (20) 

where dS = ∂S/∂s and d2S = ∂2S/∂s2. The basis function vector 
S(s) is given by 

 ( ) ( ) ( ) ( )1 2 ... lS s b s b s b s=     (21) 

 ( ) ( ) ( )
2

exp , 1, 2,...,
T

i i
i

i

s s
b s i l

σ
ϕ ϕ − − −

= = 
  

 (22) 

where φi and σi are the center and the width of the Gaussian 
function. For the function given by (21) and (22), we have 

 
( ) ( )2

2 2
2 expi ii

i i

s sS

s

ϕ ϕ
σ σ
−  ∂

= − − 
∂   

−
 (23) 

 
( ) ( )2 22

2 2 4 2
2 4 p

1
exi ii

i

s s

s

S ϕ ϕ
σ σ σ

   ∂
 = − + − 
 ∂  

− −

 
 (24) 

The objective of the PV MPPT problem is then formatted as 
to develop a controller to maximizes the steady state power 
output y* with a parameter estimation of the ideal weight W*. 

The design of the AESC controller mainly follows the 
procedure given in [22]. Substituting (6) into (14)-(16) yields  

 1x x
k

L L
su

R= − +  (25) 

 ( ) ( )*2

1 1

1T
ls W S s

k

k
x

C C
t u

k
μ = + −   (26) 

Let Ŵ  denote the estimate of the true weights *W , ŝ  and x̂  
denote the predictions of s and x, respectively. The predicted 
states equations can be given by 
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 ( )1
1

ˆˆ T

x xx x su k
k

Wc t
L

e
R

L
+= − + +   (27) 

 ( )2
2

1 1

ˆ 1 ˆˆ TT
s ss W x

k
S e c t

k C
u k

k
W

C
++−=   (28) 

where kx, ks, c1(t) and c2(t) are parameters to be given. The 
state estimation errors ˆxe x x= −  and ˆse s s= − follow 

 ( )1
ˆT

x x x te e Wck= − −   (29) 

 ( ) ( )2 2
2

1 1

ˆTT
s l s s

k k
S t e c t

k C k C
e W k Wμ+ − −=   (30) 

with * ˆW W W= − . The optimum tracking error is defined as 
the difference between the estimated gradient and 0, i.e. 

 ( ) ( )1 2
ˆ Tz dS sk k s s SW= +    (31) 

To make the parameters and states estimation converge 
towards their true values, a dither signal d(t) is added, i.e.  

 ( ) ( ) ( )ˆ T
sz dSW s s S s d t= + −    (32) 

for which k1, k2 > 0 are removed for simplicity. The tracking 
error dynamics can be given as 

[ ]{ }
[ ] 2

( ) ( ) ( )

( )

ˆ

ˆ ˆ ( ) 2 ( ) ( )( )

T
s

T T

d
dS s s S s d t

dt

dS s s S s

z W

W W Sd s dS s s d t

= + −

+ + + − =  



 
 (33) 

Let Γ1=dS(s)s+S(s) and Γ2=d2S(s)s+2dS(s), we have 

2
1 2 1 2

1

2 2

1 1 1

ˆ ˆ ˆ ˆ ˆ( )

1

(

( )

)T T T T T
s

T
l

z W W s d t W W W
k

k C

k k
S t

k C k C k

S s

x W
C

u dμ


+ −= Γ Γ Γ Γ= + 



− + −+




 


 (34) 

Define the variables 

 ( )1 1

T

xe c t Wη = −   (35) 

 ( )2 2

T

se c t Wη = −   (36) 

 ( )3 3

T

sz c t Wη = −   (37) 

Consider the Lyapunov function candidate 

 2 2 2
2 31

1 1 1 1

2 2 2 2
TV η η η η η= = + +  (38) 

Take the time derivative of V, we have 

( )

( )

1 1 2 2 3 3

1 1 1 1

2 2
2 2

1 1

2 2
1 2

1 1 1

2 2

2

1

3

3 3

( ) ( )

( ) ( )

ˆ ˆ ˆ

ˆ

1

( ) ( ) ( )

T T
x x

T T T
l s s

T T T T

T T
l

k k c t t

k k
S k k c t t

k C k C

k k
S

k C k C k C

k
t t t

k

V

W c W

W W c W

W W W S s xu W

c c W
C

d W

η η η η η η

η η

η μ η

η

μ

+ +

= − −

 
+ + − − 

 
 

+ +  


+ −  

=

−

−

−


Γ Γ − +

+

   
 

  

 

 

 (39) 

By setting the dither signal as 

( ) ( ) ( ) ( ) ( )3 1 2 1 2
ˆ ˆ ˆ/

T T T
dd t c t k d t a tW k k W W= − ++ Γ Γ   (40) 

with kd being a positive gain and external signal a(t) to be 
assigned. Then the control law is 

( ) ( )1 2
2 2

1

ˆ ˆ ˆ( ) ( ) / ( ) /T T T
d szW S s a t k W d t k W z

k

k C k
u

x C

 
=  


− Γ + Γ


+  (41) 

We can reduce (39) to 

( )

( )

1 1 1 1

2 2
2 2

1 1

2 2
3 3

1

2 2

3 3

( ) ( )

( ) (

)
ˆ

)

( ( )

T T
x x

T T T
l s s

T
T T T

z z l

V W c W

W W c

k k c t t

k k
S k k c t t

k C k C

k
k c t

W

W
k W S t

k
W W

C
c

η η

η μ η

η η μ

= −

−

− −

 
+ + − − 

 
 

+ − + + 
  

Γ
− −

  

  

  

(42) 

To cancel the terms with W , let 

 1 1
T T

xcc k= −  (43) 

 2
2 2

1

T T
s

k
c k c

k C
S= − +  (44) 

 2
3 3 2

1

ˆT T T T
z

k
c Wk c

k C
S= − Γ+  (45) 

Substituting (43)(44)(45) into (42) yields 

( )

2 2 22 2
1 2 2 3 3 2

1 1

2 2 2 22 32
1 2 2

1 1

2
2 2 22 4 2

3 2 3

3

1 4 1

2

ˆ

ˆ

2

2 2

T
x s l z l

x s l

T
z l

k k
k k

k
V k W

k

k

C k C

k kk
k

k k C k C

k k k

k Ck k C
W

η η η μ η η μ

η η μ η

η μ η

− − + +

− +

= − Γ

≤ −

− Γ

+

+ +



       (46) 

where k3 and k4 are positive constants. To cancel the positive 
terms in (46), kx, ks and kz can be designed as 

                                   0x xk k=                                    (47) 

                             2 3
0

12s s

k k
k k

k C
+=                                (48) 

                     ( )2
4 2

0 2
1

ˆ
2

T
z z

k k
k

k C
k W Γ= +                        (49) 

where kx0, ks0 and kz0 are positive constants. We finally have 

( ) ( )2 22 2

1 12 2 2
Tm

l m l

k k k
t VV k t

k Ck k Ck
η η μ μ≤ − + − +=    (50) 

with { }0 0 02min , ,m x s zk k k k=  and { }3 40.5min ,kk k= . From 

[22], an explicit bound for η  can be obtained as 

 ( ) ( )1 0

0

2
1

1

sup
2

t t

t
l

t

k
e

k kC
λ

τ
η α μ τ

≤ ≤

−≤ +  (51) 

with ( )1 0V tα =  and ( )1 1/ 2 mkλ = . Equation (51) assures 

the convergence of η to a small neighborhood of the origin. 
To show the convergence of the error signals ex, es and zs, we 
still need to ensure the convergence of the parameter 

estimation errors W  and also c1(t), c2(t), c3(t) are bounded. 
 The boundedness and the convergence of the parameter 
estimates Ŵ can be ensured by setting the following 
parameter update law and assigning the proper external signal 
a(t) to provide the persistent excitation [22]: 

 ( )( )ˆ ˆProj ,W t e W= ϒ
 (52) 

where ( )( )roj , ˆP t e Wϒ  is the projection defined as 
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( )( )

( )
( )

( ) ( )

( ) ( )2

Proj ,

if 

or if  and 

ˆ

ˆ

ˆ ˆ 0

ˆ ˆ
ˆ

ˆ
 other  

ˆ
wise

mT

w TT
m

T
T

w T

t W

W w

W w W

W

e

q
t e

q t

W
W

W

e

I q t
W

e

γ
γ

γ γ

ϒ

 
 ϒ 

≤

≥ ≤ ϒ = 
  
 − ϒ    

     (53) 

where γw is a positive gain. The function q(Ŵ) is given by 

 ( ) ( )( )2 2ˆ ˆ /m mWq M w wW= − +   (54) 

where wm and ε are positive constants. M(Ŵ) is given by 

 
( ) ( )

( )

2

2

ˆ ˆ ˆ ˆln diag

ˆln diag

TW W W IW I a

I b IW

M δ

δ

  + − −   
  + − −   

=
 (55) 

with a>0, b>0, δ>0. γ is defined with gradient grad[q(Ŵ)) 

( )
( )

( )

ˆ ˆ ˆ ˆ
ˆdiag

ˆ
ˆd

1
gr

iag

ad

1

T T T

T

W W W W
IW I a

W
I b

q

IW

γ
δ

δ

 − − 

 − −

 = =



+

+

   

 (56) 

To consider the boundedness of c1(t), c2(t), c3(t) , let 
 [ ]1 2 3( ) ( ) ( ) ( )Tt c t c t c tϒ =  (57) 

and from (43) through (45), we have 

 ( ) ( ) ( ) ( )
.

t K t t B tϒ = − ϒ +  (58) 

with ( )
0 0

0 0

0 0

x

s

z

k

K t k

k

 
 =  
  

 (59) 

 ( ) 2 2
2

1 1

ˆ0
T

T Tk k
B t

k C k C
S W S

 
=  
 

Γ  (60) 

Based on [22], to show ( )tϒ  is bounded, we need to show 

the elements of B(t) are bounded functions of time with 

 ( ) ( )2

2 2 22 2 2
22 2

1 1
2

ˆT T Tk k
B t S

k C
S S

k C
W SΓ= +  (61) 

Figures 2 and 3 show that s is bounded, and thus S,is bounded. 
Equations (23) and (24) also assure the boundedness of Γ2. 
The above parameter update law leads to the boundedness of 
Ŵ, implying the boundedness of B(t) and then ( )tϒ .  

V. SIMULATION RESULTS 

The AESC controller designed in last section was then 
simulated with the PV system described in Section II, on the 
platform of Simulink 7.3 SimPowerSystems with Matlab 
R2009a. The following initial parameters were set:  

 ( ) ( ) ( ) ( )0 0.1 , 0 0.1 , ˆ ˆ0 0.1, 0 0.1Li A V x sV= = ==  

The design parameters in the adaptive controller (41) and the 
parameter update law (52) are chosen as: γw =100, kd = 0.1, kz0 
= 1, kx0 = 1000, ks0 = 1, k3 = 1, k4 = 0.1. To fully cover the 
range of [0,6], a 5-term RBF is selected with centers and 
widths of  

 ( )0.6 4.8 1 / 4i iϕ = + −  and 0.6iσ = ,     1,2,3, 4,5i =  

The initial weights are set as ( )ˆ 0 0.1iW =  for i = 1, 2, …, 5, 

and ( ) ( ) ( )
1

4
1 2

10

10 sin cosi i i i
i

ia t A t A tω ω ω
=

−= ⋅ +   , where 

A1i and A2i, i = 1,…,10, are randomly chosen from a unit 
normal distribution. The frequencies are chosen as 

 ( )100 1 1 10 / 9i iω = ⋅ + −         1, ..., 10i =  

The initial values for c1(t), c2(t), c3(t) and d(t) are given by 

 ( ) [ ]0 0 0 0 0 0 , 1,2,3
T

ic i= =    and   ( )0 0d =  

To evaluate the AESC performance, a dither ESC controller 
following [7] was simulated for the same example. 

The performances of AESC and dither ESC with nominal 
conditions are compared in Fig. 5 with the same initial 
conditions as iL(0) = 22.1 A, V(0) = 300 V. The theoretical 
maximum power at T = 25oC and G = 1000W/m2 is 5884W. 
The steady-state MPPT result given by dither ESC is 5874W, 
and 5838W by the AESC. The AESC demonstrates a much 
quicker transient, with the 1% settling time of 0.035s 
compared to 0.4s for the dither ESC. The AESC has 0.78% 
steady-state error, as compared to 0.17% for the dither ESC. 

Figure 6 shows a case of MPPT with a temperature change 
from 25oC (0 ~ 0.1s) down to 17oC (0.1 ~ 0.2s). The power 
outputs are 5876 W and 6061 W, respectively, with the dotted 
lines showing the theoretical optima, i.e. 5884W and 6082W, 
respectively. The bottom plot shows the control input u (i.e. 
D). Figure 7 shows the case with a step-down of the 
irradiance level from 1000W/m2 (0 ~ 0.1s) to 500 W/m2 (0.1 
~ 0.2s). The power outputs are 5876 W and 2501 W, with the 
theoretical optima (the dotted line) being 5884 W and 2576 
W, respectively. Figure 8 shows the case of a simultaneous 
step change of both temperature (from 25 to 17oC) and 
irradiance. (from 1000 W/m2 to 800 W/m2). The power 
outputs are 5876 W and 4692 W, with the theoretical optima 
(the dot lines) being 5884W and 4695W, respectively.  

VI. CONCLUSION 

The AESC is applied to the PV MPPT problem, with the 
RBF approximating the unknown nonlinear I-V map. The 
duty ratio for the DC-DC converter is used to regulate the PV 
terminal voltage. Both the MPP and the unknown RBF 
parameters are learned by the adaptive update law. 
Simulation results show significant improvement in transient 
with the AESC over the dither ESC, with only slight increase 
of steady-state error. Similar improvement was also observed 
for abrupt ambient changes of temperature and irradiance. 
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Fig. 5. Comparison of PV MPPT Results with AESC and Dither ESC. 
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Fig. 6. AESC MPPT with a Step-down of Temperature. 
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Fig. 7. MPPT with a Step Change of Irradiance Rate. 
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Fig. 8. MPPT with Step Change of Both Temperature and Irradiance Rate. 
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