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Abstract— In this paper, a novel distributed guaranteed cost
congestion control (DGCC) strategy for mobile networks with
differentiated services traffic is developed. The switching or
changes in the network topologies is modeled by a Markovian
process. By incorporating communication capability among
controllers, the distributed congestion controller is shown to be
in fact equivalent to a local state feedback control plus a nearest
neighboring controllers’ adjustment with proportional gains.
Numerical simulation results are presented to illustrate the
effectiveness and capabilities of our proposed DGCC strategies.

I. INTRODUCTION
Congestion control problem is one of the main challenges

in the mobile networks, which in general deals with the
problem of flow rate control and network resource allo-
cation. Standard congestion control schemes have shown
poor performances in wireless mobile networks [1], [2], [3]
and [4]. Furthermore, networks with differentiated services
traffic require highly adaptive congestion control algorithms.
Also, the nodes mobility, bandwidth limitation and the power
constrains of network nodes make these developments more
challenging.

Recently, several decentralized congestion control schemes
have been developed by using the sliding mode control [8],
the switching control [10], [12] and the guaranteed cost
control [13] techniques. Although decentralized congestion
control approaches are economical in implementation and
have been shown effective in the above works, nevertheless
performance of a decentralized controller is generally con-
servative due to the fact that the decisions are only based
on local information. Therefore, new congestion control
approaches which respect the underlying interconnections,
adopts a distributed architecture and scales well to large
networks are highly in demand.

The objective of this paper is to improve on the congestion
control strategy in [13] by incorporating the possibility of
communications among the controllers and to develop a
distributed congestion control strategy for mobile networks
with differentiated services traffic.

The proposed distributed congestion controller is shown to
be in fact equivalent to a local state feedback control that is
embedded with a nearest neighboring controllers’ adjustment
mechanism. The resulting guaranteed cost control problem is
then cast as a quadratic regulation problem of a time-delay
system with free parameters (gains) that need to be selected.

Therefore, the decisions of each controller is based on the
local information of each node and the adjusting information
from the nearest neighboring controllers.

II. PROBLEM FORMULATION

A. Dynamical Model of Diff-Serv Networks

In this paper, we assume that the dynamics of a queue is
governed by an M/M/1. The resulting queuing system can
be applied to describe a wide variety of queuing models as
found in systems with a very large number of independent
customers/nodes that can be approximated as a Poisson
process.

Given an M/M/1 queue the dynamics of a single node can
be expressed as follows [9], [17], [18]

ẋi(t) =−µi
xi(t)

1+ xi(t)
Ci(t)+λi(t) (1)

where xi(t) is the queuing length, Ci(t) is the link capacity,
λi(t) is the average rate of incoming traffic, and 1/µi is
the average length of the packets being transmitted in the
network.

Consider a general network with n nodes. In a large
scale network the input traffic to each node can consist
of two parts, namely: (1) the external traffic λi(t) which
in principle could represent the traffic that is being sent
from nodes of other clusters (defined as groups of nodes
not belonging to the nearest neighboring set ℘i) as well as
disturbances or environmental stimuli, and (2) the internal
traffic λ j(t − τ ji(t)) which is the delayed input traffic from
all the neighboring nodes within a given cluster.

Therefore, by using the representation (1), the fluid flow
model corresponding to each node is governed by

ẋi(t) =− f (xi(t))Ci(t)+λi(t)+ ∑
j∈℘i(αt )

λ j(t − τ ji(t))g ji (2)

λ j(t − τ ji(t)) = f (x j(t − τ ji(t)))C j(t − τ ji(t)) (3)

where f (xi(t)) = µixi(t)/(1 + xi(t)), ℘i is the set of the
nearest neighboring nodes associated with the node i, g ji(t)
is the traffic compression gain from node j to node i, τ ji(t)
is the time-varying delay between node j and node i, and αt
is a Markov chain that represents the rule for changes and
switching in the neighboring sets.

The Markov chain αt is defined on a complete probability
space {Ω,F ,P} that takes values in a finite space S =
{1, ...,M} which describes the switching between different
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modes, and whose evolution is governed by the following
probability transitions

P[αt+∆ = k | αt = l] =
{

πkl∆+o(∆), k ̸= l;
1+πkk∆+o(∆), k = l. (4)

where πkl ≥ 0 is the transition rate from mode k to mode
l, πkk = −∑M

k=1,k ̸=l πkk, and o(∆) is a function satisfying
lim∆→0

o(∆)
∆ = 0. In this work the modes 1, ...,M correspond

to the topologies that are possible in the network due to the
nodes mobility.

Any communication network is characterized by a number
of physical resources constraints. A typical set of physical
constraints corresponding to the network are now specified
as follows

0 < xi(t)≤ xbu f f er,i 0 ≤Ci(t)≤Cserver,i (5)

where xbu f f er,i is the buffer size and Cserver,i is the link
capacity of node i.

On the other hand, the instantaneous traffic transmission
rate and its rate of change at each node should satisfy

λi(t)≤ λ max
i ≤Cserver,i λ̇i(t) ∈ L∞ (6)

Finally, the following two assumptions are made in this
work

Assumption 1: The time-varying and unknown delays
τ ji(t) are upper bounded and the maximum upper bound
is a known constant, that is

0 ≤ τ ji(t)≤ h ji with h = max{h ji} (7)
Assumption 2: The external incoming traffic to each node

is L2 norm bounded, that is∫ ∞

0
∥λi(t)∥2dt ≤ γi, γi > 0 (8)

B. Guaranteed Cost Control

The guaranteed cost control approach was first introduced
in [19], which is an extension to the classical LQR regulation
problem for linear systems with parametric uncertainties. The
conceptual objective of the GCC is to design a feedback con-
troller such that for all admissible uncertainties the closed-
loop system is asymptotically stable and an upper bound on
the corresponding cost function is guaranteed [16], [20], [21].

In this paper, the transmission, the processing, and the
propagation delays in the mobile network are considered as
unknown and time-varying variables in the dynamical system
model (2). The guaranteed cost control problem of system
(2) is then defined as follows.

Definition 1: [15] For the Markovian jump time-delay
system (2)-(3), the following jump quadratic cost function
is defined

Ji = E{
∫ ∞

0
[xT

i (t)Qi(αt)xi(t)+uT
i (t)Ri(αt)ui(t)]dt}(9)

where xi(t) is the state, ui(t) is the control input, and Qi(αt)
and Ri(αt) are positive definite matrices. Provided there
exist a control law u∗i (t) and a positive scalar J∗i such that
the closed-loop system is stochastically stable and the cost
function Ji satisfies

Ji ≤ J∗i

then J∗i is the stochastic guaranteed cost of the system (2)-(3)
and u∗i (t) is the stochastic guaranteed cost controller of the
system (2)-(3).

III. DISTRIBUTED GUARANTEED COST CONGESTION
CONTROL STRATEGY

In this paper, we consider three kinds of traffic, namely the
premium (denoted by ”p”), the ordinary (denoted by ”r”), and
the best-effort according to the definitions proposed by IETF
[5]. The dynamic queuing models of the mobile network (2)-
(3) are valid for each traffic class.

According to the dynamical queuing model (2)-(3), the
congestion control strategy for the premium traffic is to
allocate the output capacity Cpi(t) such that the queuing
length of the premium traffic is as close as possible to
its reference value. On the other hand, the strategy for the
ordinary traffic is to simultaneously regulate the incoming
flow rate λri(t) and allocate the capacity Cri(t) such that its
queuing length is as close as possible to its reference value.
Finally, for the best-effort traffic, no explicit active control
is designed in this paper since this traffic does not have any
QoS requirements.

A. Premium Traffic Control Strategy

The control input for the premium traffic is the link
capacity, that is upi(t) = Cpi(t). Based on the nonlinear
system model (2)-(3), the following feedback linearization
scheme is first applied

upi = f−1(xpi(t))ūpi zpi(t) = xpi(t)− xre f
pi

where ūpi(t) denotes a state feedback controller, zpi(t) de-
notes the new state of the transformed linear system, and
xre f

pi denotes the reference queuing length at node i.
The nonlinear dynamical model (2)-(3) is transformed into

the following equivalent linear one

żpi(t) =−ūpi(t)+λpi(t)+ ∑
j∈℘i(αt )

ūp j(t − τ ji(t))g ji
p (t) (10)

The distributed congestion controller of the premium traf-
fic is selected as

ūpi(t) = Kpi(αt)z̄pi(t)+Wji(αt)K ji(αt)Z̄p j(t) (11)

where z̄pi = [zpi(t) λ̂pi(t)]T , Z̄p j(t−τ)= vec{z̄T
p j(t−τ ji(t))},

and K ji(αt) = diag{Kp j(αt)}.
The signal λ̂pi(t) is an adaptive estimator used to estimate

the unknown external incoming premium traffic λpi(t) and
compensates for its effect via feedback which is defined as
follows

˙̂λpi(t) =


δpi(αt )zpi(t)−βpi(αt )λ̂pi(t), if 0 ≤ λ̂pi(t)≤ λ max

pi or
λ̂pi(t) = 0, zpi(t)≥ 0 or
λ̂pi(t) = λ max

pi , zpi(t)≤ 0
−βpi(αt )λ̂pi(t), otherwise

(12)
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Therefore, the closed-loop system of the premium traffic (10)
after applying the distributed controller (11) becomes

˙̄zpi(t) = Ak
ic(αt)z̄pi(t)+ ∑

j∈℘i(αt )

Bi0wp
ji(αt)Kp j(αt)z̄p j(t) (13)

+ ∑
j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKpk(αt)z̄pk(t − τ ji(t))+Bλi λpi(t)

where Ak
ic(αt) = Ak

i0(αt)+Bi0Kpi(αt), Ak
i0(αt), Bi0, B j, and

Bλi , for i, j = 1, ...,n are the system matrices that are defined
as follows

A1
i0(αt) =

[
0 0

δpi(αt) −βpi(αt)

]
Bi0 =

[
−1
0

]
A2

i0(αt) =

[
0 0
0 −βpi(αt)

]
B j =

[
gp

ji
0

]
Bλi =

[
1
0

]

In view of the closed-loop system (13), the control objective
of the distributed guaranteed cost congestion control (DGCC)
problem is to actually select the local state feedback control
gains Kpi(αt) and the adjusting weights of the neighboring
controllers Wji(αt), such that the system (13) is stable and
the following jump quadratic cost function is bounded

Jpi = E{
∫ ∞

0
(z̄T

pi(t)Qi(αt)z̄pi(t)+ ūT
piRi(αt)ūpi(t))dt} (14)

where Qi(αt) and Ri(αt) are positive definite matrices with
respect to each mode αt ∈ S = {1, ...,M}.

Lemma 1: Given the cost function (14), if there exist
symmetric positive definite matrices ΛT

i1(αt), X̄ik(αt), V̄ii(αt),
T̄i(αt), and matrices Ui, Ni(αt), ΛT

i3, and S̄i(αt) for k = 1,2,
i = 1, ....n, and αt ∈S = {1, . . . ,M} such that the following
LMI conditions are satisfied

Ω̄ik =


Yik Bi0W ji +h2W̄ji I +h2(V̄ik + T̄i) I +h2(V̄ik + T̄i)
∗ h2W̃ ji + R̃i h2Ŵji h2Ŵ ji
∗ ∗ h2Ui h2Ui
∗ ∗ ∗ h2Ui

< 0

Yik = 2(Vik +Ti)+
M

∑
k=1

παt kΛi1 +h2Ṽik(αt)+(1+h)S̄i −Ūi + Q̄i + R̄i

then the distributed controller (11) is a stochastic guaranteed
cost controller of the system (10), and the state feedback
control gain is given by Kpi(αt) = B+

i0Ti(αt)Λ−1
i1 (αt), where

”+” denotes the Moore-Penrose inverse.
Proof: Consider the following stochastic Lyapunov-

Krasovskii functional candidate

Vi(z̄pi(t),αt) =Vi1 +Vi2 +Vi3 +Vi4 (15)

Vi1 = z̄pi(t)T Pi(αt)z̄pi(t)

Vi2 =
∫ t

t−h
z̄T

pi(s)Si(αt)z̄pi(s)ds

Vi3 = h
∫ 0

−h

∫ t

t+θ
˙̄zT
pi(s)Ui ˙̄zpi(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
z̄T

pi(s)Si(αt)z̄pi(s)dsdθ

and Pi(αt), Si(αt), Ui are positive definite matrices with
appropriate dimensions. For each mode αt = k ∈ S , the
infinitesimal generator [11] of the Lyapunov function can

be derived as follows

LVi1 = 2z̄T
pi(t)Pi(αt)[Ak

ic(αt)z̄pi(t)+ ∑
j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))

+ ∑
j∈℘i(αt )

Bi0wp
ji(αt)Kp j(αt)z̄p j(t)

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKpk(αt)z̄pk(t − τ ji(t))]

+z̄T
pi(t)

M

∑
k=1

παt kPi(k)z̄pi(t)+2z̄T
pi(t)Pi(αt)Bλi λpi(t)

LVi2 = z̄T
pi(t)Si(αt)z̄pi(t)− (1−h)z̄T

pi(t −h)Si(αt)z̄pi(t −h)

+
∫ t

t−h
z̄T

pi(s)
M

∑
k=1

παt kSi(k)z̄pi(s)ds

LVi3 = h2[Ak
ic(αt)z̄pi(t)+ ∑

j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))

+Bλi λpi(t)+ ∑
j∈℘i(αt )

Bi0wp
ji(αt)Kp j(αt)z̄p j(t)

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKpk(αt)z̄pk(t − τ ji(t))]TUi

[Ak
ic(αt)z̄pi(t)+ ∑

j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))

+Bλi λpi(t)+ ∑
j∈℘i(αt )

Bi0wp
ji(αt)Kp j(αt)z̄p j(t)

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKpk(αt)z̄pk(t − τ ji(t))]−h

∫ t

t−h
żT

pi(s)Ui ˙̄zpi(t)ds

LVi4 = hz̄T
pi(t)Si(αt)z̄pi(t)−

∫ t

t−h
z̄T

pi(s)
M

∑
k=1

παt kSi(k)z̄pi(s)ds

Let us define Z̄pk(t −τ) = vec{z̄T
pk(t−τ ji(t))} k ∈℘j(αt),

Then by adding up LVi1 to LVi4 one can obtain
LVi ≤ ηT

i (t,τ,h)Σik(αt)ηi(t,τ,h)+ηT
i (t,τ,h)Θik(αt)Bλi λpi(t)

+h2λ T
pi(t)B

T
λi

UiBλi λpi(t)

≤ ηT
i (t,τ,h)[Σik(αt)+Mik(αt)]ηi(t,τ,h)

+λ T
pi(t)B

T
λi
[ΘT

ikM−1
ik Θik(αt)+h2Ui]Bλi λpi(t)

= ηT
i (t,τ,h)Wik(αt)ηi(t,τ,h)+λ T

pi(t)Ψikλpi(t) (16)

where ηi(t,τ,h) = [z̄T
pi(t) Z̄T

p j(t) Z̄T
p j(t − τ) Z̄T

pk(t − τ) z̄T
pi(t −

h)]T ; Mik(αt) is a positive definite matrix, and the matrices
Σik and Θik are defined as

Σik(αt) =


σ1 σ2 [Pi(αt)+h2(Ak

ic(αt))
TUi]B jiK ji(αt)

∗ σ4 h2KT
ji(αt)W T

ji (αt)BT
i0UiB jiK ji(αt)

∗ ∗ h2KT
ji(αt)BT

jiUiB jiK ji(αt)
∗ ∗ ∗
∗ ∗ ∗

σ3 Ui
σ5 0
σ6 0
σ7 0
∗ −Ui − (1−h)Si(αt)

 (17)

Wik(αt) = Σik(αt)+Mik(αt)

Ψi(αt) = BT
λi
[ΘT

ikM−1
ik Θik(αt)+h2Ui]Bλi

Θik(αt) =
[

θ1 θ2 θ3 θ4 0
]T

θ1 = 2Pi(αt)+2h2(Ak
ic(αt))

TUi; θ2 = 2h2KT
ji(αt)W T

ji (αt)BT
i0Ui

θ3 = 2h2KT
ji(αt)BT

jiUi; θ4 = 2h2KT
k j(αt)W T

k j(αt)BT
k jUi

Let us define W̄ik(αt) = Wik(αt) + diag{Qi(αt) +
KT

pi(αt)Ri(αt)Kpi(αt) KT
jiW

T
ji RiWjiK ji 0 0 0}, and the

following matrices
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Λi1(αt) = P−1
i (αt); Λi2(αt) = K+

ji (αt)

Λi3(αt) = [B jiK ji(rt)]−1; Λi4(αt) = [Bk jWk j(αt)K ji(αt)]
−1

Λi5(αt) = 0; Λi(αt) = diag{Λi j(αt)}

By pre and post multiplying the matrix W̄ik(αt) with ΛT
i and

Λi, respectively, we obtain

Ωik(αt) = ΛT
i (αt)W̄ik(αt)Λi(αt) =

[
Ω̄ik 0
0 0

]
(18)

where

Ω̄ik =


Xik Bi0W ji +h2Ak

icUiBi0W ji I +h2Ak
icUi

∗ h2W T
ji BT

i0UiBi0W ji +W T
ji RiWji h2W T

ji BT
i0Ui

∗ ∗ h2Ui
∗ ∗ ∗

I +h2Ak
icUi

h2W T
ji BT

i0Ui

h2Ui
h2Ui

 (19)

Xik = 2Ak
icΛi1 +

M

∑
k=1

παt kΛi1 +h2ΛT
i1(A

k
ic)

TUiAk
icΛi1

+(1+h)ΛT
i1SiΛi1 −ΛT

i1UiΛi1 +ΛT
i1(Qi +KT

piRiKpi)Λi1

Therefore, if we further define
Ak

i0(αt) =Vik(αt)Λ−1
i1 (αt) Bi0Kpi(αt) = Ti(αt)Λ−1

i1 (αt)

V̄ik(αt) =V T
ik (αt)Ui; T̄ T

i (αt) = T T
i (αt)Ui

R̄i = ΛT
i1KT

piRiKpiΛi1; R̃i =W T
ji RiW ji

W̄ ji = Ak
icUiBi0W ji; Ŵ ji =W T

ji BT
i0Ui

W̃ ji = Ŵ jiBi0Wji; S̄i = ΛT
i1SiΛi1

Q̄i = ΛT
i1QiΛi1; Ūi = ΛT

i1UiΛi1

Ṽik(αt) = (V̄ik(αt)+ T̄ T
i (αt))(Vik(αt)+Ti(αt))

the matrix Ω̄ik(αt) becomes

Ω̄ik =


Yik Bi0W ji +h2W̄ ji I +h2(V̄ik + T̄i) I +h2(V̄ik + T̄i)
∗ h2W̃ ji + R̃i h2Ŵ ji h2Ŵ ji
∗ ∗ h2Ui h2Ui
∗ ∗ ∗ h2Ui


Yik = 2(Vik +Ti)+

M

∑
k=1

παt kΛi1 +h2Ṽik(αt)+(1+h)S̄i −Ūi + Q̄i + R̄i

Therefore, if Ω̄ik(αt) < 0, one will have Ωik < 0, and
hence W̄ik < 0. Furthermore, by solving the LMI conditions
Ω̄ik(αt) < 0, the weight matrix Wji(αt) can be obtained di-
rectly. The state feedback control gain Kpi(αt) and the system
matrix Ak

i0 can be expressed as Kpi(αt) = B+
i0Ti(αt)Λ−1

i1 (αt)
and Ak

i0(αt) =Vik(αt)Λ−1
i1 (αt).

Furthermore, since W̄ik(αt)< 0, one will have Wik(αt)< 0.
From (16), it then follows that

LVi ≤ −z̄T
pi(t)(Qi(αt)+KT

pi(αt)Ri(αt)Kpi(αt))z̄pi(t) (20)

−Z̄T
p jK

T
jiW

T
ji RiW jiK jiZ̄p j(t)+λ T

pi(t)Ψi(αt)λpi(t)

Therefore, for any [z̄pi(t) Z̄p j(t)] that satisfies[
z̄T

pi(t)
Z̄T

p j(t)

]T

Cik

[
z̄pi(t)
Z̄p j(t)

]
≥ Ψi(αt)λ 2

pi(t)

Cik =

[
Qi(αt)+KT

pi(αt)Ri(αt)Kpi(αt) 0
0 KT

jiW
T
ji RiW jiK ji

]
one will have LVi < 0.

Therefore, the system (13) is stochastically ultimately
bounded and the ultimate bounded region is given by

∥z̄pi(t)∥2 +∥Z̄p j(t)∥2 ≥ max(Ψi(αt))

λmin(Cik)
λ 2

pi(t) (21)

On the other hand, in review of (20), we have

Jpi ≤ E{
∫ ∞

0
(−LVi +λ T

pi(t)Ψi(αt)λpi(t))dt}

= Vi(z̄pi(0),0,r0)− lim
t→∞

Vi(z̄pi(t), t,αt)+E{
∫ ∞

0
Ψi(αt)λ 2

pi(t)dt}

≤ Vi(z̄pi(0),0,r0)− z̄T
pi(∞)Pi(r∞)z̄pi(∞)+ γimax(Ψi(αt))

Therefore, the upper bound of the cost function Jpi is (since
z̄pi(∞) = 0)

Jpi < Vi(z̄pi(0),0,r0)+ γimax(Ψi(αt)) = J∗pi (22)

Therefore, the distributed control law (11) is a guaranteed
cost controller for the system (13). This completes the proof
of Lemma 1. �

B. Ordinary Traffic Control Strategy

Since the incoming ordinary traffic λri(t) is measurable
and available for control, the control inputs for the ordinary
traffic are the link capacity and the incoming traffic, that are
u1

ri(t) = Cri(t) and u2
ri(t) = λri(t). Similar to the premium

traffic, we first apply the following feedback linearization
scheme to the open-loop system (2)-(3), namely

zri(t) = xri(t)− xre f
ri and uri(t) = F−1(xri, t)ūri(t)

where uri(t) = [u1
ri(t),u

2
ri(t)]

T , ūri(t) = [ū1
ri(t), ū

2
ri(t)]

T , and
F(xri(t)) = diag{ f (xri(t)),1}.

The resulting dynamical model (2)-(3) with respect to the
ordinary traffic becomes

żri(t) = Bi0ūri(t)+ ∑
j∈℘i(αt )

Bi j ūr j(t − τ ji(t)) (23)

where Bi0 =
[

−1 1
]

and Bi j =
[

g ji
r 0

]
are the system ma-

trices. The performance cost function for the ordinary traffic
is selected as

Jri = E{
∫ ∞

0
(zT

ri(t)Qi(αt)zri(t)+ ūT
ri(t)Ri(αt)ūri(t))dt} (24)

where Qi(αt) and Ri(αt) are given positive definite matrices.
Based on the decentralized model (23), the distributed

congestion controller for the ordinary traffic is selected as

ūri(t) = Kri(αt)zri(t)+W ji(αt)K ji(αt)Zr j(t) (25)

where Wji(αt) = vec{wr
ji(αt)} and K ji(αt) = diag{Kri(αt)}.

Therefore, the control objective for the ordinary traffic is to
select the distributed control gain Kri(αt) and the distributed
weight matrix Wji such that the system (23) is stochastically
stable and the following cost function is upper bounded:

Jri = E{
∫ ∞

0
(zT

ri(t)Qi(αt)zri(t)+ ūT
ri(t)Ri(αt)ūri(t))dt} (26)

where Qi(αt) and Ri(αt) are given positive definite matrices.
Lemma 2: Given the cost function (26), the distributed

controller (25) is the stochastic guaranteed cost controller
for the system (23), if there exist symmetric positive definite
matrices Λi1(αt), S̄i(αt), Ui, Ūi, Q̄i(αt), R̄i(αt), positive def-
inite matrices Ti(αt), T̃i(αt), W̄ji(αt), Ŵji(αt), and W̃ji(αt),
for i = 1, ...,n, αt ∈ S = {1, ....M}, such that the following
LMI conditions are satisfied

Σ̃ik(αt) =


Yik Bi0Wji +h2W̄ ji I +h2T̄i I +h2T̄i
∗ h2W̃ji h2Ŵ ji h2Ŵ ji
∗ ∗ h2Ui h2Ui
∗ ∗ ∗ h2Ui

< 0

Yik = 2Ti(αt)+
M

∑
k=1

παt kΛi1 +h2T̃i(αt)+(1+h)S̄i −Ūi + Q̄i + R̄i

and the distributed control gain is given by Kri(αt) =
B+

i0Ti(αt)Λ−1
i1 (αt).
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Proof: Consider the following stochastic Lyapunov-
Krasovskii functional candidate

Vi(z̄ri(t),αt) =Vi1 +Vi2 +Vi3 +Vi4 (27)

Vi1 = z̄ri(t)T Pi(αt)zri(t)

Vi2 =
∫ t

t−h
zT

ri(s)Si(αt)zri(s)ds

Vi3 = h
∫ 0

−h

∫ t

t+θ
żT

ri(s)Ui ˙̄zri(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
zT

ri(s)Si(αt)zri(s)dsdθ

and Pi(αt), Si(αt), Ui are positive definite matrices with
appropriate dimensions. For each mode αt = k ∈ S , the
infinitesimal generator of the Lyapunov function can then
be derived as follows

LVi1 = lim
∆→0+

1
∆
{E[Vi1(zri(t +∆),αt+δ , t +∆)|zri(t),αt = k]

−Vi1(zri(t),k, t)}

= 2zT
ri(t)Pi(αt) ˙̄zri(t)+

M

∑
k=1

παt kzT
ri(t)Pi(k)zri(t)

= 2zT
ri(t)Pi(αt)[Bi0Kri(αt)zri(t)+ ∑

j∈℘i(αt )

B jKr j(αt)zr j(t − τ ji(t))

+ ∑
j∈℘i(αt )

Bi0wp
ji(αt)Kr j(αt)zr j(t)

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKrk(αt)zrk(t − τ ji(t))]+ zT

ri(t)
M

∑
k=1

παt kPi(k)zri(t)

LVi2 =
∫ t

t−h
2zT

ri(s)Si(αt) ˙̄zpi(s)ds+
∫ t

t−h
zT

ri(s)
M

∑
k=1

παt kSi(k)zri(s)ds

= zT
ri(t)Si(αt)zri(t)− (1−h)zT

ri(t −h)Si(αt)zri(t −h)

+
∫ t

t−h
zT

ri(s)
M

∑
k=1

παt kSi(k)zri(s)ds

LVi3 = h2 żT
ri(t)Ui żri(t)−h

∫ t

t−h
żT

ri(s)Ui żri(s)ds

= h2[Bi0Kri(αt)zri(t)+ ∑
j∈℘i(αt )

B jKr j(αt)zr j(t − τ ji(t))

+ ∑
j∈℘i(αt )

Bi0wp
ji(αt)Kr j(αt)zr j(t)

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKrk(αt)zrk(t − τ ji(t))]TUi

×[Bi0Kri(αt)zri(t)+ ∑
j∈℘i(αt )

B jKr j(αt)zr j(t − τ ji(t))

+ ∑
j∈℘i(αt )

Bi0wp
ji(αt)Kr j(αt)zr j(t)

+ ∑
j∈℘i(αt )
k∈℘j(αt )

B jw
p
k jKrk(αt)zrk(t − τ ji(t))]−h

∫ t

t−h
żT

ri(s)Ui ˙̄zri(t)ds

LVi4 = hzT
ri(t)Si(αt)zri(t)−

∫ t

t−h
zT

ri(s)
M

∑
k=1

παt kSi(k)zri(s)ds

By defining Zrk(t −τ) = vec{z̄T
rk(t −τ ji(t))} k ∈℘j(αt)

and B jiK ji(αt)zr j(t − τ) = ∑ j∈℘i(αt ) B jKr j(αt)zr j(t − τ ji(t)),
and adding up LVi1 to LVi4, one gets

LVi ≤ ηT
i (t,τ,h)Σi(αt)ηi(t,τ,h) (28)

where ηi(t,τ,h) = [zT
ri(t) Z̄T

r j(t) Z̄T
r j(t − τ) Z̄T

rk(t − τ) zT
ri(t −

h)]T , and Σi is given by

Σi(αt) =


σ1 σ2 [Pi(αt)+h2(Bi0Kri(αt))

TUi]B jiK ji(αt)
∗ σ4 h2KT

ji(αt)W T
ji (αt)BT

i0UiB jiK ji(αt)

∗ ∗ h2KT
ji(αt)BT

jiUiB jiK ji(αt)
∗ ∗ ∗
∗ ∗ ∗

σ3 Ui
σ5 0
σ6 0
σ7 0
∗ −Ui − (1−h)Si(αt)

 (29)

Let us define

Σ̄ik(αt) = Σi(αt)+

[
Qi +KT

i RiKi 0
0 KT

jiW
T
ji RiW jiK ji

]
< 0 (30)

and the matrices
Λi1(αt) = P−1

i (αt); Λi2(αt) = K+
ji (αt)

Λi3(αt) = [B jiK ji(rt)]−1; Λi4(αt) = [Bk jWk j(αt)K ji(αt)]
−1

Λi5(αt) = 0; Λi(αt) = diag{Λi j(αt)}

By pre and post multiplying the matrix Σi(αt) with ΛT
i and

Λi, respectively, one will obtain

Σ̄ik(αt) = ΛT
i (αt)Σi(αt)Λi(αt) =

[
Σ̃ik 0
0 0

]
(31)

where:

Σ̃ik =


Xik Bi0W ji +h2Bi0KriUiBi0W ji I +h2Bi0KriUi
∗ h2W T

ji BT
i0UiBi0W ji +W T

ji RiWji h2W T
ji BT

i0Ui

∗ ∗ h2Ui
∗ ∗ ∗

I +h2Bi0KriUi
h2W T

ji BT
i0Ui

h2Ui
h2Ui

 (32)

Xik = 2Bi0KriΛi1 +
M

∑
k=1

παt kΛi1 +h2ΛT
i1(Bi0Kri)

TUiBi0KriΛi1

+(1+h)ΛT
i1SiΛi1 −ΛT

i1UiΛi1 +ΛT
i1(Qi +KT

piRiKpi)Λi1

Therefore, if we define
Bi0Kri(αt) = Ti(αt)Λ−1

i1 (αt); T̄ T
i (αt) = T T

i (αt)Ui

W̄ ji = Bi0KriUiBi0Wji; Ŵ ji =W T
ji BT

i0Ui

W̃ ji = ŴjiBi0W ji; R̄i = ΛT
i1KT

piRiKpiΛi1

S̄i = ΛT
i1SiΛi1; Ūi = ΛT

i1UiΛi1

Q̄i = ΛT
i1QiΛi1; T̃i(αt) = T̄ T

i (αt)Ti(αt))

then the matrix Σ̃ik(αt) becomes

Σ̃i(αt) =


Yik Bi0Wji +h2W̄ ji I +h2T̄i I +h2T̄i
∗ h2W̃ji h2Ŵ ji h2Ŵ ji
∗ ∗ h2Ui h2Ui
∗ ∗ ∗ h2Ui


Yik = 2Ti +

M

∑
k=1

παt kΛi1 +h2T̃i(αt)+(1+h)S̄i −Ūi + Q̄i + R̄i

Therefore, if Σ̃i(αt) < 0, one will have Σi(αt) < 0, and the
system (23) is stochastically stable. By solving the LMI
conditions Ω̄ik(αt) < 0, and the weight matrix Σ̃ik(αt) < 0,
one can obtain Kri(αt) = B+

i0Ti(αt)Λ−1
i1 (αt).

Moreover, in view of (28) and (29) we also have
LVi ≤−zT

ri[Qi +KT
ri RiKri]zri −ZT

r j(t)K
T
jiW

T
ji RiWjiK jiZr j(t))< 0 (33)

Consequently, one obtains

Jri = E{
∫ ∞

0
(zT

ri[Qi +KT
ri RiKri]zri +ZT

r j(t)K
T
jiW

T
ji RiW jiK jiZr j(t))dt}

≤ −E
∫ ∞

0
LVidt

= V (zri(0),0,r0) = J∗ri (34)

Therefore, according to Definition 1, the scalar J∗ri is the
stochastic guaranteed cost of system (23). This completes
the proof of Lemma 2. �
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IV. STABILITY CONDITIONS INCORPORATING THE
NETWORK PHYSICAL CONSTRAINTS

In this section, the network physical constraints (5)-(6)
are transformed into LMI mode-dependent conditions. These
complementary LMIs, together with the stability conditions
provided in Lemmas 1 and 2 will be taken into account
for determining a complete solution to the guaranteed cost
congestion control problem.

A. Mode-Dependent Physical Constraints of the Premium
Traffic

The state constraints for system (10) can be expressed as
follows

z̄min
pi ≤ z̄pi(t)≤ z̄max

pi (35)

where z̄min
pi = [−xre f

pi 0]T and z̄max
pi = [xbu f f er

pi − xre f
pi ,λ max

pi ]T

denote the minimum and the maximum bounds of the new
state. By squaring (35) one will have

z̄T
pi(t)z̄pi(t)≤ ∥z̄max

pi ∥2 (36)

Consider the following ellipsoid for a given parameter ε1i > 0

Fi(αt) = {z̄pi(t)|z̄T
piΛ

−1
i1 (αt)z̄pi ≤ ε1i} (37)

According to the definitions of the Lyapunov functional Vi
in (15), since Λ−1

i1 (αt) = Pi(αt), we have

z̄T
piΛ

−1
i1 (αt)z̄pi ≤Vi(z̄pi(t),αt) (38)

By integrating (20), from 0 to t and considering that
Vi(z̄pi(0),r0) = 0, we get

Vi ≤ −
∫ t

0
z̄T

pi(t)(Qi(αt)+KT
pi(αt)Ri(αt)Kpi(αt))z̄pi(t)dt

+
∫ t

0
λ T

pi(t)Ψi(αt)λpi(t)dt

<
∫ ∞

0
λ T

pi(t)Ψi(αt)λpi(t)dt

< γimax(Ψi(αt)) (39)

Therefore, the state z̄pi(t) will belong to the set Fi(αt)
for all the modes αt if γimax(Ψi(αt)) ≤ ε1i. Consequently,
the right hand side of the state constraint (35) is satisfied if
ε1i/(z̄max

pi )2 ≤ Λ−1
i1 (αt).

By applying the Schur complement, the right-hand side
of the state constraint (35) will hold if the following LMI
conditions are satisfied

Ωp
c1i(αt), γimax{Ψi(αt)} ≤ ε1i (40)

Ωp
c2i(αt),

[
Λi1(αt) ΛT

i1(αt)
Λi1(αt) ∥z̄max

pi ∥2/ε1i

]
≥ 0 (41)

On the other hand, the left-hand side of the state constraint
(35) can be rewritten as z̄pi(t)− z̄min

pi ≥ 0.
According to the definition of non-negative systems [22],

if the above system is non-negative, then the left-hand side
of the state constraint (35) holds. By selecting the matrix
Λi1(αt) as a diagonal positive definite matrix, the non-
negative condition of the closed-loop system matrices can

be expressed as follows

Ωp
c3i(αt) , (Ti(αt))i j ≥ 0 (42)

Vik(αt) =

[
V 1

ik(αt) V 2
ik(αt)

V 3
ik(αt) V 4

ik(αt)

]
V 1

i1(αt) = V 1
i2(αt) = 0

V 2
i1(αt) = V 2

i2(αt) = 0

V 3
i2(αt) = 0

V 3
i1(αt) > 0 and is diagonal

V 4
i1(αt) = V 4

i2(αt)< 0 and is diagonal

The input constraint of the system (10) is expressed as
0 ≤ ūpi(t)≤Cserver,i(αt) (43)

Noting that ūpi(t) = B+
i0Ti(αt)Λ−1

i1 (αt)z̄pi(t), hence the input
constraint (43) becomes

0 ≤ B+
i0Ti(αt)Λ−1

i1 (αt)z̄pi(t)≤Cserver,i(αt) (44)

Consider the ellipsoid (37), so that the right-hand side of the
input constraint will be satisfied if

(B+
i0Ti(αt)Λ−1

i1 (αt))
T (εi1/C2

server,i(αt))B+
i0Ti(αt)Λ−1

i1 (αt)≤ Λ−1
i1 (αt) (45)

The above condition can be transformed into the following
LMI condition

Ωp
c4i(αt) ,

[
I KT

i (αt)
Ki(αt) (C2

server,i(αt)/ε1i)Λi1(αt)

]
≥ 0 (46)

The non-negative constraint of the input will be satisfied if
the control gain (Kpi(αt))i j > 0. Hence, by using Kpi(αt) =
B+

i0Ti(αt)Λ−1
i1 (αt) and noting that Λ−1

i1 (αt) is set to be a
diagonal positive definite matrix, then Bi0 is negative definite.

The left-hand side of the input constraint can be trans-
formed into the following LMI condition

Ωp
c5i(αt) , (Ti(αt))i j ≤ 0 (47)

Therefore, the above results and the LMI conditions given
in Lemma 1 can be summarized into the following theorem.

Theorem 1: A distributed guaranteed cost congestion con-
troller (DGCC) for the premium traffic in a mobile network
is designed according to

ūpi = Kpi(αt)z̄pi +Wji(αt)K ji(αt)Z̄p j(t) (48)

if the LMI conditions that are given in Lemma 1 subject
to the positive definite diagonal matrix Λ−1

i1 (αt) and the
LMI conditions Ωp

c1i(αt) to Ωp
c5i(αt) for i = 1, ...n, αt ∈

S = {1, ...,M}, as given in (40), (41), (42), (46), and (47),
respectively, are all satisfied.

Proof: Follows along the same lines as in the derivations
for Lemma 1 and the analysis of the physical constraints.
These details are omitted due to the space limitations. �
B. Mode-Dependent Physical Constraints of the Ordinary
Traffic

The physical constraints for the ordinary traffic in a mobile
network are listed as

zmin
ri ≤ zr(t)≤ zmax

ri ; 0 ≤ ūri(t)≤ cri(αt)

where zmaz
ri = xbu f f er

ri − xre f
ri and zmin

ri =−xre f
ri .

To avoid any confusion, in the remainder of this section
we use the notations Λpi1 and Λri1 to denote the Lyapunov
matrix Λi1 that is used in Lemmas 1 and 2, for the premium
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and the ordinary traffic, respectively, and the following
analysis of the physical constraints can be obtained.

For the state constraints, consider the following ellipsoid
for a given parameter εi2 > 0, namely

Si = {zT
ri(P̃ri)

−1(αt)zri < εi2} (49)

From the definition of the Lyapunov function given in (27)
and the stability conditions given in Lemma 2, we will have

zT
r (t)Λ

−1
ri1 zr(t)≤Vi(zri(t),αt) (50)

Now, by integrating (33) on both sides from 0 to t and
considering V (zri(0),r0) = 0, we will have

Vi ≤ −
∫ t

0
zT

ri(t)(Qi(αt)+KT
pi(αt)Ri(αt)Kpi(αt))zri(t)dt < 0 (51)

Therefore, zri(t) belongs to the set Si for all t > 0. Conse-
quently, the right-hand side of the state constraints can be
expressed according to the following LMI condition

Ωr
c1i(αt) ,

[
Λri1(αt) ΛT

ri1(αt)
Λri1(αt) (zmax

ri )2/εi2

]
≥ 0 (52)

On the other hand, the left-hand side of the state constraints
can be considered by the following non-negative constraint

zri(t)− zmin
ri ≥ 0 (53)

Following along the similar lines as those in deriving the
LMI conditions for the physical constraints of the premium
traffic, and noting that the matrix Λri1 is set to be diagonal
and positive definite, and given that Bi0 < 0, the non-negative
constraint of the state can be expressed by the following LMI
conditions Ωr

c2i(αt) , (Ti(αt))i j ≤ 0 (54)

For the constraints on the input ūri, by taking into account
that ūri(t) = Kri(αt)zri(t), it can be stated that

0 ≤ B+
i0Ti(αt)Λ−1

ri1(αt)zri(t)≤ cri(αt) (55)

Note that cri(αt)=Cserver,i(αt)−Kpi(αt)z̄pi(t), where Kpi(αt)
is the control gain of the premium traffic controller. Conse-
quently, the input constraints of the ordinary traffic can be
expressed as follows

0 ≤ Kri(αt)zri(t)≤Cserver,i(αt)−Kpi(αt)z̄pi(t) (56)

From the right-hand side of (56) one can have

Kri(αt)zri(t)+Kpi(αt)z̄pi(t)≤Cserver,i(αt) (57)

By squaring (57) we obtain[
zri(t)
zpi(t)

]T [
KT

ri
KT

pi

][
Kri Kpi

][ zri(t)
zpi(t)

]
≤ ∥Cserver,i(αt)∥2

(58)

Therefore, by considering the ellipsoid Fi and the set Si, the
right-hand side of the input constraints will be satisfied if
the following LMI conditions hold

Ωr
c3i(αt), γimax{Ψi(αt)} ≤ εi1 (59)

Ωr
c4i(αt),


I Kri(αt) Kpi(αt)

KT
ri (αt)

C2
server,i(αt )

εi1+εi2
Λri1(αt) 0

KT
pi(αt) 0

C2
server,i(αt )

εi1+εi2
Λpi1(αt)

≥ 0

(60)
The model-dependent LMI conditions derived above together
with the stability conditions obtained in Lemma 2 can be
summarized according to the following theorem.

Theorem 2: A distributed guaranteed cost congestion con-
troller (DGCC) for the ordinary traffic in a mobile network
is designed if the conditions given in Lemma 2 is satisfied
subject to the LMIs Ωr

c1i to Ωr
c4i that are governed by

equations (52), (54), (59), and (60), respectively.
Proof: The proof follows along the same lines as those

given in Lemma 2 and the derivations and analysis for the
physical constraints that are given in this subsection. �

V. SIMULATION RESULTS

The simulation results presented in this section are in-
tended to demonstrate the effectiveness and capabilities of
our proposed decentralized Markovian jump guaranteed cost
congestion (MJ-GCC) strategy to mobile Diff-Serv networks.

A. Performance Metrics
In the simulations of this paper, one denotes the link

between nodes by a connectivity parameter ai j(αt) which
is defined as

ai j(αt) =

{
1, if nodes i and j are connected
0, otherwise (61)

where αt represents the changes of network topology.
Now, let the packet loss rate (PLR) for the pre-

mium traffic in the mobile network be defined as
PLRpi(t) =

Pbi+Pci
λpi(t)+ ∑

j∈℘i
λ ji(t)g ji(t)a ji(αt )

, Pbi(t) = max{0,λpi(t)+

∑
j∈℘i

λ ji(t)g ji(t)a ji(αt) − (xbu f f er,i − xpi(t))}, and Pci(t) =

∑
k∈℘i

λik(t)gik(t)(1 − aik(αt)), where Pbi is the packet loss

induced by the buffer overflow and Pci is the packet loss due
to the network topology changes. The PLR for the ordinary
traffic in the mobile network is similarly defined.

On the other hand, the average queuing delay of a mobile
network can be extended to the mobile network as

E{T i
q}=

E{xi(t)}
E{λi(t)}+ ∑

j∈℘i

E{λ ji(t)g ji(t)a ji(αt)}
(62)

where E{T i
q} is the average queuing delay and xi(t) is the

present queuing state.
The network we consider consists of three clusters where

each cluster has five nodes. In each cluster, one of the five
nodes act as the decision maker and the other four nodes
act as sensors. Only the decision makers can communicate
with each other to share the information among the three
clusters. This network configuration is quite general and
can be found in many applications such as sensor/actuator
networks, cooperative team of unmanned vehicles [6]-[7],
and high speed Ethernet networks. The physical constraints
of the network are set to Cserver,i = 10 Mb, xbu f f er,i = 5
Mb, for i = 1, ...,15. Each source node generates a premium
random traffic with a mean packet size of 512 bytes and
pace the packets into the network every 10ms. The premium
traffic is assumed to be bounded such that λ max

pi = 0.8 Mbps.
The comparative results of the buffer characteristics in

node 11 by utilizing the proposed DGCC strategy, the decen-
tralized GCC [13], and an equivalent centralized guaranteed
cost congestion control strategy (the details are not provided
due to space limitations) are summarized in Tables I and II.
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TABLE I
THE PREMIUM TRAFFIC PERFORMANCE OF THE NODE 11

hmax Decentralized Centralized Distributed
= 80 ms GCC [13] GCC GCC
PLR 0 0 0
Queuing Delay 26.0 ms 24.5 ms 24.6 ms
Mean Error 3.83% 2.87% 2.93%
Settling Time 0.09s 0.11s 0.09s
Max cost J∗p 5.05×1020 2.94×1020 3.27×1020

Num of LMIs 21 8 18
Max dimension of LMIs 10×10 18×18 10×10

As can be inspected from these numerical results, one can
readily observe that:

• The DGCC strategy can obtain a more accurate con-
trol result (mean error) than the decentralized GCC
algorithm, and respond faster (settling time) than the
centralized GCC. This is due to the fact that by incor-
porating the adjustments from the nearest neighboring
nodes, the coupling effects of the neighboring states are
considered explicitly. Therefore, by properly selecting
the distributed weights, the DGCC approach can obtain
a more effective control than the decentralized one. On
the other hand, the DGCC controller is implemented at
each node and updated only based on the local infor-
mation. Therefore, the buffer response of the DGCC is
faster than the centralized one, and

• The upper bound of the guaranteed cost by utilizing
the DGCC approach is between the decentralized and
the centralized GCC approaches. However, the number
of LMIs and the maximum dimension of the LMIs by
utilizing the DGCC approach is similar to the decentral-
ized one. These results confirm again that the DGCC
approach is also scalable to large scale networks.

VI. CONCLUSIONS

In this paper, a distributed guaranteed cost congestion
control (DGCC) strategy for a mobile network with Diff-
Serv traffic is proposed. By taking the advantages of the
Markovian jump and the guaranteed cost control principles,
the proposed DGCC algorithm is shown to be in fact
equivalent to a local state feedback control plus a nearest
neighboring controllers that are adjusted with proportional
gains. The resulting congestion control problem is then cast
as a quadratic regulation problem of a time-delay system
with free parameters (gains) that need to be selected. The
analytical results are confirmed through a number of simu-
lation studies. The comparative results demonstrate that the
DGCC strategy significantly enhances the scalability of the
centralized algorithm and improves the performance when
compared to the other congestion control approaches in the
literature.
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