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Abstract— A generalized notion of the input-to-state L2-gains
of discrete-time switched linear systems is proposed in this
paper. Such gains are then characterized using the radii of
convergence of a family of suitably defined functions called
the generating functions. Properties of the generating functions
are studied and their numerical computation algorithms are
developed. Some numerical examples are presented.

I. INTRODUCTION

A switched linear system is a dynamical system consisting

of a number of linear subsystems along with a switching rule

that determines the switchings among subsystems. Switched

linear systems are an important class of hybrid systems, and

their stability has been studied extensively; see the recent

surveys [1], [2] and the references therein. Approaches to

analyzing stability include multiple Lyapunov functions, LMI

methods and Lie algebraic methods.

An important concept in the study of robust control of

linear and nonlinear systems is the L2-gain [3], namely,

the maximum output energy that can be excited using a

given input/perturbation energy. This concept has a natural

extension to switched linear systems, whose (hybrid) control

includes both continuous inputs and the switching signal [4].

A common storage function approach was used to bound the

L2-gain of switched systems in [5], [6], while [7] applied

the variational approaches. Conditions for characterizing the

L2-gain of switched linear systems under average dwell time

constraints were given in [8]. The design of switching signal

to achieve a certain L2-gain and the subsequent stability

analysis were presented in [9].

In this paper, we propose a generalized notion of the input-

to-state L2-gain for discrete-time switched linear systems.

Compared with the classical definition, the input energy

and state energy are weighted by an exponential discount

factor. By studying how the induced L2-gain evolves with

the discount factor, not just for the single non-discounted

case as in the classical studies, we may gain new insights

into the robustness of the switched linear systems.

In our previous work [10], a method based on the notion

of generating functions is proposed to study the stability

of autonomous switched linear systems. These functions

are power series with coefficients dependent on the system

trajectories, and their radii of convergence characterize the
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maximum exponential growth rate of the SLS trajectories.

In this paper, we will extend this method to controlled

switched linear systems by defining the corresponding gen-

erating functions and showing that their radii of convergence

characterize precisely the generalized L2-gain under study.

The notion of generating functions lends itself particularly

well to L2-gain analysis of discrete-time switched linear

systems, a topic which has received less attention compared

to its continuous-time counterpart.

The paper is organized as follows. In Section II, controlled

switched linear systems are briefly reviewed. The generalized

L2-gain is defined in Section III. In Section IV, the strong

generating functions of controlled switched linear systems

are defined and some of their properties are derived. We show

that their radii of convergence characterize the generalized

L2-gain. An algorithm for computing the strong generating

functions is presented in Section V, and a numerical example

is presented in Section VI. Finally, some concluding remarks

are given in Section VII.

II. CONTROLLED AND AUTONOMOUS SWITCHED

LINEAR SYSTEMS

A discrete-time controlled switched linear system (SLS)

has the dynamics

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), t = 0, 1, . . . , (1)

that switches among M linear control subsystems (Ai ∈
Rn×n, Bi ∈ Rn×m) indexed by i ∈ M := {1, . . . ,M}. We

assume that at least one Bi is nonzero. Here, x(t) ∈ Rn is

the state, u(t) ∈ Rm is the control input, and σ(t) ∈ M
is the mode, all at time t. For simplicity, we often use u to

denote the control input sequence {u(t)}t=0,1,..., and σ the

switching sequence {σ(t)}t=0,1,....

Denote by x(t;σ, z, u) the state trajectory of the controlled

SLS (1) starting from the initial state x(0) = z under the

switching sequence σ and the control input u. For a fixed

σ, system (1) becomes a linear time-varying system, whose

solution x(t;σ, z, u) is jointly linear in z and u.

By setting u ≡ 0, the dynamics (1) reduces to that of an

autonomous SLS:

x(t+ 1) = Aσ(t)x(t), t = 0, 1, . . . . (2)

Denote by x(t;σ, z) the solution to (2) starting from x(0) =
z under the switching sequence σ. Then x(t;σ, z) is exactly

the solution x(t;σ, z, u) to the controlled SLS (1) with u = 0.

The reachable set of the SLS (1) is defined as the set

of all states that the state trajectory can reach within a finite
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time starting from zero initial state, under arbitrary switching

sequences and control inputs:

R := {x(t;σ, 0, u) | t = 0, 1, . . . , ∀σ, ∀u}.

The reachable set R for the SLS (1) is in general a count-

able union of subspaces and not necessarily a subspace in

itself [11]. However, in the rest of the paper we assume that

R is a subspace in Rn and will refer to it as the reachable

subspace. Indeed, a randomly generated SLS is completely

reachable over Rn with probability one.

III. GENERALIZED L2-GAIN OF CONTROLLED SLSS

A. Definition

The definition of the input-to-state L2-gain κ ∈ R+∪{∞}
of the discrete-time SLS (1), adapted from the corresponding

definition of continuous-time SLSs in [4], is defined by

κ2 := sup
σ

sup
06=u∈L2

∑∞
t=0 ‖x(t;σ, 0, u)‖

2

∑∞
t=0 ‖u(t)‖

2

= sup
σ

sup
06=u∈L2

∑∞
t=0 ‖x(t+ 1;σ, 0, u)‖2

∑∞
t=0 ‖u(t)‖

2
, (3)

where L2 is the space of all u with finite L2-norm. In this

paper, we study a generalized version of the L2-gain, denoted

by κ(λ) ∈ R+ ∪ {∞}, whose square is given by

[κ(λ)]2 := sup
σ

sup
06=u∈L2,λ

∑∞
t=0 λ

t‖x(t+ 1;σ, 0, u)‖2
∑∞

t=0 λ
t‖u(t)‖2

, (4)

where λ ∈ R+ := [0,∞) is a discount factor, and L2,λ

is the space of all u with finite λ-discounted L2-norm:

‖u‖2,λ :=
(
∑∞

t=0 λ
t‖u(t)‖2

)1/2
. The L2-gain κ defined

in (3) is a special case of (4) by setting λ = 1.

B. Approximations by Truncation

For later analysis and computation, we define finite-

horizon versions of the L2-gain as follows. For each k ∈ N

where N is the set of positive integers, denote by Uk the set

of controls u that are identically zero after time k− 1. Then

the k-horizon L2-gain κk(λ) of system (1) is defined by:

[κk(λ)]
2 := sup

σ
sup

06=u∈Uk

∑k−1
t=0 λt‖x(t+ 1;σ, 0, u)‖2

∑k−1
t=0 λt‖u(t)‖2

. (5)

Lemma 1: For each k ∈ N, κk(λ) is a lower semi-

continuous function of λ ∈ R+.

Proof: By (5), κk(λ) is the supremum of a family of

continuous functions in λ ∈ R+ over all σ and u. Thus,

κk(λ) itself must be lower semi-continuous in λ ∈ R+.

Proposition 1: For any λ ≥ 0, κk(λ) ↑ κ(λ) as k → ∞.

Proof: That κk(λ) ≤ κ(λ) follows as the supremum

in (5) is taken over a smaller space Uk than L2,λ in (4). A

similar argument shows that κk(λ) is non-decreasing in k.

As a result, we have limk→∞ κk(λ) ≤ κ(λ). To show

the other direction, assume first κ(λ) is finite. Then for

any small ε > 0, a control u and a switching sequence σ

exist such that
∑∞

t=0 λ
t‖u(t)‖2 = 1 and

∑∞
t=0 λ

t‖x(t +
1;σ, 0, u)‖2 ≥ [κ(λ)]2 − ε. By choosing k large enough,

we have
∑k−1

t=0 λt‖x(t + 1;σ, 0, u)‖2 ≥ [κ(λ)]2 − 2ε while

∑k
t=0 λ

t‖u(t)‖2 ≤ 1; thus [κk(λ)]
2 ≥ [κ(λ)]2−2ε. As ε > 0

is arbitrary, this implies that limk→∞ κk(λ) ≥ κ(λ), hence

limk→∞ κk(λ) = κ(λ). The case when κ(λ) = ∞ can be

similarly proved.

Let Uc := ∪∞
k=0Uk be the set of all controls u with finite

duration. Note that Uc is dense in L2,λ. Then,

[κ(λ)]2 = sup
σ

sup
06=u∈Uc

∑∞
t=0 λ

t‖x(t+ 1;σ, 0, u)‖2
∑∞

t=0 λ
t‖u(t)‖2

, (6)

which follows directly from Proposition 1. This will inspire

the definition of the generating functions in the next section.

C. Properties

We first derive some basic properties of the generalized

L2-gain. More properties will be derived in the next section.

Proposition 2: The L2-gain κ(λ) as a function of λ ∈ R+

has the following properties:

1) At λ = 0, κ(0) = maxi∈M σmax(Bi), where

σmax(Bi) denotes the largest singular value of Bi;

2) κ(λ) is a lower semi-continuous function in λ ∈ R+.

Proof: 1). At λ = 0, we have

[κ(0)]2 = sup
σ

sup
u(0) 6=0

‖x(1;σ, 0, u)‖2

‖u(0)‖2

= sup
i∈M

sup
u(0) 6=0

‖Biu(0)‖2

‖u(0)‖2
= max

i∈M
[σmax(Bi)]

2.

2). This follows from Proposition 1 as κ(λ) = supk κk(λ)
and each κk(λ) is lower semi-continuous in λ.

Although not clear yet at this point, we will prove later

on that κ(λ) is a non-decreasing function of λ.

IV. GENERATING FUNCTIONS OF CONTROLLED

SWITCHED LINEAR SYSTEMS

A. Autonomous Generating Function

For each λ ∈ R+, the strong generating function of the

autonomous SLS (2) is the function Gλ : Rn → R+ ∪ {∞}
defined as [10]:

Gλ(z) := sup
σ

∞
∑

t=0

λt‖x(t;σ, z)‖2, ∀z ∈ R
n. (7)

The radius of convergence of the strong generating func-

tion Gλ(z) is defined as:

λ∗ := sup{λ ∈ R+ |Gλ(z) < ∞, ∀z ∈ R
n}. (8)

In [10], it is shown that the autonomous SLS (2) is expo-

nentially stable under arbitrary switching if and only if its

radius of convergence λ∗ > 1.

Let V be a subspace of Rn invariant under {Ai}i∈M, i.e.,

AiV ⊂ V for all i ∈ M. The radius of convergence of the

strong generating function Gλ(z) on V is defined as:

λ∗
V := sup{λ ∈ R+ |Gλ(z) < ∞, ∀z ∈ V}. (9)

Proposition 3: At λ = λ∗
R, where λ∗

R is defined in (9)

with V being the reachable subspace R, the L2-gain κ(λ)
satisfies κ(λ∗

R) = ∞.
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Proof: At λ = λ∗
R, by definition (9), there exists

x∗ ∈ R such that Gλ∗

R
(x∗) = ∞. As x∗ ∈ R, we can

find a control sequence u∗ and a switching sequence σ∗ that

together steer the SLS from x(0) = 0 to x(k) = x∗ at a

finite time k. By setting u = (u∗, 0, 0, . . .) and σ = (σ∗, σ
′)

for any remaining switching sequence σ′ in (6), we obtain

[κ(λ∗
R)]2 ≥ (λ∗

R)k
∑∞

t=0(λ
∗
R)t‖x(t+ 1;σ′, x∗, 0)‖2

∑k−1
t=0 (λ

∗
R)t‖u∗(t)‖2

.

Since the summation on top can be arbitrarily large for

properly chosen σ′ due to our assumption that Gλ∗

R
(x∗) =

∞, we must have κ(λ∗
R) = ∞.

B. Controlled Generating Function

For each λ, γ ∈ R+, the strong generating function Gλ,γ :
Rn → R+ ∪ {∞} of the SLS (1) is defined as

Gλ,γ(z)

:= sup
σ,u∈Uc

[

∞
∑

t=0

λt‖x(t;σ, z, u)‖2−γ2λ

∞
∑

t=0

λt‖u(t)‖2

]

(10)

= ‖z‖2+λ· sup
σ,u∈Uc

∞
∑

t=0

λt
[

‖x(t+ 1;σ, z, u)‖2−γ2‖u(t)‖2
]

(11)

for λ, γ ∈ R+ and z ∈ R
n. The signs of the two

summations in (10) are chosen so that the u and σ

achieving the supremum tend to excite the largest state

energy
∑∞

t=0 λ
t‖x(t;σ, z, u)‖2 using the least control energy

∑∞
t=0 λ

t‖u(t)‖2. Due to the restriction u ∈ Uc, the power

series in (11) is always well defined (with possible value ∞)

as its coefficients will be non-negative after a finite time.

By choosing u = 0 in the supremum, it is easily seen that

the function Gλ,γ(z) is non-negative. Moreover, at λ = 0,

G0,γ(z) = ‖z‖2, ∀z.

Inspired by (5), for each k ∈ N, we define the k-horizon

strong generating function as:

Gλ,γ,k(z)

:= sup
σ,u∈Uk

[

k
∑

t=0

λt‖x(t;σ, z, u)‖2−γ2λ

k−1
∑

t=0

λt‖u(t)‖2

]

(12)

=‖z‖2+λ · sup
σ,u∈Uk

k−1
∑

t=0

λt
[

‖x(t+ 1;σ, z, u)‖2−γ2‖u(t)‖2
]

.

(13)

Proposition 4: For each fixed λ, γ ∈ R+ and z ∈ Rn,

Gλ,γ,k(z) ↑ Gλ,γ(z) as k → ∞.

Proof: For fixed λ, γ ∈ R+ and z ∈ Rn, it follows

directly from the definitions (13) and (11) that Gλ,γ,k(z) is

non-decreasing in k and that Gλ,γ,k(z) ≤ Gλ,γ(z). Assume

that Gλ,γ(z) is finite. For any ε > 0, we can find u ∈ Uk

for some k large enough and σ such that

∞
∑

t=0

λt‖x(t;σ, z, u)‖2 − γ2λ

k−1
∑

t=0

λt‖u(t)‖2 > Gλ,γ(z)− ε.

Since the summation
∑∞

t=0 λ
t‖x(t;σ, z, u)‖2 converges, by

choosing k′ ≥ k large enough, we have

k′

∑

t=0

λt‖x(t;σ, z, u)‖2 − γ2λ

k−1
∑

t=0

λt‖u(t)‖2 > Gλ,γ(z)− 2ε.

This implies that Gλ,γ,k′(z) ≥ Gλ,γ(z) − 2ε, and thus

Gλ,γ,k(z) ↑ Gλ,γ(z) as k → ∞ as ε is arbitrary. The case

when Gλ,γ(z) = ∞ can be proved in a similar way.

Using Proposition 4, we can prove many properties of

the strong generating function Gλ,γ(z) by first establishing

them for Gλ,γ,k(z) whose definitions involve only finite

summations and then taking the limit k → ∞.

C. Properties of Generating Functions

Proposition 5: For any λ, γ ∈ R+, the strong generating

function Gλ,γ(·) and its k-horizon version Gλ,γ,k(·) for any

k ∈ N have the following properties.

1) (Homogeneity): Gλ,γ(·) and Gλ,γ,k(·) are both ho-

mogeneous of degree two, i.e., for any nonzero

α ∈ R, Gλ,γ(αz) = α2 Gλ,γ(z) and Gλ,γ,k(αz) =
α2 Gλ,γ,k(z), ∀ z ∈ Rn. Thus, Gλ,γ(0) ∈ {0,∞}.

2) (Bellman Equation): For all z ∈ R
n,

Gλ,γ,k+1(z) = ‖z‖2 + λ· sup
i∈M,v∈Rm

[

− γ2‖v‖2 +

Gλ,γ,k(Aiz +Biv)
]

,

Gλ,γ(z) = ‖z‖2 + λ· sup
i∈M,v∈Rm

[

− γ2‖v‖2 +

Gλ,γ(Aiz +Biv)
]

.

(14)

3) (Sub-Additivity): For any z1, z2 ∈ Rn, we have

√

Gλ,γ,k(z1 + z2) ≤
√

Gλ,γ,k(z1) +
√

Gλ,γ,k(z2),
√

Gλ,γ(z1 + z2) ≤
√

Gλ,γ(z1) +
√

Gλ,γ(z2).

4) (Convexity):
√

Gλ,γ(·) and
√

Gλ,γ,k(·) are both con-

vex functions on Rn.

5) (Monotonicity): For any z ∈ R
n, Gλ,γ(z) and

Gλ,γ,k(z) are non-increasing in γ ∈ R+ (for fixed λ);

and non-decreasing in λ ∈ R+ (for fixed γ).

6) (Lower Bound): Gλ,γ(z) ≥ Gλ(z), ∀z ∈ Rn, where

Gλ(z) is defined in (7) for the autonomous SLS (2).

7) (Invariant Subspace): The subset Gλ,γ := {z ∈
Rn |Gλ,γ(z) < ∞} is a subspace of Rn invariant

under subsystem dynamics {(Ai, Bi)}i∈M.

8) (Quadratic Bound): If λ, γ ∈ R+ are such that

Gλ,γ(z) < ∞ for all z ∈ Rn, then Gλ,γ(z) ≤ g‖z‖2,

∀z ∈ Rn, for some finite constant g > 0.

Proof: Let λ, γ ∈ R+ and k ∈ N be arbitrary.

1). The homogeneity property follows directly from the

observation that x(t;σ, αz, αu) = α · x(t;σ, z, u), ∀ t.
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2). Partition u ∈ Uk+1 as u = (v, u′) where v ∈ R
m and

u′ ∈ Uk, and σ as σ = (i, σ′) where i ∈ M. Then by (12),

Gλ,γ,k+1(z) = sup
i,v

{

‖z‖2 − γ2λ‖v‖2 + λ · sup
σ′,u′

[ k
∑

t=0

λt‖x(t;σ′, Aiz+Biv, u
′)‖2−γ2λ

k−1
∑

t=0

λt‖u′(t)‖2
]}

= ‖z‖2 + sup
i,v

[

−γ2λ‖v‖2 + λGλ,γ,k(Aiz +Biv)
]

.

The Bellman equation for Gλ,γ(z) can be proved similarly.

3). For each fixed σ, we write the term inside the bracket

of the definition (12) as an explicit quadratic function as

[

z

u

]T [

Qzz Qzu

Quz Quu

] [

z

u

]

,

where u :=
[

u(0)T · · · u(k − 1)T
]T

∈ Rnk, for some

matrices Qzz = QT
zz ∈ Rn×n, Qzu = QT

uz ∈ Rn×nk, and

Quu = QT
uu ∈ R

nk×nk. Note that Qzz � I is necessarily

positive definite; while Quu may be indefinite. Define

fσ(z) := sup
u

[

z

u

]T [

Qzz Qzu

Quz Quu

] [

z

u

]

.

Then Gλ,γ,k(z) = supσ fσ(z). To prove the sub-additivity

of
√

Gλ,γ,k(·), it suffices to show that, for each σ,
√

fσ(z1 + z2) ≤
√

fσ(z1) +
√

fσ(z2), ∀z1, z2. (15)

We differentiate three cases.

Case 1: If Quu ≺ 0 is negative definite, then the u achiev-

ing the supremum in the definition of fσ(z) above is given by

u = −Q−1
uuQuzz; hence fσ(z) = zT (Qzz −QzuQ

−1
uuQuz)z,

where Qzz − QzuQ
−1
uuQuz ≻ 0 as Qzz ≻ 0 and Quu ≺ 0.

Thus,
√

fσ(z) defines a norm on Rn, and (15) holds.

Case 2: If Quu has at least one positive eigenvalue, then

fσ(z) = ∞, ∀z ∈ Rn, and (15) is trivially true.

Case 3: If Quu � 0 has its largest eigenvalue at exactly 0,

then we let N (Quu) 6= 0 be its null space and R(Quu) be

its range space. If z belongs to the subspace Q−1
uz [R(Quu)],

then Quzz = Quuu0 for some u0 ∈ Rnk. Therefore,

fσ(z) = sup
u∈Rnk

(

zTQzzz + 2uTQuzz + u
TQuuu

)

= sup
u∈Rnk

(

zTQzzz + 2uTQuuu0 + u
TQuuu

)

= sup
u∈Rnk

[

zTQzzz − u
T
0 Quuu0

+ (u+ u0)
TQuu(u+ u0)

]

= zTQzzz − u
T
0 Quuu0

= zTQzzz − u
T
0 Q

T
uuQ

†
uuQuuu0

= zT (Qzz −QzuQ
†
uuQuz)z < ∞,

where Q†
uu denotes the Moore-Penrose pseudo inverse of

Quu. Note that Qzz − QzuQ
†
uuQuz ≻ 0 as Qzz ≻ 0 and

Q†
uu � 0. On the other hand, if z 6∈ Q−1

uz [R(Quu)], then

Quzz 6∈ R(Quu) = N (Quu)
⊥; hence we can find u1 ∈

N (Quu) such that uT
1 Quzz > 0. By choosing u = αu1 for

arbitrarily large α > 0, we obtain that fσ(z) = ∞. To sum

up,
√

fσ(z) defines a norm on the subspace Q−1
uz [R(Quu)],

and is infinite everywhere else. As a result, (15) holds on

this subspace, and is trivially true if one or both of z1 and

z2 is outside.

The above proves the sub-additivity of
√

Gλ,γ,k(·). Sub-

additivity of
√

Gλ,γ(·) is proved by letting k → ∞.

4). For any z1, z2 ∈ Rn and α1, α2 ≥ 0 with α1+α2 = 1,

by the sub-additivity and homogeneity properties,

√

Gλ,γ(α1z1 + α2z2) ≤
√

Gλ,γ(α1z1) +
√

Gλ,γ(α2z2)

= α1

√

Gλ,γ(z1) + α2

√

Gλ,γ(z2).

This shows that
√

Gλ,γ(·) is convex on R
n. The convexity

of
√

Gλ,γ,k(·) can be proved in the same way.

5). By Proposition 4, we need only to prove the mono-

tonicity property for Gλ,γ,k(z). That Gλ,γ,k(z) is non-

increasing in γ for fixed z and λ is obvious from its

definition (12). We next prove by induction that Gλ,γ,k(z)
is non-decreasing in λ for fixed z and γ. At k = 1,

Gλ,γ,1(z) = ‖z‖2+λ·supi∈M,v∈Rn(‖Aiz+Biv‖2−γ2‖v‖2)
is obviously non-decreasing in λ as the supremum term is

non-negative. Suppose for some k ≥ 1, Gλ,γ,k(z) is non-

decreasing in λ for any fixed z and γ. Then by the Bellman

equation, for any z ∈ Rn and γ ∈ R+ and any λ > λ′ ≥ 0,

Gλ,γ,k+1(z)

= ‖z‖2 + λ sup
i∈M,v∈Rm

[

−γ2‖v‖2 +Gλ,γ,k(Aiz +Biv)
]

≥ ‖z‖2 + λ′ sup
i∈M,v∈Rm

[

−γ2‖v‖2 +Gλ,γ,k(Aiz +Biv)
]

≥ ‖z‖2 + λ′ sup
i∈M,v∈Rm

[

−γ2‖v‖2 +Gλ′,γ,k(Aiz +Biv)
]

= Gλ′,γ,k+1(z).

Here the first inequality follows as the supremum term

is non-negative; while the second inequality is due to the

induction hypothesis. This proves the desired conclusion.

6). By setting u = 0 in (10) we arrive at the definition (7).

7). That Gλ,γ is a subspace follows from the sub-additivity

property of
√

Gλ,γ(·). Its invariance to subsystem dynamics

follows from the Bellman equation of Gλ,γ(·).
8). Write z =

∑n
i=1 αiei in an orthonormal ba-

sis {ei} of R
n. Then by sub-additivity, Gλ,γ(z) ≤

[

∑n
i=1 |αi|

√

Gλ,γ(ei)
]2

≤ g ·
∑n

i=1 α
2
i = g‖z‖2, where

g := n ·max{Gλ,γ(ei) | i = 1, . . . , n}.

Remark 1: The set {z ∈ Rn|Gλ,γ,k(z) < ∞} is still a

subspace of Rn for k ∈ N. Unlike Gλ,γ in Proposition 5, it

is not necessarily invariant under subsystem dynamics.

D. Radius of Convergence

By Proposition 5, the generating function Gλ,γ(z) is

non-decreasing in λ. For γ ∈ R+, define the radius of

convergence of the generating function Gλ,γ(z) (on Rn) as

λ∗(γ) := sup{λ |Gλ,γ(z) < ∞, ∀z ∈ R
n}.
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More generally, let V be a subspace of R
n invariant under

subsystem dynamics {(Ai, Bi)}i∈M. Then the radius of

convergence of Gλ,γ(z) on V is defined as

λ∗
V(γ) := sup{λ |Gλ,γ(z) < ∞, ∀z ∈ V},

which can also be thought of as the radius of convergence

of the generating function of the restricted SLS on V . Note

that λ∗
V(γ) depends on γ and V .

Lemma 2: For any λ, γ ∈ R+, Gλ,γ(0) < ∞ if and only

if Gλ,γ(z) < ∞ for all z ∈ R. As a result,

λ∗
R(γ) = sup{λ |Gλ,γ(0) < ∞}, ∀γ ∈ R+.

Proof: The sufficient part is trivial. For the necessary

part, assume Gλ,γ(0) < ∞. By applying the Bellman

equation (14) for z = 0, we have Gλ,γ(Biv) < ∞ for

all i ∈ M and v ∈ Rm, i.e., Gλ,γ(z) < ∞ for all z

reachable by the SLS (1) in one time step starting from

0. Similarly, by applying the Bellman equation for all such

z = Biv, we conclude that Gλ,γ(z) < ∞ for all z reachable

by the SLS (1) in two time steps. By induction, we have

Gλ,γ(z) < ∞ for all z ∈ R.

Proposition 6: The radius of convergence λ∗
R(γ) of the

generating function on the reachable subspace R as a func-

tion of γ ∈ R+ has the following properties.

1) λ∗
R(γ) ≡ 0 for 0 ≤ γ < maxi∈M σmax(Bi);

2) λ∗
R(γ) is a non-decreasing function of γ for γ ≥

maxi∈M σmax(Bi);
Proof: 1. Fix an arbitrary λ > 0. By Proposition 4

and (13), Gλ,γ(z) at z = 0 has the lower bound:

Gλ,γ(0) ≥ Gλ,γ,1(0) = λ · sup
i∈M,v∈Rn

(

‖Biv‖
2 − γ2‖v‖2

)

.

If 0 ≤ γ < maxi∈M σmax(Bi), then ‖Biv‖2 − γ2‖v‖2

can be made arbitrarily large by letting v move towards

infinity along a singular vector direction of the Bi with the

largest singular value. This implies that Gλ,γ(0) = ∞, hence

λ∗
R(γ) ≤ λ. Since λ > 0 is arbitrary, we have λ∗

R(γ) = 0.

2. The property follows directly from the non-increasing

nature of Gλ,γ(z) in γ.

We next show how the L2-gain can be characterized by

the radius of convergence of Gλ,γ(z) on R.

Theorem 1: (L2-gain characterization) For λ > 0 and

γ ∈ R+, the following statements are equivalent:

1) κ(λ) ≤ γ, where κ(λ) is the generalized L2-gain

defined in (4);

2) Gλ,γ(0) = 0, where Gλ,γ(·) is the generating function

of the SLS (1);

3) λ ≤ λ∗
R(γ), where R is the reachable subspace of the

SLS (1) from the origin.

Proof: 1 ⇔ 2: By definition (10), the condition that

Gλ,γ(0) = 0 is equivalent to

∞
∑

t=0

λt‖x(t+ 1;σ, 0, u)‖2 ≤ γ2
∞
∑

t=0

λt‖u(t)‖2,

for any u ∈ Uc and any σ. By (6), this in turn is equivalent

to [κ(λ)]2 ≤ γ2, i.e., κ(λ) ≤ γ.

2 ⇔ 3: This follows directly from Lemma 2.

In the above theorem, the equivalence of 1) and 3) implies

the following.

Theorem 2: The two functions κ(λ) for λ ∈ (0, λ∗
R) and

λ∗
R(γ) for γ ∈ R+ are generalized inverse functions of each

other:

κ(λ) = inf {γ ∈ R+ : λ∗
R(γ) ≥ λ} ,

λ∗
R(γ) = sup{λ > 0 : κ(λ) ≤ γ}.

Proof: By Theorem 1, we have, for any λ > 0,

inf {γ ∈ R+ : λ∗
R(γ) ≥ λ} = inf {γ ∈ R+ : κ(λ) ≤ γ} ,

which is exactly κ(λ). The second equality can be proved

similarly. Note that when 0 ≤ γ < maxi∈M σmax(Bi), the

set {λ > 0 : κ(λ) ≤ γ} is empty; thus the second equality

also holds as long as the supremum of an empty subset of

R+ is understood to be lower boundary 0.

As a result of Theorem 2 and the fact that λ∗
R(γ) is non-

decreasing in γ, the following result follows immediately.

Corollary 1: The generalized L2-gain κ(λ) is a non-

decreasing function of λ ∈ R+.

V. ALGORITHM FOR COMPUTING Gλ,γ(z)

We next present an algorithm for computing the finite

strong generating functions. By Proposition 4, the value of

Gλ,γ(z) can be estimated by computing Gλ,γ,k(z) for in-

creasingly larger k. The Bellman’s equation in Proposition 5

can be used to compute Gλ,γ,k(z) recursively, provided we

have a suitable representation of the values of Gλ,γ,k(z) in

Rn. One possible representation is by its values on a fine

grid of the unit sphere. By homogeneity, it is then possible

to approximate the values of the generating function at other

points in Rn through scaling and interpolation. Specifically,

in each iteration of the Bellman equation, a line search needs

to be performed to optimize Gλ,γ,k(Aiz + Biv) − γ2‖v‖2

with respect to v. The unknown value of Gλ,γ,k(Aiz+Biv)
is obtained through extrapolation.

The above idea is summarized in Algorithm 1. The compu-

tational complexity of the algorithm increases linearly with

the number of subsystems present but exponentially with

the state-space dimension. The algorithm is initialized with

Gλ,γ,0 = ‖z‖2. The output of the algorithm is a sequence

of functions Ĝλ,γ,k(z) which represent approximations of

Gλ,γ,k(z), for z on a grid of the unit sphere.

This algorithm performs well for small values of γ. For

large γ, however, the error in finding the optimal v is

magnified leading to inaccurate approximations. Thus, the

algorithm encounters more difficulty in computing the strong

generating function when λ is close to the radius of conver-

gence as this entails a large value of γ for characterizing the

finiteness of the generating function.

VI. NUMERICAL EXAMPLE

We consider the SLS with the following subsystems.

A1 =

[

1
2

2
5

1
3

1
3

]

, B1=

[

1
1
2

]

; A2 =

[

3
5

1
3

1
2

1
4

]

, B2=

[

0
1

]

;

A3 =

[

1
3

1
2

1
3

1
4

]

, B3=

[

1
2
1

]

; A4 =

[

1
6

1
5

1
4

1
2

]

, B4=

[

1
1

]

.
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Algorithm 1 Computing Gλ,γ,k(z) on a grid on S.

Let S = {zj}Nj=1 be a set of grid points of S;

Initialize k := 0, Ĝλ,γ,0(zj) = 1, ∀zj ∈ S;

repeat

k := k + 1;

for each zj ∈ S do

for each i ∈ M do

Find vl,Kl such that Aizj + Bivl = Klzl for all

{zl} ∈ S;

Find gi = maxvl K
2
l Ĝλ,γ,k−1(zl)− γ2‖vl‖

2;

end for

Set Ĝλ,γ,k(z) = 1 + λmaxi∈M gi;

end for

until Ĝλ,γ,k(zj) converges for all zj within tolerance (or

appears to diverge);

return Ĝλ,γ,k.
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Fig. 1: Level curves Gλ,γ,k(·) = 1 on the unit circle for

λ = 1.1, γ = 8 with k varying .

Algorithm 1 is used to compute the generating function

Gλ,γ,k(·) for λ = 1.1 and γ = 8 on 500 evenly distributed

grid points on the unit circle. By homogeneity, this will yield

estimates of Gλ,γ,k(z) for arbitrary z ∈ R2. Fig. 1 depicts

the level curves of Gλ,γ,k(·) = 1 at various k. Convergence

of Gλ,γ,k(·) as k → ∞ is observed. By Proposition 4, we

conclude that the strong generating function Gλ,γ(·) is finite

everywhere for λ = 1.1 and γ = 8.

By repeating the above process for different values of

λ and γ, we can estimate the region on the (λ, γ)-plane

where the strong generating function is finite everywhere.

See the shaded region in Fig. 2 for such a plot. According

to Theorem 2, the boundary curve of the shaded region

is exactly the graph of the radius of convergence λ∗(γ)
as a function of γ, or after a reflection, the graph of the

generalized L2-gain κ(λ) as a function of λ ∈ R+.
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Fig. 2: Plot of λ∗(γ) vs γ.

VII. CONCLUSION

We show that the a family of properly defined functions,

the strong generating functions, provide an alternative and

effective way to study the generalized L2-gain of discrete-

time switched linear systems. Numerical algorithms can be

developed to compute the generating functions, hence the

generalized L2-gain as well.
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