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Abstract— A data-driven controller switching algorithm used
for adaptive control is investigated. A new cost-detectable cost
function based on fading memory data is constructed so as to
reduce the influence of older data. A new controller switching
algorithm is designed to guarantee that switching stops and
that the closed-loop system is stable. Theoretical analyses
and simulations are presented to show that, when the plant
changes slowly or infrequently, the new algorithm can detect
instability and switch to a stabilizing controller sooner and
more smoothly, once the currently active controller becomes
destabilizing for the new plant dynamics. It is also shown
that this algorithm can be used to attenuate the Dehghani-
Anderson-Lanzon phenomenon.

Index Terms— adaptive control, unfalsified, data-driven, fad-
ing memory, cost-detectability

I. INTRODUCTION
In most theoretical studies of adaptive control, it is as-

sumed that the structure of the plant is known. However,
in practice, it is difficult to determine this structure. Even
when the plant’s structure is known, it is still difficult to
identify its parameters. These difficulties motivate the study
of logic-based switching control [1] and data-driven control
approaches, such as iterative learning control (ILC) [2],
virtual reference feedback tuning (VRFT) [3], and iterative
feedback tuning (IFT) [4].

Unfalsified adaptive control (UAC) [5] is an important
real-time approach for data-driven control. In UAC, a super-
visor manages the closed-loop system based on measured
data. If the active controller does not meet performance
requirements such as stability, the supervisor will switch
it off and try another candidate controller. With a cost-
detectable cost function, the supervisor will find a controller
satisfying the performance requirements and keep it in the
closed-loop, if there exists such a controller. Although plant
models are important for populating this set of candidate
controllers a priori, once the system is online, the supervisor
only relies on data to make switching decisions. In this
way, UAC can be robust against plant model mismatch and
uncertainty.

In recent years, there have been numerous papers in-
vestigating the features and limitations of UAC [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15]. In most of these
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papers, timeworn data carry the same weight as current data
when making switching decisions. This is problematic in
some cases, because a basic motivation for adaptive control
is to deal with systems where the plant varies slowly or
infrequently over time. Such time varying systems may
become unstable after being stable for a long time. In these
cases, using old data may lessen the ability of the supervisor
to detect the destabilizing controller quickly, which can be
dangerous in practice. To overcome the influence of old data,
a natural idea is to use a method based on fading memory
data [11], [16], which would let old data have less of an
effect on current switching decisions. With fading memory
data, the adaptive supervisor would pay more attention to
recent data and detect instability earlier. For these reasons,
we investigate the issue of stability when using fading
memory data.

In this paper, the fading memory controller switching al-
gorithm for UAC is studied. First, we design a cost function,
in which fading memory data are used. Then, we prove the
cost-detectability of the cost function and controller set pair,
which guarantees that the closed-loop system will be stable
if switching stops. Next, a controller switching algorithm
is designed. We present a theorem and prove that, with
this algorithm, switching will stop if there is at least one
stabilizing controller in the candidate controller set. With
these results, UAC guarantees the stability of the closed-
loop system with fading memory data.

The algorithm in this paper performs better than existing
UAC approaches when used with slowly or infrequently
varying plants. Once the system becomes unstable, the super-
visor will detect the instability and switch controllers sooner,
because very old data, which no longer reflects current
plant behavior, will not continue to incorrectly unfalsify the
active controller. This can be essential for maintaining the
stability of adaptive systems when plant changes are large
and unexpected, which may occur as a result of unanticipated
equipment failure for example.

Furthermore, the algorithm in this paper can attenuate the
Dehghani-Anderson-Lanzon (DAL) phenomenon presented
in [17]. In [17], examples illustrate that using the ε-hysteresis
algorithm [18] without fading memory data might cause
the supervisor to repeatedly insert a destabilizing controller
in the loop. As a result, the magnitudes of the control
and output signals might increase to an unacceptable level.
Our new algorithm exponentially increases the cost level at
which controllers are falsified so as to reduce the chance of
switching to a destabilizing controller, thereby preventing the
magnitudes of the control and output signals from becoming
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too large.
This paper is organized as follows. In Section II, the

problem is formulated. In Section III, a background of UAC
is given. Section IV contains our main results, including the
construction of our fading memory cost function, the design
of our controller switching algorithm, and a discussion
of the advantages and disadvantages of the algorithm. In
Section V, simulations illustrating the effectiveness of the
new algorithm are presented. Section VI gives the proof of
the convergence theorem of the algorithm.

II. PROBLEM FORMULATION
In this paper, we consider discrete-time signals and sys-

tems. N denotes the set of nonnegative integers, R+ denotes
the set of nonnegative real numbers, ∅ denotes the empty
set, and the set X\Y = {x : x ∈ set X , x 6∈ set Y }. For a
real-valued signal y defined on N, its truncation is defined
as

yτ (t) =
{

y(t) , 0 ≤ t ≤ τ
0 , otherwise.

Given yτ , its L∞-norm is

‖yτ‖∞ = max
t∈{0,1,2,··· ,τ}

|y(t)|.

If ‖yτ‖∞ < ∞ for each 0 ≤ τ < ∞, then y ∈ L∞e(N). If
∃k < ∞ such that ‖yτ‖∞ ≤ k, ∀τ ≥ 0, then y ∈ L∞(N).
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Fig. 1. The switching adaptive control system.

Problem 1. (UAC.) Suppose we have the system Γ shown
in Figure 1, in which there is an unknown L∞e(N) →
L∞e(N) plant P , a finite candidate controller set K =
{K1,K2, . . . , KN}, and a supervisor. The signals r(t), y(t),
and u(t) are the reference signal, output signal, and control
signal, respectively. Let d(t) =

[
u(t) y(t)

]′
denote a

data pair, and let D and Dτ denote the space of all possible
data d and dτ respectively.

At each instant, only one candidate controller is active.
The active controller at time t is denoted K̂(t). That is,
K̂(t) = Ki ∈ K if controller Ki is active at time t. Let
Γ(K̂(t),P) denote the closed-loop system. Thus, if Ki is

the only active controller for all time, then the system is
Γ(Ki,P).

The supervisor monitors the performance of the system
using collected data and switches controllers when neces-
sary. The supervisor consists of a cost function V (K, dt, t)
used to order candidate controllers and a controller switching
algorithm that uses the cost function to make switching
decisions. We focus on stability as our performance goal.
The problem at hand is to design a data-driven mechanism
to guarantee that the switching adaptive control system
Γ(K̂(t),P) is stable. Here, for the mechanism to be “data-
driven,” neither the cost function V (K, dt, t) nor the switch-
ing algorithm may make any prior assumptions about the
plant P . 2

In this paper, the concepts of stability and feasibility are
defined as follows.

Definition 1. (Stability.) Consider the system T in Fig-
ure 2 with input r, control signal u, and output y. System
T is stable if there exist constants α1, α2, β1, β2 ≥ 0 such
that, for each input r ∈ L∞e(N) and each τ ≥ 0, we have

‖uτ‖∞ ≤ β1‖rτ‖∞ + α1

‖yτ‖∞ ≤ β2‖rτ‖∞ + α2.

Otherwise, T is unstable. 2

r y
K P
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-

T

Fig. 2. The SISO system.

Definition 2. (Feasibility.) Problem 1 is feasible if there
exists at least one controller in the candidate controller set K
that stabilizes the closed-loop system. If Γ(K,P) is stable,
then the controller K is a feasible controller. 2

In this paper, we make the following assumption.
Assumption A1. (Feasibility.) Problem 1 is feasible. 2

III. BASIC CONCEPTS OF UNFALSIFIED ADAPTIVE
CONTROL

Stability is a property that must hold for all input-output
data pairs. However, in a single experiment, only a single
data pair is obtained. As such, it is necessary to introduce
the concept of unfalsification, defined as follows.

Definition 3. (Unfalsification of Stability.) Consider the
system T in Figure 2. Suppose we perform an experiment
with the input data r1, and we collect the output data d1 =[

u1 y1

]′
. The stability of T is unfalsified by the data

pair (r1, d1) if there exist constants α1, α2, β1, β2 ≥ 0 such
that, for each τ ≥ 0, we have

‖(u1)τ‖∞ ≤ β1‖(r1)τ‖∞ + α1

‖(y1)τ‖∞ ≤ β2‖(r1)τ‖∞ + α2.
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Otherwise, the stability of T is falsified by (r1, d1). 2

By Definitions 1 and 3, system T in Figure 2 is stable if
and only if its stability is unfalsified by each input-output
data pair. That is, T is definitely unstable if its stability
is falsified by data from an experiment. However, if data
from the experiment unfalsify the stability of T , we cannot
conclude that the system is stable.

A major concern in adaptive control is the analysis of the
performance of nonactive controllers. For this reason, UAC
makes use of the following definition.

Definition 4. (Fictitious Reference Signal (FRS).) Given
the data d =

[
u y

]′
, τ ≥ 0, and a candidate controller

K, a fictitious reference signal (FRS) r̃(K, dτ ) is a hypothet-
ical signal that would have reproduced exactly the measured
data dτ had the controller K been in the loop for the time
period over which the data dτ was collected. For brevity, we
denote r̃K = r̃(K, dτ ) and r̃i = r̃(Ki, dτ ). 2

Definition 5. (CLI, SCLI, and FRSG.) The candidate
controller K is causally left invertible (CLI) if for each τ ≥
0 and dτ , the fictitious reference signal r̃(K, dτ ) is unique.
For each such K, we denote by KCLI the induced causal
map dτ 7→ r̃. We call KCLI the fictitious reference signal
generator (FRSG) for controller K. When KCLI satisfies the
condition that, for every two data pairs d1, d2, there exist
constants α, β ≥ 0 such that

‖(KCLId1 − KCLId2)τ‖∞ ≤ β‖(d1 − d2)τ‖∞ + α,

K is stable causally left invertible (SCLI). 2

With Definitions 3 and 4, we can falsify or unfalsify
the stability of system Γ(Ki,P) for each Ki ∈ K; that
is, when K̂(t) = Ki, ∀t. However, in practice, it is more
important to decide whether or not to switch off the currently
active controller. If the input-output data show that the active
controller is likely to be destabilizing, it is essential to
take it offline as soon as possible. That is, we need some
approach to falsify active controllers in finite time, even
though stability itself cannot be falsified in finite time.

Definition 6. (Cost Function.) V (K, dt, t) is a cost func-
tion if it is a mapping V : K× Dt × N→ R+. 2

Definition 7. (Falsification at a Level.) Given the pair
(V,K) and a scalar γ ≥ 0, a controller Ki ∈ K is falsified
at time t at cost level γ by past measurement data dt if
V (Ki, dt, t) > γ. Otherwise it is unfalsified at time t at cost
level γ by dt. 2

Another key concept of UAC is cost-detectability, which
establishes the relation between a cost function and the
stability of system Γ(K̂(t),P). It is defined as follows.

Definition 8. (Cost-Detectability.) Consider the switching
adaptive control system Γ shown in Figure 1. Suppose
K̂(t) ∈ K, ∀t. The cost function and controller set pair
(V,K) is cost-detectable if for every K̂(t) with at most
finitely many switches, the following two statements are
equivalent.
1. V (Kf , dt, t) is bounded as t →∞, where Kf is the final

controller.

2. The stability of the system Γ(K̂(t),P) is unfalsified by
the data pair (r, dt).

2

We now give sufficient conditions for cost-detectability.
Lemma 9. (Cost-Detectability.) If for every Ki ∈ K and

d ∈ L∞e(N), V (Ki, dt, t) is bounded for each t ≥ 0 if
and only if stability is unfalsified by the input-output data
pair (r̃(Ki, dt), dt), then a sufficient condition for the pair
(V,K) to be cost-detectable is that all Ki ∈ K be SCLI. If
all Ki ∈ K are LTI, then it is also a necessary condition. 2

Proof Since d ∈ L∞e(N), we have that r̃(Ki, dt) ∈
L∞e(N) exists for each SCLI controller Ki ∈ K. The
remainder of the proof is identical to that of Theorem 1 of
[6] after substitution of continuous-time data with discrete-
time data and the L2-norm with the L∞-norm. 2

IV. MAIN RESULTS

We use the following two assumptions in this paper.
Assumption A2. (Reference Signal.) r ∈ L∞(N). 2

Assumption A3. (SCLI.) Each Ki ∈ K is SCLI. 2

A. The Fading Memory Cost Function
We now introduce the fading memory cost function for

Problem 1. For each Ki ∈ K, the FRS r̃i is generated by
the following equation.

r̃i(t) =
{

r(t) , Ki = K̂(t)
y(t) + K−1

i u(t) , otherwise.
(1)

For the signal y ∈ L∞e(N), let the fading memory functional
be

Fη(yt, t) =
t∑

τ=0

y2(τ)ηt−τ , (2)

where η < 1 is the fading memory parameter. We use the
cost function defined as

V (Ki, dt, t) =
Fη((r̃i − y)t, t) + Fη(ut, t)

Fη((r̃i)t, t) + c
, (3)

where c is a constant.
Theorem 1. (Cost-Detectability with a Bounded FRS.)

Suppose Assumptions 1-3 hold. If ∀Ki ∈ K, the FRS r̃i ∈
L∞(N), then the pair (V,K) is cost-detectable. 2

Proof Since r̃i ∈ L∞(N), it is easy to verify that for each
Ki ∈ K, the cost function (3) is bounded for all t ≥ 0 if and
only if the stability of Γ(Ki,P) is unfalsified by the data
(r̃i, d). Because all controllers are SCLI, by Lemma 9, the
pair (V,K) is cost-detectable. 2

B. The Controller Switching Algorithm
We now present the following controller switching algo-

rithm. In this algorithm, t is the time variable; b, θ0 > 0 and
λ > 1 are constants; and θ, γ, Q, and BKi

(t) are variables.
Here, b is an upper bound of r. That is, b ∈ {b : |r(t)| ≤
b, ∀t ∈ N}. Since r ∈ L∞(N), such a b exists. θ0 and λ
are used to generate θ, and θ is used to generate the cost
level γ used to falsify the active controller. Q is the set of
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currently available candidate controllers, and K0 ∈ K is the
initial controller. For each controller Ki, define BKi

(t) as

BKi
(t) = max{‖(r̃i)t‖∞, b}.

Algorithm I. (The Controller Switching Algorithm.)
1. Initialization. Set θ0 > 0, λ > 1, θ ← θ0, γ ← θb, t ← 0,

Q ← K, and K̂(0) ← K0.
2. Set t ← t+1. Collect data r(t), u(t), and y(t). ∀Ki ∈ K,

update r̃i(t), calculate V (Ki, dt, t), and calculate BKi(t).
3. If V (K̂(t − 1), dt, t) ≤ γ, then K̂(t) ← K̂(t − 1).

Otherwise,
a. Q ← Q\K̂(t− 1).
b. If Q = ∅, then Q ← K.
c. K̂(t) ← argmin

Ki∈K
V (Ki, dt, t). θ ← θλ.

d.





If : θ(BK̂(t)(t))
2 < γ,

Then: γ ← λγ.
Else : γ ← θ(BK̂(t)(t))

2.

4. Go to Step 2.
2

Algorithm I continues indefinitely. In Step 2, the supervi-
sor collects data at time t and calculates the value of the cost
function for each controller. In Step 3, if the active controller
is falsified by the current cost level γ, it will be switched
off and moved out of the currently available controller set
Q. If the set Q is empty, then it will be reset to K. The
candidate controller with the minimal cost function value
will be switch on, and the cost level γ will be increased.

We now give sufficient conditions for convergence.
Theorem 2. (Convergence of Algorithm I.) Suppose As-

sumptions 1-3 hold. Then, with the FRSG given by (1), the
fading memory cost function given by (3), and Algorithm I,
the switching adaptive control system Γ(K̂(t),P) shown in
Figure 1 is stable. 2

Proof See Section VI. 2

C. Discussion
Like our previous work on UAC in [6], [7], in Algorithm

I, we do not make any assumptions on the plant P . It
may be nonlinear, time-delayed, or time varying. It may
also be a discretization of a continuous-time plant. Thus,
Algorithm I can be widely used, and Theorem 2 guarantees
that, for each reference signal r ∈ L∞(N), the closed-loop
system Γ(K̂(t),P) will be stable with Algorithm I. After at
most a finite number of switches, the supervisor will find
a controller with which the stability of Γ(K̂(t),P) will be
unfalsified. That is, Γ(K̂(t),P) will be stable.

There are three main modification of Algorithm I over the
ε-hysteresis algorithm used in [6], [7]. First, as can be seen
from Definitions 1 and 3, stability and unfalsification are
defined with the L∞-norm instead of the L2-norm. Second,
in the cost function (3), fading memory data are used. Third,
the logical structure of Algorithm I is different from that
of the ε-hysteresis algorithm. These modifications have the
following advantages.

Advantage 1. (Lower Transient.) When used with a
slowly or infrequently time varying plant, which Theo-
rem 2 permits, Algorithm I may lower the large transient
caused by the change in the plant. Suppose that, with the
currently active controller Kc ∈ K, the closed-loop system
has been stable for a long time but has now become unstable
due to a change in the plant. If the unstable modes are
excited by the reference signal, then ‖dt‖∞ will increase
rapidly. As such, the stability of Γ(Kc(t),P) will be quickly
falsified at cost level γ by the data pair (r̃(Kc, dt), dt). To
try to stabilize the closed-loop system, the supervisor will
switch Kc off, switch on another controller, and increase
γ. With Theorem 2, we know that, if there exists at least
one controller that stabilizes the plant after the change in
plant dynamics, and if the plant varies slowly or infrequently
enough so that Algorithm I has sufficient time to find a
stabilizing controller, then Algorithm I will find such a
controller and keep it online after at most a finite number
of switches. That is, after a brief transient, the closed-loop
system will become stable again.

We note that, before the supervisor switches to the new
controller and stops switching thereafter, there must be an
impulse. The reason for the impulse lies in the active desta-
bilizing controller, and the height of the impulse depends on
the cost function. To falsify the active destabilizing controller
Kc, the value of the cost function V (Kc, dt, t) must greater
than the current value of γ. For the same γ, different
cost functions require different peak values of ‖dt‖∞. We
compare the cost function (3) with the cost function used in
[6], [17], which is modified for the discrete-time case and
reproduced as follows.

V ′(Ki, dt, t) = max
τ≤t

W ((r̃i − y)τ , τ) + W (uτ , τ)
W ((r̃i)τ , τ) + c

,(4)

where

W (yτ , τ) =
τ∑

k=0

y2(k), (5)

and c is a small positive number.
When the reference signal is bounded, the denominator of

(3) remains bounded as t → ∞, whereas the denominator
of (4) might increase unboundedly. That is, if the current
controller suddenly becomes destabilizing after the system
has been stable for a long time, to falsify it at a given γ
with (3), the minimum required value of ‖dt‖∞ is bounded,
whereas the minimum required value of (4) increases as the
time during which the system has been previously stable
increases. This is dangerous, because it can produce a large
transient. Using fading memory reduces this danger. 2

Advantage 2. (Attenuating the DAL Phenomenon.) Algo-
rithm I can attenuate the Dehghani-Anderson-Lanzon (DAL)
phenomenon addressed in [17]. This phenomenon occurs
when the ε-hysteresis algorithm is used with (4). In this
case, the supervisor may repeatedly insert a destabilizing
controller in the loop, thus causing ‖ut‖∞ to increase to
a very large value before switching stops. The reason is
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that, when the hysteresis constant ε is small, there are too
many chances for every controller to be switched on. Once a
destabilizing controller is switched on, ‖ut‖∞ and/or ‖yt‖∞
will increase until the controller is falsified and switched off.
However, once it is switched on again, ‖ut‖∞ and/or ‖yt‖∞
will reach an even higher value.

In Algorithm I, exponentially increasing the cost level
γ reduces the chances for a destabilizing controller to be
inserted into the loop. Thus, γ quickly reaches a level high
enough that feasible controllers will not be falsified. Then,
after at most (2N − 2) switches, a feasible controller will
be switched on, whereupon switching will stop. This is
explained in more detail in Section VI, which contains the
proof of Theorem 2. 2

Algorithm I also has a notable disadvantage. Since, all
N controllers might be switched on after a reset of the set
of available controllers Q, Algorithm I might be inefficient
when the number of candidate controllers is large.

V. SIMULATIONS

In this section, we present some numerical examples to
demonstrate the performance of Algorithm I.

Example 1. (Finding a Feasible Controller.) Suppose that
the time varying plant in Figure 1 is as follows.

P (z) =
{ 0.1

z−1.1 , 0 ≤ t ≤ T
−0.1
z−1.1 , t > T.

(6)

That is, at time T , P (z) changes from P1(z) = 0.1
z−1.1 to

P2(z) = −0.1
z−1.1 . Let the controller set be K = {K1 =

2 , K2 = −2}. Note that Γ(K1, P1) and Γ(K2, P2) are
stable, but Γ(K1, P2) and Γ(K2, P1) are unstable. Let the
reference input r(t) be the unit step signal, the initial state
of the plant be zero, and the initial controller be K1.

We use the cost function given by (3), the plant P (z)
given by (6) with T = 200, and Algorithm I with η = 0.9,
c = 3, θ0 = 2, and λ = 1.2. The Matlab R© simulation
results are shown in Figure 3, which display, from top to
bottom, the plant index, the output y, the control input u,
and the controller index. For t < T , Algorithm I switches to
controller K1 for the last time after only two switches. After
the plant changes at t = T , Algorithm I quickly switches to
controller K2 and keeps it active for the remaining time.

As a comparison, we perform a simulation using the
cost function (4), which does not have fading memory,
as was the case in [17], [6]. For this simulation, we set
c = 0.01 and use the ε-hysteresis algorithm with ε = 0.2.
The Matlab R© simulation results are shown in Figure 4. The
results seem similar to the case with fading memory shown
in Figure 3. The controller switches two times fewer than
the simulation with fading memory, while the peak values
of y and u after the plant changes are higher. 2

Example 2. (Insensitivity of Transient Peaks due to
Different Plant Switch Times.) We consider the same plant
P (z) given in Example 1, but with the plant switch times
T ∈ {1000, 2000, 4000, 8000}. The results of the simula-
tions with these changes are shown in Figure 5. Because of
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Fig. 3. Simulation results of Algorithm I with fading memory data.
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Fig. 4. Simulation results of the ε-hysteresis algorithm without fading
memory.

page limitations, only the sections of the graphs representing
t ∈ [T, T +100] are shown. The graphs in the top row use the
fading memory cost function, and the graphs in the bottom
row use a cost function without fading memory. From left
to right, the graphs in each row correspond to the case when
T = 1000, 2000, 4000, and 8000 respectively.

As shown by Figure 5, as T increases, the peaks in the
graphs in the top row do not increase much, while the peaks
in the graphs in the bottom row increase noticeably. The
reason is that, when old data and new data are given the
same weight, the denominator of the cost function given by
(4) will increase as T increases. That is, to falsify the current
destabilizing controller at the same cost level γ, the value
of ‖dt‖∞ must be larger whenever T is larger. 2

Example 3. (Lessening the DAL Phenomenon.) Consider
the plant P (z) = e0.01−1

z−e0.01 and the controller set K = {K1 =
2 , K2 = 0.5}. This is the discretized version of the example
used in [17] with sampling interval h = 0.01. Let the
reference signal be r(t) = sin(0.01t) and the initial state
be zero. Simulation results of using Algorithm I and the ε-
hysteresis algorithm are shown in Figure 6. The graphs on
the left show simulation results using Algorithm I with the
cost function given by (3) with η = 0.9, c = 3, θ0 = 2,
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Fig. 5. A comparison of the simulation results of using a cost function
with and without fading memory.

and λ = 1.1. The graphs on the right show simulation
results using the ε-hysteresis algorithm with ε = 0.2 and
the cost function given by (4) with c = 0.01. Because of
page limitations, only the controller index and u are shown.
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Fig. 6. Simulation results showing the DAL phenomenon when using Al-
gorithm I with the cost function (3) (left) and the ε-hysteresis algorithm with
the cost function (4) (right).

From the graphs on the right in Figure 6, it is easy to
witness the DAL phenomenon. The destabilizing controller
K2 is inserted in the loop many times before the supervisor
settles on the stabilizing controller K1 at t = 25.28s. As a
result, max{|u(t)|} ≈ 400. However, as can be seen from
the graphs on the left, using fading memory decreases both
the time in which K2 is in the loop as well as the value of
max{|u(t)|}. 2

VI. PROOF OF THEOREM 2

Proof We shall prove that, for each reference signal r ∈
L∞(N), stability will be unfalsified.

First, we prove that switching will stop. Without loss of
generality, we assume that K1 is a feasible controller. Thus,

we have for each r̃1 ∈ L∞e(N) and each t ≥ 0,

‖ut‖∞ ≤ β1‖(r̃1)t‖∞ + α1 (7)
‖yt‖∞ ≤ β2‖(r̃1)t‖∞ + α2. (8)

From (8), we have

‖(r̃1 − y)t‖∞ ≤ (β2 + 1)‖(r̃1)t‖∞ + α2. (9)

After squaring (7) and (9), and using the inequality (a +
b)2 ≤ 2a2 + 2b2, we get

(‖ut‖∞)2 ≤ 2β2
1(‖(r̃1)t‖∞)2 + 2α2

1

(‖(r̃1 − y)t‖∞)2 ≤ 2(β2 + 1)2(‖(r̃1)t‖∞)2 + 2α2
2.

From (2), we have

Fη(ut, t) =
t∑

τ=0

u2(τ)ηt−τ

≤
t∑

τ=0

(‖ut‖∞)2ηt−τ

≤ 2β2
1(‖(r̃1)t‖∞)2 + 2α2

1

1− η
,

and

Fη((r̃1 − y)t, t) ≤ 2(β2 + 1)2(‖(r̃1)t‖∞)2 + 2α2
2

1− η
.

Let

ρ1 =
2α2

1 + 2α2
2

(1− η)c

ρ2 =
2(β2

2 + 2β2 + 1 + β2
1)

(1− η)c
.

From (3), we have

V (K1, dt, t) =
Fη((r̃1 − y)t, t) + Fη(ut, t)

Fη((r̃1)t, t) + c

≤ Fη((r̃1 − y)t, t) + Fη(ut, t)
c

≤ ρ1 + ρ2(‖(r̃1)t‖∞)2.

If ‖(r̃1)t‖∞ ≤ b, it is clear that

V (K1, dt, t) ≤ ρ1 + ρ2b
2

=
(ρ1

b2
+ ρ2

)
b2.

If ‖(r̃1)t‖∞ > b, we have

V (K1, dt, t) ≤ ρ1 + ρ2(‖(r̃1)t‖∞)2

≤
(ρ1

b2
+ ρ2

)
(‖(r̃1)t‖∞)2.

Since BK1(t) = max{‖(r̃1)t‖∞, b}, we have for each t ≥ 0

V (K1, dt, t) ≤
(ρ1

b2
+ ρ2

)
(BK1(t))

2. (10)

Define E as

E = min
{

E ∈ N : θ0λ
E ≥ ρ1

b2
+ ρ2

}
.
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We now prove that after the Eth switch, if controller K1

is switched on, then switching will stop. Suppose K1 is
switched on at time tg after the gth switch, where g ≥ E.
Then, we have r̃1(tg + 1) = r(tg + 1) ≤ b, so that at time
tg + 1,

BK1(tg + 1) = max{‖(r̃1)tg+1‖∞, b}
= max{‖(r̃1)tg

‖∞, r(tg + 1), b}
= max{‖(r̃1)tg

‖∞, b}
= BK1(tg),

while

θ = θ0λ
g ≥ ρ1

b2
+ ρ2.

From (10) and Algorithm I, we have

V (K1, dtg+1, tg + 1) ≤
(ρ1

b2
+ ρ2

)
(BK1(tg + 1))2

≤ θ0λ
E(BK1(tg))

2

≤ γ.

That is, no switching will take place at t = tg + 1. With
the same reasoning, no switching will take place at any t >
tg + 1.

Now suppose that the active controller switches endlessly.
Consider the available controller set Q after the Eth switch.
If K1 ∈ Q, it will be switched on after at most N − 1
switches, because all falsified controllers will eventually be
removed from Q, and Q has no more than N controllers.
If K1 6∈ Q, then at most after N − 1 switches, Q will be
reset, whereupon K1 will be switched on after at most an
additional N − 1 switches. Hence, switching will eventually
stop, and the cost of the final controller will remain bounded.

Now we prove that all r̃i ∈ L∞(N). Suppose that the final
controller is Kf ∈ K and that the last switch takes place at
tf . With the FRSG given by (1), we have

r̃(Kf , dt) = r(t), ∀t ≥ tf .

Thus, with Assumption 2, we have r̃Kf
∈ L∞(N). Further-

more, u, y ∈ L∞(N), because for each t ≥ tf , the cost
function V (Kf , dt, t) < ∞. Then, because all candidate
controllers are SCLI, all r̃i ∈ L∞(N).

Finally, by Theorem 1, we conclude that (V,K) is cost-
detectable. By the definition of cost-detectability, the facts
that switching stops and that V (Kf , dt, t) is bounded imply
that the stability of Γ(K̂(t),P) is unfalsified. Thus, with
Algorithm I, Γ(K̂(t),P) is stable. 2

VII. CONCLUSION
In this paper, we study unfalsified adaptive control (UAC)

for discrete-time systems. We design a controller switching
algorithm that uses fading memory data. In the algorithm, the
influence of old data is reduced, and current data play a more
important role in making decisions regarding whether or not
to switch the current controller offline and what controller to
select as the next active controller. Our algorithm, combined
with fading memory data, can be used in time varying

systems in which the plant changes slowly or infrequently.
It can detect instability for any currently active destabilizing
controller and thus avoid large magnitudes of the output
signal. It also helps to attenuate the Dehghani-Anderson-
Lanzon (DAL) phenomenon.
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