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Abstract— This paper presents a new method for approxi-
mating the set of PID controllers satisfying a class of transient
specifications. The problem of designing a controller to satisfy
transient specifications such as the maximum allowable over-
shoot to a given input or the response being required to be
within an envelope can be cast as a problem of guaranteeing the
impulse response of an appropriate closed loop error transfer
function to be non-negative. Stabilizing PID controllers for
Linear Time Invariant (LTI) systems can be synthesized as
a union of convex polygons in ki− kd space for kp’s lying in a
specific range. In this paper, we provide a method to restrict
the stabilizing set for LTI systems further by using Widder’s
theorem and Markov-Lucaks representation for polynomials
that are non-negative on the positive real axis. Widder’s
theorem provides necessary and sufficient conditions for the
error response to be non-negative and upon an application of
Widder’s theorem, we obtain a sequence of polynomials, whose
coefficients are polynomial functions of kp, ki and kd to be
non-negative. For every polynomial in the sequence and for a
specified kp, using Markov-Lucaks theorem and Minkowski’s
projection, we obtain a polynomial inequality in ki and kd
that must be satisfied by every controller satisfying the desired
transient specification. We also provide a method to arbitrarily
tighten this set of desired controllers.

I. INTRODUCTION
The problem of designing stabilizing controllers with

guaranteed specific transient response specifications is
important for practical applications. One such specification
of the transient response is the amount of allowable
overshoot/undershoot to a specific input signal such as a unit
step input. Several results on the problem of achieving non-
overshooting step response have been provided in [9]-[13].
For the discrete-time systems Deodhare and Vidyasagar [8]
showed that a non-overshooting step response is achievable
through synthesizing a deadbeat closed loop system.
However, their results for the continuous-time Linear Time
Invariant (LTI) systems can lead to controllers with irrational
transfer functions. Darbha and Bhattacharyya [7] showed
that a non-overshooting response can be achieved by proper,
rational two parameter controllers. The results in [13], [5],
and [6] shows the existence of a high order two-parameter
stabilizing controller that can guarantee a monotonically
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increasing step response. The problem of controlling the
transient response of discrete-time LTI systems using the
non-negativity of polynomials with coefficients depend
polynomially on the controller parameters is studied in
[2]. Fixed order and PID controller synthesis for achieving
transient specifications in LTI systems was considered in
[14]. Fixed structure controllers such as PID controllers are
widely being employed in industrial control applications.
Recent results on the synthesis of PID controllers are
provided in [1].

This paper in organized as follows: In section II, the main
results are provided. In section III, an example of synthesis
of a PID controller is presented. In section IV, we conclude
by pointing the extension of the results to discrete-time LTI
systems.

II. MAIN RESULTS

In this section, we will restrict ourselves to the response
of finite-dimensional, continuous-time LTI systems to a unit
step input. The procedure for synthesizing a controller to
satisfy a desired transient specification such as overshoot
to any other specified input signal is similar to the case
when the input signal is a step input. Since it is also
one of the most widely used transient specifications, we
will concentrate on this transient specification and focus on
synthesizing an outer approximation of the set of stabilizing
PID controllers that satisfy the given transient specification.
By an outer approximation, Souter, we mean the following:
If C is a stabilizing PID controller that satisfies the desired
transient specification, then C ∈ Souter. It is possible that
Souter has stabilizing PID controllers that do not satisfy the
specification. We provide a way to ”cut” off such controllers,
thereby providing a way to refine our outer approximation.
Since this procedure of cutting off undesirable controllers
from the outer approximation can be repeated indefinitely,
we also show that we can tighten the outer approximation
arbitrarily.

A. An Outer Approximation for the Non-overshooting Step
Response Region

Consider the unity feedback control system shown
in Fig.1 where P(s) = Np(s)/Dp(s) represents the plant
transfer function and C(s) represents a PID controller; i.e.
C(s) = (kds2 + kps+ ki)/s.
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Fig. 1. Schematic of a unity feedback control system.

The set of all stabilizing PID controllers in the ki − kd
space, for a given value of kp in an admissible range, can
be constructed as the union of convex polygons [1]. Each
polygon is the solution to a set of linear inequalities in
the controller parameters ki and kd . Now the problem is to
restrict the stability region further to find the set of PID
controllers that also satisfy non-overshooting step response
of the closed loop system.

The error function, defined as e(t) = r(t) − y(t), is
non-negative for t ≥ 0 when response is non-overshooting.
The work of Berstein and Widder in [3] provides necessary
and sufficient conditions for the non-negative impulse
response of a rational, proper transfer function in terms of
the derivatives of the transfer function. These conditions
require that a sequence of polynomials must have no real,
positive zeros:

Theorem 1. Given D(s,K) is Hurwitz and H(s,K) =
N(s,K)
D(s,K) , denote by h(t) the impulse response of H(s,K). Then
h(t)≥ 0 for all t ≥ 0 if and only if

Hk(s,K) = (−1)k dkH(s,K)

dsk

must have no real, positive zeros for ∀k ≥ 0 and ∀s≥ 0.

The necessity of this result can be easily seen by recollect-
ing that the Laplace transformation of th(t) is − dH(s)

ds and
that for any integer k≥ 0, tkh(t)≥ 0 if and only if h(t)≥ 0.
The sufficiency part of the result will be useful for showing
that the procedures we develop can be used to arbitrarily
tighten the outer approximation we are seeking.

The Markov-Lucaks theorem [4] provides a sum-of-square
representation for non-negative polynomials on any interval
of the real axis:

Theorem 2. A polynomial h(x) = ∑
n
q=0 aqxq is non-

negative on the interval [0,∞) if and only if there exists
polynomials f (x) of degree at most n

2 and g(x) of degree at
most n−1

2 such that h(x) = f 2(x)+ xg2(x).

For the purpose of characterizing the non-overshooting
step response of the feedback control system shown in Fig.1,
one may consider the error transfer function

E(s,K) =
NE(s,K)

DE(s,K)
=

sDp(s)
(kds2 + kps+ ki)Np(s)+ sDp(s)

1
s
.

(1)

Using theorem 1, the error signal e(t) is non-negative for

all t ≥ 0 if and only if

Ek(s,K) = (−1)k dkE(s,K)

dsk ≥ 0 , ∀k ≥ 0 and ∀s≥ 0. (2)

Let us write Ek(s,K) as

Ek(s,K) =
NEk(s,K)

DEk(s,K)

=
αn(K)sn +αn−1(K)sn−1 + . . .+α1(K)s+α0

DEk(s,K)
.

(3)

where DEk(s,K) is of the form (DE(s,K))2k and thus is non-
negative for all s ≥ 0. Using theorem 2, in order to have
NEk(s,K) ≥ 0 there must exists fk(s,K) and gk(s,K) such
that

NEk(s,K) = f 2
k (s,K)+ sg2

k(s,K). (4)

This is equivalent to the existence of positive semi-definite
matrices Fk(y)� 0 and Gk(z)� 0 such that, for an appropri-
ate lk,

NEk(s,K) = αrk(K)srk +αrk−1(K)srk−1 + . . .+α1(K)s+α0

= [1,s,s2, . . . ,slk ]Fk(y)[1,s,s2, . . . ,slk ]T

+ s[1,s,s2, . . . ,slk ]Gk(z)[1,s,s2, . . . ,slk ]T (5)

where y and z are the vectors of the Markov-Lucaks variables
and

Fk(y) = y1Fk,1 + y2Fk,2 + . . . ,

Gk(z) = z1Gk,1 + z2Gk,2 + . . . (6)

are symmetric matrices of dimension (lk + 1) by (lk + 1).
The right hand side of (5) is linear in Markov-Lucaks
variables; however, the left hand side is linear in the
controller parameters K for the first derivative of E(s,K), is
quadratic in K for the second derivative of E(s,K) and so on.

Thus, one can construct a sequence of polynomial matrix
inequalities where for the first derivative of the transfer
function it reduces to Linear Matrix Inequalities (LMIs),
for the second derivative of the transfer function reduces
to Quadratic Matrix Inequalities (QMIs), and so on. Let us
rewrite (5) as follows, after equating the same powers of s,

Ek, j(k∗p,ki,kd) = Lk, j(y,z), k = 0,1,2, ... , j = 0,1,2, ...,rk
(7)

where Ek, j(k∗p,ki,kd) and Lk, j(y,z) denote the corresponding
coefficients of s in (5) for the k-th derivative of the error
transfer function with rk as the highest power of s. The terms
Ek, j(k∗p,ki,kd) are polynomials on the controller parameters
K and the terms Lk, j(y,z) are linear on the Markov-Lucaks
variables y,z. We also observe that Lk(0,0) = 0 for
k = 0,1,2, ... .

Now, the problem of finding the set of stabilizing PID
controllers with guaranteed non-overshooting step response
can be expressed as a sequence of feasibility problems. For
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a given value of k∗p, one may solve the following feasibility
problem to obtain the set of all feasible (ki,kd) for which
the stability and the non-overshooting step response of the
closed loop system are guaranteed:

Feasibility Problem: Find all feasible values of ki,kd ,y,z
subject to

Ek, j(k∗p,ki,kd) = Lk, j(y,z),
Fk(y)� 0, Gk(z)� 0, k = 0,1,2, ... , j = 0,1,2, ...,rk,

Sq(k∗p,ki,kd)≤ 0, q = 1,2, ...,m (8)

where the last constraint is the stability constraint determined
by m number of linear inequalities in ki and kd which is
either a single convex polygon or a union of convex
polygons. If we were to represent by S k

outer, the set of
(kp,ki,kd) satisfying the above set of inequalities, then, for
every integer k≥ 0, the set S k

outer is an outer approximation;
furthermore, the set Sdes := ∩kS

k
outer is also an outer

approximation. From the sufficiency portion of Widder’s
theorem, in fact, it is the desired set of stabilizing PID
controllers satisfying the given transient specification.

The non-overshooting step response region is obtained
by considering an infinite number of derivatives of the error
transfer function; thus, an outer approximation of the actual
region may be obtained by solving the feasibility problem
(8) for a finite number of the derivatives of the error transfer
function.

Since solving (8) requires finding all feasible values of
the controller parameters and the Markov-Lucaks variables,
a more practical and efficient approach is to find an outer
approximation of such a (possibly non-convex) set with
sufficient number of cutting hyperplanes.

Lemma 1. Let k be given. For a given k∗p, let k∗i and
k∗d be stabilizing integral and derivative gains. If there is
no solution corresponding to (8), then there exists a valid
inequality in ki and kd to the set Sdes∩{kp = k∗p}.

Proof. Suppose that for the selected values of k∗p, k∗i and
k∗d ; (8) is infeasible. This is equivalent to the infeasibility of
the LMI obtained by augmenting the constraints ki = k∗i , kd =
k∗d to (8). By the theorem of alternatives, there exists vector
λ of an appropriate dimension and symmetric positive semi-
definite matrices Qk,1 � 0, Qk,2 � 0, such that the following
alternative problem is feasible:

g(λ ,Qk,1,Qk,2)< 0,
Qk,1 � 0, Qk,2 � 0, k = 0,1,2, ... (9)

with

g(λ ,Qk,1,Qk,2) = inf
y,z∈D

{λ · [Ek(k∗p,k
∗
i ,k
∗
d)−Lk(y,z)]

+(Qk,1 ·Fk(y))+(Qk,2 ·Gk(z))}

where D is the domain of the constraints in the orig-
inal feasibility problem (8). Let Fdual(k∗p,k

∗
i ,k
∗
d) be the

set of dual variables (λ ,Qk,1,Qk,2) for which the function
g(λ ,Qk,1,Qk,2) is well defined. This set is non-empty by the
theorem of alternatives. If (λ ,Qk,1,Qk,2) ∈Fdual , then one
may express

g(λ ,Qk,1,Qk,2) =λ · [Ek(k∗p,k
∗
i ,k
∗
d)−Lk(0,0)︸ ︷︷ ︸

0

]

+Qk,1 ·Fk(0)+Qk,2 ·Gk(0). (10)

The following is a valid inequality for the set Sdes:

∑
j

λ jEk, j(k∗p,ki,kd)≥ 0. (11)

Remark 1. One can even find a deep cut by solving the
following problem:

min ∑
j

λ jEk, j(k∗p,k
∗
i ,k
∗
d)

subject to (λ ,Qk,1,Qk,2) ∈Fdual (12)

which is a semi-definite program. The optimal dual
variable is such that ∑ j λ ∗j Ek, j(k∗p,k

∗
i ,k
∗
d) is the most

negative; the cut for eliminating the controller (k∗p,k
∗
i ,k
∗
d) is

∑ j λ ∗j Ek, j(k∗p,ki,kd)≥ 0, for the given k.

Remark 2. We observe that the deep cut for a given kp = k∗p
may be plotted in the ki− kd plane using the cut inequality:

∑
j

λ
∗
j Ek, j(k∗p,ki,kd)≥ 0.

Let Souter be the current best outer approximation of the de-
sired set Sdes. If we write Souter(k∗p) :=Souter∩{(kp,ki,kd) :
kp = k∗p}, then, we may update the current best outer approx-
imation of the desired set Sdes through

Souter(k∗p)←Souter(k∗p)∩
{(kp,ki,kd) : kp = k∗p,∑

j
λ
∗
j Ek, j(k∗p,ki,kd)≥ 0}.

(13)

We can arbitrarily tighten the outer approximation as follows:
Let (k∗p,k

∗
i ,k
∗
d) ∈Souter(k∗p). If (k∗p,k

∗
i ,k
∗
d) /∈Sdes, then Wid-

der’s theorem allows us to identify an integer k≥ 0 for which
(8) is infeasible when kp = k∗p,ki = k∗i ,kd = k∗d . Correspond-
ingly, using lemma 1, we can identify a cut (polynomial
inequality) which is satisfied by every controller in Fdes but
is not satisfied by the controller: kp = k∗p,ki = k∗i ,kd = k∗d .
Hence, we can arbitrarily tighten the outer approximation.

B. First Outer Approximation of the Non-overshooting Step
Response Region by Cutting Hyperplanes

In this subsection, we will enforce the requirement that the
error transfer function and its first derivative have no real,
positive zeros. Clearly, this is a necessary (but not sufficient)
condition for the error response to be non-negative. In
essence, we are trying to find Sdes := ∩1

k=0S
k

outer. The non-
negativity of NE1(s,K) can be expressed as the following
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feasibility problem:

Feasibility Problem: Find all feasible values of ki,kd ,y,z
subject to

L1, j(k∗p,ki,kd) = L1, j(y,z), j = 0,1,2, ...,r1,

F1(y)� 0, G1(z)� 0,
Sq(k∗p,ki,kd)≤ 0, q = 1,2, ...,m (14)

where L1, j(k∗p,ki,kd) is the j-th linear polynomial in ki and kd
obtained from equating the coefficients of the same powers
of s in (5) with r1 as the highest power of s. Now, (14)
and its dual problem are SDP problems. To find a cutting
hyperplane, one may choose (k∗i ,k

∗
d) inside the stability

region for which (14) is infeasible. From the dual problem
of (14), one may find λ ,Q1,1 � 0,Q1,2 � 0. Using lemma 1,
the cut is given by:

∑
j

λ jL1, j(k∗p,ki,kd)≥ 0. (15)

C. Second Outer Approximation of the Non-overshooting
Step Response Region by Cutting Hyperboloids

In order to tighten the outer approximation determined by
(14), one may also consider the non-negativity of the second
derivative of the error transfer function. In this case the
problem is to determine the non-negativity of the following
polynomials

E(s,K)≥ 0,
E1(s,K)≥ 0,
E2(s,K)≥ 0 (16)

to find the second outer approximation Sdes := ∩2
k=0S

k
outer.

The polynomial NE2(s,K) has coefficients depend quadrat-
ically on the controller parameters K. The non-negativity
of NE2(s,K) can be expressed as the following feasibility
problem:

Feasibility Problem: Find all feasible values of ki,kd ,y,z
subject to

Q2, j(k∗p,ki,kd) = L2, j(y,z), j = 0,1,2, ...,r2,

F2(y)� 0, G2(z)� 0,
Sq(k∗p,ki,kd)≤ 0, q = 1,2, ...,m (17)

where Q2, j(k∗p,ki,kd) is the j-th quadratic polynomial in
ki,kd obtained from equating the coefficients of the same
powers of s in (5) with r2 as the highest power of s. To find
a cutting hyperboloid, one may choose (k∗i ,k

∗
d) inside the

stability region for which (17) is infeasible. From the dual
problem of (17), one may find λ ,Q2,1 � 0,Q2,2 � 0. Using
lemma 1, the cut is given by:

∑
j

λ j
[
Q2, j(k∗p,ki,kd)

]
≥ 0. (18)

D. Estimate of the Minimum Possible Overshoot with a PID
Controller

Let γ > 0 denote the maximum allowable percentage
overshoot to a unit step with a PID controller. In other words,
we want the impulse response of the following error transfer
function to be non-negative:

E(s,K) =
1+ γ

s
− 1

s
(kds2 + kps+ ki)Np(s)

sDp(s)+(kds2 + kps+ ki)Np(s)

which may be expressible through γ̄ := 1
γ

as:

Ē(s,K) := γ̄E(s,K)=
(1+ γ̄)Dp(s)+(kds2 + kps+ ki)Np(s)

s(sDp(s)+(kds2 + kps+ ki)Np(s))︸ ︷︷ ︸
∆cl(s)

.

We will now require the impulse response of Ē(s,K) to be
non-negative and use the methodology developed in the ear-
lier subsections to construct an outer approximation Souter
for the desired set of controllers. In fact, if we have an outer
approximation, Slinear defined by linear constraints in terms
of variables γ̄,kp,ki and kd , (for example, we can obtain one
through Markov-Lucaks theorem by requiring that none of
the zeros of Ē(s,K) to be real and positive), then one can
also obtain a lower bound on minimum possible overshoot,
by solving the following linear optimization problem:

max
γ̄,kp,ki,kd

γ̄

subject to the constraint (γ̄,kp,ki,kd) ∈Slinear.

III. EXAMPLES

To illustrate the method developed in the previous section
consider the following unstable plant

P(s) =
s+1

s3 +2s2 + s+3
. (19)

Now, it is of interest to find the entire set of PID controllers
that satisfy the stability of the closed loop system and
guarantee a non-overshooting step response. Following the
signature method in [1] one can obtain the stability region
at k∗p = 5 as a polygon determined by

ki > 0,
kd−0.2ki +0.5 > 0. (20)

The stability region for this example is shown in Fig.2.
The error transfer function for the step input will be

E(s,K) =

s3 +2s2 + s+3
s4 +(kd +2)s3 +(kp +1+ kd)s2 +(kp + ki +3)s+ ki

.

(21)

The first outer approximation of the non-overshooting step
response region can be obtained by requiring E(s,K) ≥ 0
and E1(s,K)≥ 0. The numerator of (21) must have no real,
positive zeros for all s ≥ 0. Since s3 + 2s2 + s+ 3 ≥ 0 for
all s ≥ 0, this does not add any further constraint than the

450



Fig. 2. The stability region at kp = 5.

stability conditions to the problem.

Now, consider the non-negativity of the first derivative of
the error transfer function. This means that:

NE1(s,K) = s6 +4s5 +(6− kp + kd)s4

+(−2kp +10+2kd−2ki)s3

+(−kp +13+10kd−5ki)s2

+(6+6kd−4ki +6kp)s

+(2ki +3kp +9)≥ 0, ∀s≥ 0. (22)

The non-negativity of (22) is guaranteed through the
existence of the semi-definite matrices:

F1(y) =


y1 y2 y3 y4
y2 y5 y6 y7
y3 y6 y8 y9
y4 y7 y9 y10

� 0, (23)

G1(z) =


z1 z2 z3 z4
z2 z5 z6 z7
z3 z6 z8 z9
z4 z7 z9 z10

� 0 (24)

where, using (5), the entries of the matrices F1(y) and G1(z)
are related to the controller parameters by the following set
of linear equations:

y1 = 2ki +3kp +9,
2y2 + z1 = 6+6kd−4ki +6kp,

2z2 + y5 +2y3 = − kp +13+10kd−5ki,

2y6 +2y4 +2z3 + z5 = −2kp +10+2kd−2ki,

2z4 + y8 +2y7 +2z6 = 6− kp + kd ,

2y9 + z8 +2z7 = 4,
y10 +2z9 = 1,

z10 = 0. (25)

The set of all feasible (ki,kd), assuming kp = 5, satisfying
(20), (23), (24) and (25) is the first outer approximation
of the stable non-overshooting step response region in the
space of a PID controller parameters for the plant (19).

Pick k∗i = 100 and k∗d = 40 which is inside the stability
region. These values of the controller parameters result the

SDP determined by (20), (23), (24) and (25) to be infeasible
which means that the selected point (k∗p,k

∗
i ,k
∗
d) is outside

of the first outer approximation. Thus, there exists a cutting
hyperplane, which is the deepest cut, corresponding to this
point. Fig.3 shows this point and its corresponding cutting
hyperplane.

Fig. 3. The first approximation of the non-overshooting step response
region by a cutting hyperplane corresponding to kp = 5,ki = 100,kd = 40.

For the second outer approximation, the feasibility prob-
lem corresponding to NE2(s,K)≥ 0 will be:

Feasibility Problem: Find all feasible values of ki,kd ,y,z
subject to

F2(y) =


y1 y2 y3 y4 y5
y2 y6 y7 y8 y9
y3 y7 y10 y11 y12
y4 y8 y11 y13 y14
y5 y9 y12 y14 y15

� 0, (26)

G2(z) =


z1 z2 z3 z4 z5
z2 z6 z7 z8 z9
z3 z7 z10 z11 z12
z4 z8 z11 z13 z14
z5 z9 z12 z14 z15

� 0, (27)

y1 = 8ki
2 +4kikp +6kp

2 +24ki

+36kp +54−6kdki,

2y2 + z1 = −6kdki +18kp
2 +54kd

−24ki +72kp +54

+18kdkp +6ki
2 +12kikp,

2z2 + y6 +2y3 = 126+90kd−18ki +72kp

+18kd
2−6kdki +54kdkp

+6ki
2−6kikp +18kp

2,

2y7 +2y4 +2z3 + z6 = 46kdkp +2ki
2−2kikp

+50kd
2 +130kd−62ki

+104kp−36kdki +128,
y10 +2y8 +2y5 +2z4 +2z7 = 120+36kp−6kdkp +180kd

−102ki +42kd
2−24kdki,

2y9 +2y11 +2z5 + z10 +2z8 = −60ki−30kp−6kdkp

+102kd +102−6kdki +6kd
2,
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2z9 +2z11 +2y12 + y13 = 58−22kp +22kd−14ki

+2kd
2−2kdkp,

z13 +2z12 +2y14 = 6kd−6kp +30,
y15 +2z14 = 12,

z15 = 2. (28)

In order to obtain an initial approximation prior to
enforcing the constraints of the second derivative of the
error transfer function, we found 50 cuts (or hyperplanes)
that corresponding to 50 different stabilizing controllers
that did not have non-overshooting step response. From
this approximate set, we picked k∗i = 100 and k∗d = 50 .
These values of the controller parameters result in the SDP
defined by (26), (27) and (28) to be infeasible. This means
that the selected point (k∗p,k

∗
i ,k
∗
d) is outside S 2

outer. Thus,
there exists a cutting hyperboloid, or simply a cut, which
is the deepest cut, corresponding to this point. Fig.4 shows
this point and its corresponding cut.

Fig. 4. The second approximation of the non-overshooting step response
region by a cutting hyperboloid corresponding to kp = 5,ki = 100,kd = 50.

As Fig.4 shows, the outer approximation becomes tighter
as more derivatives of the error transfer function are
considered.

IV. CONCLUSIONS

In this paper, we presented a method for constructing an
outer approximation of the set of stabilizing PID controllers
that guaranteed a non-overshooting step response of the
closed loop system. This is accomplished through solving
a sequence of SDPs based on Markov-Lucaks theorem and
Widder’ theorem. The results of this paper readily general-
ized to discrete-time LTI systems also through the counter-
part of Widder’s theorem for discrete-time LTI systems given
in [2].
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