
  

  

Abstract—This paper describes a novel non-linear modeling 
approach by on-line clustering, fuzzy rules and fuzzy support 
vector machines. Structure identification is realized by on-line 
clustering method and support vector machines, and the rules 
are generated automatically. Time-varying learning rates are 
applied for updating the membership functions of the fuzzy 
rules. Finally, tue upper bounds of modeling errors are proven.. 

I. INTRODUCTION 

 
oth neural networks and fuzzy logic are universal 

estimators. The process of fuzzy rule extraction for nonlinear 
systems modeling is called structure identification. A 
common method is to partition the input and the output data, 
it is also called fuzzy grid [1]. Most of structure 
identification approaches are based on off-line data 
clustering, such as fuzzy C-means clustering [2], mountain 
clustering [2], and subtractive clustering [3]. These 
approaches require that the data is ready before the 
modeling. There are a few of on-line clustering methods in 
the literature. A combination of on-line clustering and 
genetic algorithm for fuzzy systems is proposed in [4]. In [5] 
the input space was automatically partitioned into fuzzy 
subsets by adaptive resonance theory. On-line clustering 
with a recursively calculated spatial proximity measure was 
given in [6]. There is one weakness for the above on-line 
clustering methods: the partitioning of the input 
(precondition) and the output (consequent) do not take into 
account time mark. They use all data to train each rule. In 
this paper, a novel on-line clustering approach is proposed. 
The time relationship in the input and the output spaces is 
considered. 

    Besides clustering approaches, fuzzy rule extraction can 
also be realized by neural networks method [1], genetic 
algorithms [7], SVD-QR [8] and support vector machine 
(SVM) technique [9]. SVM was first used for solving pattern 
classification problem. Vapnik defined it as the structure risk 
minimization which minimizes the upper bound of the 
modeling error. The basic idea of SVM modeling is to map 
the inputs into higher dimensional feature space, then solve 
quadratic programming (QP) with an appropriate cost 
function [10]. There is one important property in SVM: the 
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solution vector is sparse. Only the non-zero solutions which 
are called support vectors are useful for the model. In this 
paper, we use the support vectors to extract the fuzzy rules 
in each group after the on-line clustering. 

    This paper is organized as follows. Firstly, we use an 
on-line clustering method itch divides the input and the 
output data into several clusters in the same temporal 
interval, so the structure of fuzzy systems is automatically 
established. Second, fuzzy SVM is applied to generate 
support vector in each cluster. With these support vectors, 
fuzzy rules are constructed. Here we use two fuzzy 
techniques to modify the standard SVM, the kernel is 
changed as fuzzy membership function and a fuzzy 
membership function and a fuzzy factor is added to the 
performance index of SVM, and the corresponding fuzzy 
systems are made. The fuzzy SVM provides an adaptive 
local representation for SVM, and this takes advantages of 
some properties of a fuzzy system, such as adaptive learning 
and economic structure. The scheme of the modeling via on-
line clustering and fuzzy support vector machines proposed 
in this paper is shown in Figure [1]. 

 

II. ON-LINE CLUSTERING FOR THE INPUT/OUTPUT DATA 

The following state-space discrete-time smooth nonlinear 

system with fuzzy rules lease check with your editor on 
whether to submit your manuscript by hard copy or 
electronically for review 

 
 ( 1) [ ( ) , ( ) ] ,    ( ) [ ( ) ]+ = =x k f x k u k y k h x k           (1) 

 
where u(k)∈Rm is input vector, x(k)∈Rⁿ is state vector, and 
y(k)∈Rp is output vector. f and h are general smooth 
functions. (1) can be rewritten as: 
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Figure 1.  The scheme of the modeling via on-line clustering and 
fuzzy support vector machines.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 8267



  

 

1

2

( ) [ ( ) ] [ ( ) ] ,

( 1) [ [ ( ) , ( ) ] ] [ ( ) , ( ) ]

( -1) [ ( ) , ( ) , ( - 2) ]

= =

+ = =

+ = +
n

y k h x k F x k

y k h f x k u k F x k u k

y k n F x k u k u k n

          (2) 

denoting  
 

1

( ) [ ( ) , ( 1) , ( 1) ]

( ) [ ( ) , ( 1) , ( 2) ]

( ) [ ( ) , ( ) ] , [ ]

= + + −

= + + −

= =







T

T

T
n

Y k y k y k y k n

U k u k u k u k n

y k F x k U k F F F

                  

 
Since (1) is a smooth nonlinear system, (2) can be expressed 
as x(k+1)=g[Y(k+1),U(k+1)]. This leads to the 
multivariable NARMAX model 
 

( ) [ ( ) ] [ ( ) ]= = Ψy k h x k X k                                          (3) 

 
where 
 

( ) [ ( 1) , ( 2) , ( ) , ( 1) , ]= − − − − −  TX k y k y k u k d u k d                         

(4) 
 
Ψ(⋅) is an unknown nonlinear function representing the plan 
dynamics, u(k) and y(k) are measurable scalar input and 
output, d is time delay. 
    The objective of the structure identification is to partition 
the input and the output data [y(k),x(k)] of nonlinear system 
and extract fuzzy rules. Here x(k)=[x₁(k),x₂(k),⋯,xn(k)], and 
to find many groups we need, or what is l for the following 
rule 
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In this paper, the basic idea of the proposed on-line 
clustering scheme [11], is that the input and the output space 
partitioning are carried out in the same time index. If the 
distance from a point to the center is less than required 
length, the point is in this group. When a new data comes, 
the center and the group should be change according to the 
new data. We give the following algorithm. The Euclidean 
distance at time K is defined as 
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where xi,max=maxk{xi(k)}, xi,min=min{xi(k)}, ymax=max{y(k)}, 
ymin=min{y(k)}, xi(k) and y(k) are the centers of xi and y at 

time k, α and β are positive factors, normally we can choose 
α=β=(1/2). For the Group j, the centers are updating as 
follows 
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where 
1

j
l the first number of the Group j is, 

2

j
l  is the last 

number of the Group j. The length of Group j 

is
2 1

1= − +j j j
m l l . The time interval Group j is 1 2, 

 
j jl l . The 

process of the structure identification can be formed as the 
following steps, 

     
1. For the first data G₁, k=1. y(1), xi(1) are the centers of 

the first group, ( )1
1=ix x , ( )1=

j
y y ,

1 2
1= =j j

l l . 

2. If a new data [y(t),xi(t)] comes, 
2 2

1= +j j
l l , we use (5) 

and (6) to calculate dk. If no any new data comes, go to 5. 
3. If dk≤L then [y(t),xi(t)] is in a new group Gj, go to 2. 
4.If dk>L then [y(t),xi(t)] is in a new group j=j+1, the 

center of the Gj is ( )=
j
ix x k , ( )=

j
y y k , 

1 2
= =j j

l l k , go to 

2. 

5.Check the distances between all centers 
j

x , 
j

y , If 

1

2

=

 − + − ≤  
i

p q p qn
i ix x y y L , the two groups Gp and Gq are 

combine into one group. 
    The new idea of the on-line clustering of this paper is 

that the input-output spaces partitioning is carried out in the 
same temporal interval. There are two reasons. First, 
nonlinear system modeling is to find a suitable mapping 
between the input and the output. If we use fuzzy neural 
networks as models, the rules have the form as "IF input is A 
THEN output is B". Only when the input and the output 
occur in the same time interval, they correspond to the 
nonlinear mapping. So our on-line clustering considers time 
factor. Second, we will propose an on-line modeling 
approach based on the on-line clustering. When a new group 
(or a new rule) is created, we can use the data in the 
corresponding time interval to train the rule. So clustering 
with temporal intervals will simplify parameter 
identification and make the on-line modeling easier. 
    There are three design parameters α, β and L. α and β can 
be regarded as the weights on the input and the output 
spaces. If the input dominates the dynamic property, we 
should increase α and decrease β. Usually we select 
α=β=0.5 such that the input and the output are the same 
important. If we let α=1, β=0, it becomes the normal on-line 
clustering. L is the threshold of creating new rules, it is the 
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lowest possible value of similarity required to join two 
objects in one clusters. How to choose the user -defined 
threshold is a trade-off. If the threshold value L is too small, 
there will still be many groups present at the end, and many 
of them will be singletons. Conversely, if the threshold L is 
too large, many objects that are not very similar may end up 
in the same cluster. Since dk=αdk,x+βdk,y, dmax=α||xmax-
xmin||+||ymax-ymin||β. If we want the algorithm can partition 
several groups, we should let L<dmax, otherwise there is only 
one group. 

III. FUZZY RULES EXTRACTION BY FUZZY SUPPORT VECTOR 

MACHINES 

    A SVM can separate the data with a hyper plane in 
maximum margin between two classes [12]. A possible 
formalization of this task is to design an estimating function 
f:ℝⁿ→{-1,+1} use  an independent generated couple of data 
according to an unknown distribution P(X,y),(Xm,ym)∈ℝⁿ×y, 
y={-1,+1}. If the training is detachable for the hyper plane, 
the function is chosen as f(x)=(w⋅x)+b. The margin is 
defined as the minimum distance from a sample to the 
surface of resolution. The margin in turn we can measure for 
the longitude from vector w, such that the near points to the 
hyper plane satisfies |(w·x)+b|=1. 

    In this paper we use SVM for function estimation. In 
order to find support vectors in the Group j, we use the 

input-output data [xk,y(k)], k∈ 1 2, 
 

j jl l to approximate a 

nonlinear function. Consider regression in the set of non-
linear functions regression y=f(x) can be estimated as the 
following form.  

                        ( ) ( )T
k kh x w x bϕ= +  

where w is the weight vector, ϕ(xk) is a known non-linear 
function, b is a threshold, xk is the input vector a time k, 
Kernel trick is defined as K(x,xk)=ϕ(xk)

Tϕ(xk), x is the input 
vector at any time. 
 
A Kernel fuzzy 
 
There are many possible choices for the kernel K(x,xk) we 
only require K(x,xk) satisfies the Mercer condition 
<cite>Cristianini</cite>. For example the linear kernel 
K(x,xk)=xk

Tx, the MLP kernel K(x,xk)=tanh(k₁xk
Tx+k₂), k₁ 

and k₂ are constants. RBF kernel K(x,xk)=exp(-‖x-xk‖²/σ²). 
In this paper, we use the fuzzy kernel, which is defined as 

( ) ( ) ( )
1

   and  are both in the  cluster
,

0                                     otherwise
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where M is total time, ui(xk) is the membership function. 
 

    Let the training set be 
 
 S={(x₁,y(1)),(x₂,y(2)),…,(xv,y(M))} 
 

    Assume the training samples are partitioned into l clusters. 

We can group the training samples into l clusters as follows: 
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where kg, g=1,2,…,l is the number of  points belonging to 

the gth cluster, so that we have 
1

l

gg
k v

=
= . 

How to choose the membership function ui(xk) is another 
problem. Gaussian function and triangle function are the 
most popular functions for the membership function of fuzzy 
systems. When ui(xk) is Gaussian function, the kernel 
function is 
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and the fuzzy kernel is  
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B Fuzzy support vector machines 
 
In this paper, we introduce a fuzzy factor is to the above 
performance index [13]. Here σ ≤ si ≤1 where σ is a 
sufficient small positive number, si denotes the important 
degree of sample xi for learning the optimal hyper plane in 
SVM. We select si as bell shape function (7), see Figure 2 
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Figure 2. Generalized bell shape built-in membership function 
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    The construction of the optimization problem is 
formulated as FSVM 
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where m defuzzyfied influence of the lack of the term 
defuzzufied  in the cost function. Now the Lagrangian is 
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where αi and βi are nonnegative Lagrange multipliers. 
Differentiating Q with respect to w, β and ξi, and equating 
the results to zero yields the following three optimality 
conditions 
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Each group has a diffuse pattern. Using the idea Takagi-
Sugeno model [8], we can combine the local models in each 
group within a global model. The fuzzy rules have the form 
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where j = 1 ⋯ p, p is the number of cluster group online. 
Membership functions for xi. The final fuzzy model 
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C.Membership functions training 
 
    After the fuzzy system is obtained by support vector 
machine, we use the input-output data [y(k),x(k)], k ∈    

1 2, 
 

j jl l
 to train the membership functions  Aij (i=1…n) and 

Bj, i.e., the parameter identification of the membership 
functions are performed in the corresponding time interval 
found in the structure identification. We discuss two cases: 
consequence membership functions training and premise 
membership functions training. 
  

    First we assume the premise membership functions 
A1i…Ani are given by prior knowledge, i.e., 
 

11 1

j

j j
i i

svn n

i A A
ji i

ϕ μ μ
== =

 =  
 
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is known [2] and [15]. 
 
    In this paper we are only interested in open-loop 
identification, we assume that the plant (1) is bounde-input 
and bounded-output (BIBO) stable, i.e., y(k) and u(k) en (1) 
are bounded . The following theorem gives a stable gradient 
descent algorithm for fuzzy neural modeling.  
 
Theorem 1. If we use the fuzzy system (14)  to identify 
nonlinear plant (1) in group j, the following gradient descent 
algorithm with a time-varying learning rate can make 
identification error e(k) bounded  
 

( ) ( ) ( ) ( )1 T
kW k W k e k X kη+ = − Φ                       (15) 

where the scalar ηk=(η/(1+||Φ[x(k)]||²)), 0<η≤1. The 
normalized identification error 
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                                  (16) 

satisfies the following average performance 
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1
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T

N
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e k
T

μ
→∞ =

≤                                             (17) 

 
where      =maxk}[‖μ‖²]. 
 
Remark 1. Generally, a fuzzy system cannot match a 
nonlinear system exactly. The parameters of the fuzzy system 
will not converge to its optimal values. The online 
identification proposed in this paper is to force the output of 
the fuzzy system to follow the output of the plant. Although 
the parameters cannot converge to their optimal values, (17) 
shows that the normalized identification error will converge 

to a ball radius μ . If the fuzzy system (18) can match the 

non-linear plant (1) exactly (μ(k)=0), i.e., we can find the 

best membership function j
iA

μ  and W* such that the 

nonlinear system can be written as  
. 
Since ||e(k)||2>0, the same learning law makes the 
 

( )lim 0e k =                                                           (18) 

 
Remark 2. The normalizing learning rate η in (15) is time 
varying to assure the stability of identification error. These 
learning rates are easier to be chosen than [17] without   
requiring any prior information, for example we may select 
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η=1. Time varying learning rates can be found in some 
standard adaptive schemes [18]. But they need robust 
modifications to guarantee stability of the identification  
(15) is similar to the results of [19]. In this paper the 
algorithm is derived from stability analysis (or ISSLyapunov 
function), the algorithm of [19] was obtained from 
minimization of the cost function. We focus on the bound of 
identification error, [19] focused on convergence analysis. It 
is interested to see that the two different methods can get 
similar results. 
 
Now we discuss the case of training both consequence and 
premise membership functions. The initial conditions are 
cji(1) = xi

*, wj(1) = yi
*,σji (1) is random in (0,1). Since the 

membership functions are Gaussian functions, the output of 
the fuzzy system can be expressed as 
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Theorem 2. If we use Mamdani-type fuzzy neural network 
(19) to identify nonlinear plant (1), the following 
backpropagation algorithm makes identification error e(k) 
bounded 
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where *
jic  and *2

jiσ are unknown parameters which 

minimizes μ unmodelled dynamics, and x0= 1. 
 

IV. SIMULATION 

The engine operation at idle is a nonlinear process that is far 
from its optimal range. Because it does not require any large 
degree of instrumentation or external sensing capabilities, 
the idle speed control is also accessible and can be 
formulated as a benchmark problem in control society. The 
process of engine at idle has time delays that vary inversely 
with engine speed and is time-varying due to aging of 
components and environmental changes such as engine 
warm-up after a cold start. The measurement of system 
outputs occurs asynchronously with the calculation of 
control signals. We assume that the occurrence of plant 
disturbances, such as engagement of air conditioner 
compressor, shift from neutral to drive in automatic 
transmissions, application and release of electric loads, and 
power steering lock-up, are not directly measured. The 
dynamic engine model is a two-input and two-output system 
[20] 
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the parameters for an engine model with 1.6 liter, 4-cylinder 
fuel injected are: 
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The system outputs are manifold press P (kPa) and engine 
speed Np (rpm). The control inputs are throttle angle θ 
(degree) and the spark advance δ (degree). Disturbances act 
to the engine in the form of unmeasured accessory torque Td 

(N-m). The variable aim
•

and aom
•

refer to the mass air flow 
into and out of the manifold. mao is the air mass in the 
cylinder. The parameter τ is a dynamic transport time delay. 
The function g(P) is a manifold pressure influence function. 
Ti is the engine's internally developed torque, TL is the load 
torque. 
 
Difference technique is used to get the discrete-time states of 
the system (21). (21) can be written as x=f(x,u) with 
x=[P,Np]T, u=[θ,δ,Td]T. Let us define s₁=(f(xk,uk ), 
s₂=f(xk+s₁,uk), s₃=f(xk+((s₁+s₂)/4),uk). If |((s₁-2*s₃+s₂)/3|≤ 
((|xk|)/(1000)) or |((s₁-2*s₃+s₂)/3)|<1, then 
xk+1=xk+(((s₁+4s₃+s₂))/6), k=0,1,2,…. The discrete-time 
model for P is  P (k +1) = f1 [(P) k, Np(k),θ(k),δ (k),Td(k)]. 
 
In order to train the neural model, we select inputs as 
δ=30sin(0.06k), θ is a square wave with amplitude 20, 
θ(k)=20Square(0.04k), Td is a constant, Td(k)=10, 
x₀=[10,500]T. The time interval the hidden layer selection N 
is chosen as N=300. 
 
We use the following Mamdani fuzzy model, for jth rule. All 
of data are normalized such that are within the interval of    
[-1,1]. We start from ( ) ( )1 15 15 5,W k V k× ×∈ℜ ∈ℜ  . 

( ) ( ) ( ) ( )
( )

:               

     ( 1)  

 
jj j

T

j j
p p N

j j
p p

R I F P i s A a n d N i s A a n d i s A a n d i s A

a n d T i s A T H E N P k i s B

θ δθ δ

+
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After k=200, we use support vector machine and obtain 4 
support vectors. These support vectors are the initial 
elements of W and V. 
  
After k>500, the plant is changed as g(P)=0.8 with 
P<50.6625. The hysteresis constant is selected h=0.05, the 
threshold of weig change is L=1.5. We repeat above 
procedure, τ1=500. 
 
After k=700, τ2=700, N=200. 6 support vectors are 
obtained, so the number of the fuzzy rule is 6. The final 
training result is shown in Figure 3(a). The testing signals 
are changed as δ=10, θ(k)=40cos(0.05k), Td (k)=1. The 
testing result is shown in Figure 3(b). 

 
Figure 3. a)Testing signal, b) testing result 

 
V. CONCLUSION 

 

In this paper, we propose an efficient approach for nonlinear 
system modeling using fuzzy rules. Several techniques are 
combined for the new approach. First we propose an online 
clustering method which divides the input/output data into 
several clusters in a same temporal interval. Then we apply 
fuzzy support vector machines which generate support 
vectors in each cluster. With these support vectors, fuzzy 
rules are constructed and the corresponded fuzzy system is 
made. After the structure identification, a time-varying 
learning rate is applied for the parameters identification. The 
contributions of the paper are: 
1. online clustering method and support vectors machines 
are used for the fuzzy rules extraction. 
2. the upper bound of modeling error and stability are proved 
for the fuzzy modeling. 
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