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Abstract— Given an inner function, the orthogonal comple-
ment of the corresponding shift invariant subspace induces a
system transformation for linear time-invariant systems, which
is a generalization of the lifting technique for the sample-
data control and Hambo-transform in the sense the inner
function is arbitrary. This paper extends the transformation
for systems with unstable eigenvalues, and derives a unified
formula for transformation operators for both stable and anti-
stable systems. A potential application is in the area of closed-
loop system identification, where an unstable system is identified
under the stabilizing feedback connection. The application to
closed-loop system identification will be presented elsewhere.

I. INTRODUCTION

Transformation is a versatile tool in the systems and con-

trol theory. The Fourier transform and the Laplace transform

are essential in developing the theory. For example, it is a

common knowledge that the Laplace transform of signals

for a system described by a linear differential equation with

constant coefficients leads to the notion of transfer functions.

A shift invariant subspace of the space of squarely in-

tegrable functions L2(0,∞) is an important notion. For

example, the lifting technique in sampled-data control [1],

[12] uses the orthogonal complement to define a “lifted

system,” which becomes a fundamental tool to study the H2

and H∞ control problems. Another example is the Hambo

transform induced by the generalized orthonormal basis

functions [4], [5]. Actually, the two notions coincide when

we work in an abstract way to define the system transform

[8] using the orthogonal complement of a shift-invariant

subspace corresponding to an inner function. Indeed, if the

inner function is pure delay, it yields the lifting technique for

sampled-data control, and if the inner function is rational,

it yields the Hambo transform. Thus we can regard the

transformation as a generalization of the lifting technique.

This extended version of the lifting technique has a

number of applications. One such instance is the H∞ control

problem for a class of infinite dimensional systems. For

such a class, so called Hamiltonian formula characterizing

the minimal achievable H∞ norm was derived in [13],

[7], [9]. The approximation by a lower order model for of

high order systems are studied using the transformation and

filtered signals [3], [9]. Another important area is the system

identification. It was shown in [10] that the transformation

can be extended to stochastic systems where the signals are

random processes and that standard subspace algorithms such

as MOESP [11] can be employed.

Y. Ohta is with Department of Applied Mathematics and Physics,
Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
yoshito ohta@i.kyoto-u.ac.jp

The purpose of the paper is to extend the transformation

method for systems having unstable eigenvalues. Most of the

works in the literature assumes that the system is stable [5],

[10], with an exception of [9] where the transformation of the

adjoint system of a stable system was considered. However,

the formulae for stable and anti-stable systems are seemingly

different.

This paper derives a unified formula for transformation

operators for both stable and anti-stable systems. Moreover,

we consider a feedback connection and prove that the trans-

formation of the feedback system is the feedback of the

the transformed systems. An application for such results is

the closed-loop system identification problem, and it will be

discussed in elsewhere [2].

II. PRELIMINARIES

A. Signal spaces in time and frequency domains

Let L2(jR) be the space of square integrable functions of

frequency jω ∈ jR with the inner product

〈u, v〉 =
1

2π

∫ ∞

−∞

v(jω)u(jω) dω.

The space H2 is the space of analytic functions in the right

half plane with the norm

‖u‖ = sup
ν>0

(

1

2π

∫ ∞

−∞

|u(ν + jω)|
2

dω

)1/2

< ∞. (1)

If u ∈ H2, then non-tangential limits exists at almost every

points on the imaginary axis, and the boundary value function

is in L2(jR). With this relation, we identify H2 as a subspace

of L2(jR). It can be shown that the orthogonal complement

of H2 in L2(jR) is the space of analytic functions in the

left half plane with the norm similarly defined as (1) except

that ν < 0, which is denoted as H2
⊥

.

The Fourier transform is the isomorphism between the

signal spaces of time and frequency domains. The space

L2(−∞,∞) of square integrable functions of time −∞ <

t < ∞ is isomorphic to L2(jR) via the Fourier transform.

Similarly, the spaces L2(0,∞) and L2(−∞, 0) of square

integrable functions of time 0 < t < ∞ and −∞ < t < 0
are isomorphic to H2 and H2

⊥
, respectively.

B. Multiplicative operator

A bounded function on the imaginary axis induces a

multiplication operator on L2(jR) as a transfer function. The

space of such bounded functions is L∞ with the norm

‖h‖
∞

= ess supω |h(jω)| .
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For the sake of simplicity, we denote the multiplicative

operator induced by a function h ∈ L∞ as h as well. It

is easy to verify that the induced norm of the multiplicative

operator h : L2(jR) → L2(jR) is equal to ‖h‖
∞

.

The space of bounded analytic functions in the right half

plane is H∞. If h ∈ H∞, then the multiplicative operator

h : L2(jR) → L2(jR) leaves H2 invariant.

A function φ ∈ H∞ is called inner if |φ(jω)| = 1 for

almost all ω. Let φ∼(s) = φ(−s) be the para-conjugate of

φ. Then the statement φ(s)φ∼(s) = 1 is equivalent to φ is

inner. Furthermore, φ as a multiplicative operator on L2(jR)
is unitary.

C. Shift-invariant subspace and its orthogonal complement

If φ ∈ H∞ is inner, then the space φH2 is a closed

subspace of H2, called shift-invariant subspace. The orthog-

onal complement of φH2 with respect to H2 is denoted as

S = H2 ⊖ φH2, which plays an instrumental role in the

subsequent discussion.

If φ is a rational inner function, say

φ(s) =
(p1 − s) · · · (pr − s)

(p1 + s) · · · (pr + s)
,

with distinct zeros, then S is spanned by
{

1

p1 + s
, · · · ,

1

pr + s

}

.

If φ(s) = e−sh, h > 0, then the subspace S is nothing but

the image of the Fourier transform of the squarely integrable

functions supported on the interval (0, h).
It is obvious that the spaces L2(jR), H2, and H2

⊥
have

the following decompositions:

L2(jR) = ⊕∞

k=−∞φkS, (2)

H2 = ⊕∞

k=0φ
kS, H2

⊥ = ⊕−1

k=−∞
φkS,

where φk = (φ∼)
−k

if k < 0.

From (2), any u ∈ L2(jR) has the expression

u =
∞
∑

k=−∞

φkuk, uk ∈ S. (3)

Furthermore, ‖u‖
2

=
∑∞

k=−∞
‖uk‖

2
. In this sense, we can

identify L2(jR) and ℓ2(S).
If the signal u is vector-valued, we can apply the trans-

formation component-wise. Thus (2) and (3) are valid if uk

is interpreted as an S-valued vector function.

III. TRANSFORMATION OF SYSTEMS

A. Transformed system

Consider a linear system

d

dt
x = Ax + Bu (4)

y = Cx + Du, (5)

where A ∈ R
n×n, and B, C, and D are matrices of com-

patible sizes. The system (4), (5) is denoted as (A,B, C, D)

for simplicity. We assume that A does not have eigenvalues

on the imaginary axis. Then the transfer function

h(s) = D + C (sI − A)
−1

B (6)

does not have poles on the imaginary axis, either. Hence

h ∈ L∞, and it defines a multiplicative operator on L2(jR).

Because u and y are in L2(jR), the isomorphism between

L2(jR) and ℓ2(S) induces a bounded map hD by the

commutative diagram:

L2(jR)
h

−−−−→ L2(jR)




y





y

ℓ2(S)
hD−−−−→ ℓ2(S)

(7)

The following theorem (Theorem 1) shows that the map hD

is shift-invariant and has a state space realization

ξt+1 = Aξt + But (8)

yt = Cξt + Dut. (9)

Theorem 1: Let h : L2(jR) → L2(jR) be defined by the

state space representation (4)-(5). Suppose that φ and φ∼ are

analytic at the spectrum of A. Then the map hD : ℓ2(S) →
ℓ2(S) defined by (7) has the realization (8)-(9), where the

operators A : R
n → R

n, B : S → R
n, C : R

n → S, and

D : S → S are defined by

Aξ = φ∼(A)ξ, (10)

Bu =
1

2π

∫ ∞

−∞

(

φ∼(A) (jωI + A)
−1

B

−φ(jω) (jωI + A)
−1

B
)

u(jω)dω, (11)

(Cξ) (s) =
(

C (sI − A)
−1

−φ(s)C (sI − A)
−1

φ∼(A)
)

ξ, (12)

(Du) (s) = h(s)u(s) − φ(s)C (sI − A)
−1

Bu. (13)

Proof If the matrix A is stable, the theorem was proved

in [9] except for the expression of the operator B. From [9,

Lemma 3],

Bu =

∫ 0

−∞

exp(−At)B
(

F−1φ∼u
)

(t)dt

=
1

2π

∫ ∞

−∞

(−jωI − A)
−1

Bφ∼(jω)u(jω)dω

=
1

2π

∫ ∞

−∞

−φ(jω) (jωI + A)
−1

Bu(jω)dω

where F−1 is the inverse Fourier transform. Note that

φ∼(A) (sI + A)
−1

B ∈ H2
⊥

, and hence it is orthogonal to

u ∈ H2. This implies that the operator B is given by (11).

If the matrix A is anti-stable, the system (−A,−B,C, D)
is a stable system whose transfer function is h(−s) = D −
C (sI + A)

−1
B. Note that this corresponds to reversing the

time axis. Let ǔ be the Fourier transform of the reversed
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signal of the inverse Fourier transform of u ∈ L2(jR), i.e.,

ǔ(jω) = u(−jω). Express u as in (3). Then

ǔ =
∞
∑

k=−∞

φkǔk, ǔk = τu−k+1 (14)

where τ : S → S is defined by

(τu) (s) = φ(s)u(−s), u ∈ S. (15)

Notice that τ2 = I . Suppose that u and y are the input and

the output of the system (A,B, C, D), respectively. Then

ǔ and y̌ are the input and the output of (−A,−B,C, D),
respectively, where y̌ is defined similarly. Let As, Bs, Cs,

and Ds be the operators defined for the stable system

(−A,−B, C, D), or

As = φ∼(−A) = φ(A)

Bsu =
1

2π

∫ ∞

−∞

(

−φ∼(−A) (jωI − A)
−1

B

+φ(jω) (jωI − A)
−1

B
)

u(jω)dω,

(Csξ) (s) =
(

C (sI + A)
−1

−φ(s)C (sI + A)
−1

φ∼(−A)
)

ξ,

(Dsu) (s) = h(−s)u(s) − φ(s)C (sI + A)
−1

Bsu.

Thus the transformed system satisfies

ζ−t+2 = Asζ−t+1 + Bsǔ−t+1

y̌−t+1 = Csζ−t+1 + Dsǔ−t+1.

Putting ξt = ζ−t+2 and substituting (14), we have

ξt = Asξt+1 + Bsτut

τyt = Csξt+1 + Dsτut.

Since A is analytic at φ∼, As is invertible. Hence the input

u and the output y satisfy

ξt+1 = A
−1
s ξt − A

−1
s Bsτut (16)

yt = τCsξt+1 + τDsτut (17)

= τCsA
−1
s ξt +

(

τDsτ − τCsA
−1
s Bsτ

)

ut.

From this, we have

Aξ = A
−1
s ξ = φ∼(A)ξ

Bu = −A
−1
s Bsτu

=
1

2π

∫ ∞

−∞

−φ∼(A)
(

−φ∼(−A) (jωI − A)
−1

B

+φ(jω) (jωI − A)
−1

B
)

φ(−jω)u(jω)dω

=
1

2π

∫ ∞

−∞

(

φ∼(A) (jωI + A)
−1

B

−φ(jω) (jωI + A)
−1

B
)

u(jω)dω,

(Cξ) =
(

τCsA
−1
s ξ

)

(s)

= φ(s)
{

C (−sI + A)
−1

−φ(−s)C (−sI + A)
−1

φ∼(−A)
}

φ∼(A)ξ

=
(

C (sI − A)
−1

− φ(s)C (sI − A)
−1

φ∼(A)
)

ξ,

(Du) (s) =
(

τDsτu − τCsA
−1
s Bsτu

)

(s)

= (τDsτu + τCsBu) (s)

= φ(s)h(s)φ(−s)u(s)

+ φ(s)
(

C (−sI + A)
−1

−φ(−s)C (−sI + A)
−1

φ∼(−A)
)

Bu

= h(s)u(s) − φ(s)C (sI − A)
−1

u,

which turns out the same formulae as for a stable matrix.

If the matrix A has both stable and anti-stable eigenvalues,

then there is a non-singular matrix T such that

A = T

[

As 0
0 Aa

]

T−1,

where As is stable and Aa is anti-stable. From the block

diagonal structure, we conclude that the operators A, B, C,

and D, are written exactly the same. Q.E.D.

Remark 1: Notice that the formulae for the operator B

are seemingly different for stable and anti-stable systems in

[9]. Theorem 1 uses the frequency domain, which proves

useful for unifying the formulas for both stable and anti-

stable systems.

B. Inverse

Consider the system (A,B, C, D) with the state space

realization (4),(5) having the transfer function h(s) as in

(6). Let (A,B,C,D) be the operators of the transformed

system.

Let K be a matrix of appropriate size. Then the operators

of the transformed systems for the transfer functions Kh(s),
h(s)K, and K + h(s) are easily derived as follows:

It is obvious that the transfer function Kh(s) has a

realization (A,B, KC, KD), and the corresponding oper-

ators (A,B, KC,KD). The transfer function h(s)K has

a realization (A,BK,C, DK), and the corresponding op-

erators (A,BK,C,DK). The transfer function K + h(s)
has a realization (A,B, C, K + D), and the corresponding

operators (A,B,C, K + D).
Less obvious is the inverse of a system. The following

lemma shows that the inverse of the transformed system is

the transformation of the inverse system.

Lemma 1: Consider the system (A,B, C,D) with

the state space realization (4),(5) having the transfer

function h(s) as in (6). Assume that D is invertible,

h(s)−1 has the realization (A−, B−, C−, D−) =
(

A − BD−1C,BD−1,−D−1C, D−1
)

. Assume that A

and A− do not have eigenvalues on the imaginary axis.

Let φ be an inner function, and S = H2 ⊖ φH2. Assume

that φ and φ∼ are analytic at the spectra of A and A−.
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Fig. 1. The contour Γ which encircles the spectra of A and A− in the
right-half plane

Let (A,B,C,D) and (A−,B−,C−,D−) be the operators

(10)-(13) for the systems for the systems (A,B, C, D)
and (A−, B−, C−, D−), respectively. Then D is invertible.

Furthermore A− = A − BD
−1

C, B− = BD
−1,

C− = −D
−1

C, and D− = D
−1.

Proof First, a straightforward calculation shows that

(D−Du) (s)

= h−1(s)h(s)u(s) − φ(s)h−1(s)C (sI − A)
−1

Bu

+ φ(s)D−1C (sI − A−)
−1

B−Du

= u(s) − φ(s)D−1C (sI − A−) (Bu − B−Du) .

We shall prove B = B−D. Notice that

B−Du (18)

=
1

2π

∫ ∞

−∞

{

φ∼(A−) (jωI + A−)
−1

BD−1

−φ(jω) (jωI + A−)
−1

BD−1

}

×
{(

D + C (jωI − A)
−1

B
)

u(jω)

−φ(jω)C (jωI − A)
−1

Bu
}

dω

=
1

2π

∫ ∞

−∞

{

φ(−jω) (jωI − A)
−1

Bu(jω)

−φ∼(A−) (jωI − A)
−1

Bu(jω)
}

dω

+
1

2πj

∫

Γ

{(sI − A−) − φ∼(A−)φ(s) (sI − A−)

− (sI − A) + φ∼(A−)φ(s) (sI − A)} dsBu.

where Γ is a closed contour in the right half plane that

encircles clock-wise the anti-stable eigenvalues of A and A−

(see Fig. 1). Let E− and E be the projection matrices on the

anti-stable eigenspaces of A− and A, respectively. Then, it

follows that

1

2πj

∫

Γ

(sI − A−)
−1

ds = −E−,

1

2πj

∫

Γ

φ(s) (sI − A−)
−1

ds = −φ(A−)E−,

1

2πj

∫

Γ

(sI − A)
−1

ds = −E,

1

2πj

∫

Γ

φ(s) (sI − A)
−1

ds = −φ(A)E.

-◮rp

-◮up

P
yp

uc
�◭

rc�◭
C

yc

Fig. 2. Feedback connection

Hence form (11) and (18),

(B − B−D)u

=
1

2π

∫ ∞

−∞

{

φ∼(A−) (jωI − A)
−1

Bu(jω)

−φ∼(A) (jωI − A)
−1

Bu(jω)
}

dω

+ (I − φ∼(A−)φ(A))EBu.

If A is stable, then (−jωI − A)
−1

B ∈ H2
⊥

and E = 0.

Thus (B − B−D) u = 0. If A is anti-stable, then E = I

and

Bu = −φ∼(A)
1

2π

∫ ∞

−∞

(jωI − A)
−1

Bu(jω)dω.

If A has both stable and anti-stable eigenvalues, then the

block diagonalization proves that (B − B−D) u = 0. This

proves D−D = I . Hence D− = D
−1 and B− = BD

−1.

We can similarly prove B−C = A−A− and C− = −D−C.

Q.E.D.

Remark 2: It should be noted that when the inner function

is rational and the matrices A and A− are stable the result

was shown in [5]. Lemma 1 does not assume that the

inner function is rational, and the system matrices may have

unstable eigenvalues.

C. Feedback connection

Consider the feedback connection shown of a plant P and

a controller C as shown in Fig. 2, where yp and yc are

outputs, up and uc are inputs, and rp and rc are exogenous

inputs of the plant and the controller, respectively. Suppose

that P and C are described by state-space realizations

dxp

dt
= Apxp + Bp1up + Bp2rp

yp = Cpxp + Dp1up + Dp2rp

dxc

dt
= Acxc + Bc1uc + Bc2rc

yp = Ccxc + Dc1uc + Dc2rc.

Stack the variables

xcl =

[

xp

xc

]

, ycl =

[

yp

yc

]

, ucl =

[

up

uc

]

, rcl =

[

rp

rc

]

,

and let

A =

[

Ap 0
0 Ac

]

, Bi =

[

Bpi 0
0 Bci

]

, i = 1, 2

C =

[

Cp 0
0 Cc

]

, Di =

[

Dpi 0
0 Dci

]

, i = 1, 2.
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Notice that the feedback connection imposes the relation

ucl = Jycl, J =

[

0 I

I 0

]

. (19)

We assume that the feedback connection is well-posed and

hence I − JD is invertible. Hence the feedback connection

in Fig. 2 when the input is ucl and the output is ycl has a

state-space representation

dxcl

dt
= Aclxcl + Bclrcl (20)

ycl = Cclxcl + Dclrcl, (21)

where

Acl = A + JB1 (I − JD1)
−1

C (22)

Bcl = B1 (I − JD1)
−1

JD2 + B2, (23)

Ccl = (I − D1J)
−1

C, Dcl = (I − D1J)
−1

D2. (24)

Let P and C have transformed system representations (8)-

(9) using the operators
(

Ap,
[

Bp1 Bp2

]

,Cp,Dp

)

and
(

Ac,
[

Bc1 Bc2

]

,Cc,Dc

)

, respectively. We would like to

ask whether the transformed system of the feedback connec-

tion can be constructed from the transformed systems.

Let (A,Bi,C,Di) and (Acl,Bcl,Ccl,Dcl, ) be the op-

erators of the transformed systems of (A, Bi, C, Di) and

(Acl, Bcl, Ccl, Dcl), respectively. It is obvious that A, B, C,

and D satisfy

A =

[

Ap 0
0 Ac

]

, Bi =

[

Bpi 0
0 Bci

]

, i = 1, 2,

C =

[

Cp 0
0 Cc

]

, Di =

[

Dpi 0
0 Dci

]

, i = 1, 2.

Theorem 2: Consider the feedback connection in Fig. 2.

Assume that Ap, Ac, and Acl do not have eigenvalues on

the imaginary axis. Let φ be an inner function, and S =
H2⊖φH2. Assume that φ and φ∼ are analytic at the spectra

of Ap, Ac, and Acl. Then the operators for the feedback

system obey the following equations:

Acl = A + JB1 (I − JD1)
−1

C, (25)

Bcl = B1 (I − JD1)
−1

JD2B2, (26)

Ccl = (I − D1J)
−1

C, (27)

Dcl = (I − D1J)
−1

D2. (28)

Proof The operators of the transformed system of the

closed loop system is calculated by using Lemma 1. Details

are omitted. Q.E.D.

If C is a stabilizing controller and the exogenous inputs are

in H2, then so are the inputs and the outputs. In this case,

the transformed signals satisfy the following forward state

equation even if the plant has unstable eigenvalues. More

precisely, if rcl ∈ H2, write

rcl =
∞
∑

k=0

φkrk, rk =

[

rp,k

rc,k

]

∈ S.

Then we have

ξp,t+1 = Apξp,t + Bp1up,t + Bp2rp,t, (29)

yp,t = Cpξp,t + Dp1up,t + Dp2rp,t, (30)

ξc,t+1 = Acξc,t + Bc1uc,t + Bc2rc,t, (31)

yc,t = Ccξc,t + Dc1uc,t + Dc2rc,t, (32)

with the feedback connection
[

up,t

uc,t

]

=

[

yc,t

yp,t

]

. (33)

Remark 3: When φ is rational and Ap, Ac and Acl are

stable matrices, the results of this section was already proven

in [5]. In this paper, we need not have to assume that φ is

rational. Furthermore, we show that the assumptions on Ap

and Ac are not necessary to obtain the result.

Remark 4: In [9], a stable system and an anti-stable

system is connected in a special way to compute Schmidt

pairs of a Hankel operator for a class of infinite dimensional

systems. Theorem 2 considers the standard feedback connec-

tion.

D. Stochastic system

Consider the feedback system in Fig. 2 consisting of a

plant and a controller having stochastic inputs. Describe the

system by the following state equations:

dxp = Apxpdt + Bp1dζ + Bp2dw, (34)

dη = Cpxpdt + Dp1dζ + Dp2dw, (35)

dxc = Acxcdt + Bcdη, (36)

dζ = Ccxcdt + Dcdη. (37)

Define the signals

xcl =

[

xp

xc

]

, ηcl =

[

ηp

ηc

]

, ζcl =

[

ζp

ζc

]

.

Then the closed-loop system is described by

dxcl = Aclxcldt + Bcldω (38)

dηcl = Cclxcldt + Dcldω. (39)

where Acl, Bcl, Ccl, Dcl are exactly as in (22), (23), and

(24).

Notice that if the controller stabilizes the feedback loop,

then Acl is stable. Thus the closed loop signals obey the

results in [10]. In what follows, we will shall show that

the stochastic signals in the transformed domain satisfy

the discrete-time state-space equation even if the plant has

unstable eigenvalues.

Let

wδ,h(t) =

{

w(t) − w(t − δ)

δ
, 0 < t ≤ h,

0, t > h.

Then wδ,h is in L2(0,∞) with probability 1. Let yδ,h be

the response of the system (20), (21) when the input wδ,h is

applied. If we consider the limit δ → 0, then the response

of the system (38), (39) when the processes are terminated
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at time t = h is recovered using the transformed system

(29)-(33).

When φ is rational, then the space S is finite dimensional.

Let

wδ,h =

∞
∑

k=0

φkwδ,h,k, yδ,h =

∞
∑

k=0

φkyδ,h,k

We can show that as δ → 0 and h → ∞ wδ,h,k and yδ,h,k are

convergent sequences. Though the limits limδ→0,h→∞ wδ,j,k

and limδ→0,h→∞ yδ,j,k are not squarely summable, they are

the input and the output of the transformed system. Hence

the transformed signals of (38), (39) satisfies the transformed

system (29)-(33).

IV. CONCLUSIONS

This paper extended the results in [5], [10] to systems

with unstable eigenvalues. It was shown that there is a

unified formulae of transformation for stable and anti-stable

systems, and that the transformed system can be described

by a forward discrete-time system when the feedback system

is stabilized even if the plant and/or the controller are

unstable. The result can be applied to closed-loop system

identification.
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