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Abstract— The model selection problem, that is picking the
model that best explains an experimental data set from a list of
candidates, arises frequently when studying unknown biological
processes. Here, we propose a new method for model selection
in stochastic chemical reaction networks using measurements
from flow cytometry. A distinctive feature of our approach is
its ability to perform statistically significant selection using a
very small number of Monte Carlo simulations of the candidate
stochastic models. After a comprehensive review of the theory
associated with our procedure, we describe the model selection
algorithm and we demonstrate it on an example drawn from
molecular biology.

I. INTRODUCTION

When studying an unknown biological pathway, investiga-
tors commonly face the problem of formulating and testing
competing hypotheses on its components and the nature of
their interactions. For example, it might be uncertain whether
a certain reaction occurs with or without intermediate steps,
or whether a certain species is positively or negatively
regulated by another one. In this type of scenario, one could
write several different models corresponding to the different
hypotheses, collect experimental data from the biological
process, and then devise a computational procedure to select
the model that best explains the data.

This issue, which is known in the literature as the model
selection problem, has been addressed for both deterministic
and stochastic computational biology models with a variety
of techniques. Classical approaches include the Akaike In-
formation Criterion (AIC) and the subsequent developments
stemming from it [1]. These methods require the knowledge
of the likelihood function and the selection step is usually
applied after some kind of estimation (usually maximum-
likelihood estimation) of the model parameters.

Bayesian model selection has also been given a great deal
of attention [2], [3], especially thanks to the recent advance-
ments in the computational methods for its implementation
[4]. The Bayesian approach has the attractive feature of
evaluating the model structures by simultaneously taking into
account all the possible value of the parameters. However, its
application can limited by considerations of computational
feasibility, therefore this type of analysis usually performs
best in the case of small-dimensional problems.
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In our previous work [5], we introduced a model selection
criterion for deterministic systems based on the statistical
comparison of moments of Gaussian random variables. Here,
we extend this approach to stochastic chemical reaction
networks [6]. Our proposed method achieves statistically
significant model selection with a surprisingly small number
of Monte Carlo simulations: it is, therefore, suitable for the
comparison of very large models and/or of a very large
number of models.

We specifically focus on model selection using data
from flow cytometry. This increasingly popular experimental
technique is based on measuring emission intensity from
fluorescently labeled species (usually proteins) in individual
cells. The cells pass one by one through a detection system,
where the fluorochromes are excited by one or more lasers,
and their emission at specific wavelengths is recorded.

The rest of the paper is organized as follows. In Section
II, we state the model selection problem in more detail by
introducing suitable notation. In Section III, we first review
the theoretical foundation of our proposed method, and then
we introduce the model selection algorithm. In Section IV,
we demonstrate the method on an example drawn from
molecular biology. Finally, in Section V, we summarize our
findings and present some final remarks.

II. PROBLEM STATEMENT

Consider a biological process in which N chemical species
interact through R reaction channels, and let Σq , q =
1, . . . , Q be stochastic chemical reaction networks (SCRNs)
which model the process. We assume that eventual unknown
parameters in the SCRNs were estimated using an indepen-
dent experiment (and, possibly, a dedicated computational
procedure [7]).

The process is observed at K discrete time points tk, k =
1, . . . ,K. At each tk, a flow cytometry scan is obtained.
We assume that each scan yields P ≤ N signals Ykp, p =
1, . . . , P that are proportional to the abundance at time tk
of some chemical species of interest involved in the process
(usually proteins).

When a cell passes through the flow cytometer’s optical
detection system, the instrument simultaneously records the
fluorescence levels of all the P fluorochromes, i.e. a sample
from the joint distribution of the P fluorescence levels at time
tk. Since each cell is only used once and then discarded, the
samples can regarded as independent.

We are interested in working with the marginal distribu-
tions of the P fluorochromes. Hence, if we denote Mk the
number of cells that are scanned at time tk we can regard
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the measurements as Mk independent samples of each of the
marginals at time tk. In other words, the measurements are
snapshots of the probability density function (PDF) or of the
cumulative distribution function (CDF) of the outputs at the
time instants t1, . . . , tK .

Given this framework, the model selection problem can
be stated as follows: (i) discard any SCRN that is not
statistically consistent with the experimental data; and (ii)
pick the one that explains the data the best with respect to
a suitable measure. The precise meaning of these statements
will become clear in Section III, after we review the theory
associated with our proposed method.

III. MODEL SELECTION ALGORITHM

In the context of our application, it is more convenient to
work with CDFs rather than with PDFs for two main reasons:
(i) CDFs can be approximated using nonparametric estima-
tors; (ii) there is a well-developed theoretical machinery for
the comparison of CDFs using such estimators. We begin
our presentation by reviewing some of these notions. In the
following, we will sometimes use the word distribution for
CDF, and the word density for PDF.

A. The empirical cumulative distribution function

Let X = {xm : m = 1, . . . ,M} be a set of independent
and identically distributed (i.i.d.) samples from an unknown
continuous distribution F . We define the empirical cumula-
tive distribution function, or empirical distribution, or ECDF,
associated with the samples X the function:

F̂X(x) =
number of samples xm ≤ x

total number of samples

=
1

M

M∑
m=1

I (xm ≤ x) ,

(1)

where I (A) denotes the indicator function of the event A.
Intuitively, the ECDF is a staircase approximation of the true
CDF that “jumps” 1/M corresponding to every occurrence
of a data point.

The ECDF F̂ has very nice properties as an estimator of
the true CDF F . First of all, unlike histograms or kernel
density estimates for the approximation of PDFs, it is a non-
parametric estimator: no arbitrary choice (such as bin size
in histograms, or kernel function in kernel density estimates)
is required for the construction of F̂ . Furthermore, as the
number of samples M goes to infinity, it converges to F
uniformly in x. This result, known as Glivenko-Cantelli
theorem [8], [9], guarantees that F̂ is an unbiased and
consistent estimator of F .

B. The Kolmogorov distance

The model selection method we are going to introduce is
based on the comparison of CDFs. The key tool for this is
a notion of distance between two CDFs. A commonly used
one is the Kolmogorov distance, which is defined as follows.

Given two CDFs F and G, with support over the same set
Ω ∈ R, we write their Kolmogorov distance as:

D (F,G) = sup
x∈Ω
|F (x)−G(x)| = ‖F −G‖∞ . (2)

Let’s now apply (2) to the case when one of the CDFs
is an empirical distribution. More specifically, we will look
at the case where F is a continuous CDF and Ĝ is an
ECDF constructed using a set X of M i.i.d. samples from
an unknown continuous CDF G. We have:

dM

(
ĜX , F

)
= sup

x

∣∣∣ĜX(x)− F (x)
∣∣∣ , (3)

where the set over which Ĝ and F have support is under-
stood, and the subscript M reminds that the set X contains
M samples. We realize that as the random samples in X

change, ĜX changes as well, and therefore dM

(
ĜX , F

)
defines a random variable.

Suppose we now want to compare F and G. We look for
conditions that allow us to verify with any desired confidence
level whether F and G are the same distribution or not.
Under the null hypothesis H0 : F = G, the Glivenko-
Cantelli theorem implies that, as M → ∞, dM → D = 0
with probability 1. This asymptotic result, although very
important in guaranteeing that ECDFs are well-behaved
estimators, is not very useful for computational purposes, as
it doesn’t say anything about the properties of Ĝ for finite
M . The inequality we present next fills this gap.

C. The DKW inequality

An important result, first proved by Dvoretzky, Kiefer and
Wolfowitz in 1956 [10], and later strengthened by Massart
in 1990 [11], gives a precise characterization of the rate of
convergence of an ECDF to the corresponding exact CDF
for any finite number of samples. This result is known as
the DKW inequality.

If we look again at (3), it makes sense to ask what is the
distribution of the random variable dM

(
ĜX , F

)
, and how

can we use it to test the null hypothesisH0 : F = G. Clearly,
ifH0 is true, then by (2) and the properties of norms we have
D = 0. However, due to sampling, dM will not be exactly
0 for finite M , but it will approach 0 as M →∞ (note that
dM is a distance, and therefore dM ≥ 0 by construction). If
we now fix M and look at all the possible ECDFs ĜX such
that the set X contains exactly M samples we may ask what
is the probability that dM is greater than any number ε, with
0 < ε < 1.

The DKW inequality, bounds exactly this probability. If F
is a fully specified continuous CDF, and H0 : F = G is true,
then for any set of i.i.d. samples X with M < ∞ samples
and any 0 < ε < 1, the following statement is true:

P
{
dM

(
ĜX , F

)
> ε
}
≤ 2e−2Mε2 . (4)

This result lends itself to several useful interpretations,
depending on the meaning that is attributed to the different
quantities in the inequality. The most natural way of looking
at the left-hand side of (4) is the probability of making a
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Fig. 1. Illustration of the DKW bound. The red lines show the exact
CDF and the ε(c)-ball around it. The black dotted lines show 100 ECDFs
generated using 20 random samples from the exact CDF. Only a very small
number of them violates the bound.

mistake in using dM to test H0, instead of D. Suppose we
decide to accept the null hypothesis when dM is less than or
equal to a certain critical value ε(c), and to reject it otherwise.
Then, the DKW inequality (evaluated for ε = ε(c)) bounds
the probability of rejecting the null hypothesis when it is
true, that is the p-value of the test (Type I statistical error).

We can use the inequality to make the p-value smaller than
or equal to a desired confidence level α:

P {dM > ε} ≤ 2e−2Mε2 ≤ α.

This can be solved for ε and used to set the critical value
ε(c). We find:

ε ≥
√
− 1

2M
log
(α

2

)
= ε(c)(α,M). (5)

The above expression gives the minimum value of dM
that allows one to conclude that F and G are different
distributions with probability 1− α.

We can also fix α and ε and solve for M . We find:

M ≥
⌈
− 1

2ε2
log
(α

2

)⌉
= M (c)(α, ε), (6)

where dxe denotes the smallest integer not less than the real
number x, i.e. the ceiling of x. This gives the minimum
number of samples needed to claim that dM ≤ ε with
probability 1− α.

We conclude this survey with yet another way of looking at
(5). If F and G are the same distribution, then for any set X
containing M i.i.d. samples, ĜX is at most ε(c)(α,M) apart
from F in the metric dM , with probability 1−α. This defines
an infinity norm ball of radius ε(c)(α,M) centered around
F that contains most random ECDFs constructed using M
samples from F . This is illustrated in Figure 1.

As a final remark, we note that all the bounds we derived
using the DKW inequality, and the inequality itself, do not
depend on the functional form of the exact CDF. This is one
of the most powerful properties of (4), (5) and (6), and it is
key to their application to the model selection problem.

D. Comparing experimental CDFs

When observing a stochastic chemical reaction network
through flow cytometry, the exact CDF F is not available.
What we can measure instead is a set of fluorescence levels
Y that are believed to be i.i.d. samples from F . Given the set
Y , it is straightforward to compute the ECDF associated with
it using (1). We denote this empirical distribution F̃Y . Note
that the underlying exact CDF for F̃Y is F by assumption.

On the computational side, we have the simulated set of
fluorescence levels produced by a SCRN. We denote this set
X , and the ECDF associated with it ĜX . We denote S the
number of simulations in X , and G the underlying exact
CDF for ĜX .

The model selection problem can be, then, stated as
follows: test the hypothesis F = G, i.e. the hypothesis that
F̃Y and ĜX have the same underlying exact CDF.

Let’s now look at the Kolmogorov distance between F̃Y
and ĜX , i.e. dSM

(
ĜX , F̃Y

)
. This quantity can not be

bounded directly using the DWK inequality, since F̃Y and
ĜX are not continuous functions. However, the Kolmogorov
distance is a norm, therefore we can apply the triangle
inequality and write:

dSM

(
ĜX , F̃Y

)
=
∥∥∥ĜX − F̃Y ∥∥∥

∞

≤
∥∥∥ĜX − F∥∥∥

∞
+
∥∥∥F̃Y − F∥∥∥

∞

= dS

(
ĜX , F

)
+ dM

(
F̃Y , F

)
.

(7)

The left-hand side of (7) can be computed, since both F̃Y
and ĜX are known. The two quantities in the right-hand
side can be bounded using the DKW inequality, even if F is
unknown. Under the null hypothesis H0 : F = G, and for a
fixed confidence level α, the following inequality must hold
with probability at least 1− α:

dSM

(
ĜX , F̃Y

)
≤√
− 1

2S
log
(α

2

)
+

√
− 1

2M
log
(α

2

)
. (8)

If (8) is violated, then with probability at least 1− α the
empirical distributions F̃Y and ĜX do not have the same
underlying exact CDF. If (8) does hold, then we either have
F = G, or the number of simulations S is not large enough to
conclude otherwise. In order to claim that dSM

(
ĜX , F̃Y

)
≤

ε with probability at least 1 − α, the minimum number of
simulations needed is given by:

S ≥


− log

(α
2

)
2

(
ε−

√
− 1

2M
log
(α

2

))2


= S(c) (ε, α,M) .

(9)
This is illustrated in Figure 2. As expected, as the number
of experimental samples M increases, the critical number of
simulations S(c) (ε, α,M) decreases. The graph also shows
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Fig. 2. Simulations needed for significant comparison of ECDFs. The
three curves show the critical number of simulations S(c) in (9) as a function
of ε, for α = 0.05 and three different values of M .

a clear diminishing returns effect, where very little is gained
in increasing M from 50000 (a typical number for flow
cytometry) to 1000000 (limits of technical feasibility).

E. Simultaneous comparison of multiple CDFs

In practical flow cytometry experiments, we typically
measure P = 1 − 4 species at K = 10 − 20 time
points. Hence, the model selection problem involves the
simultaneous comparison of KP pairs of CDFs. Note that
the first time point is usually used as initial condition for
the SCRN simulations, so in most cases the corresponding
experimental and simulated ECDFs will match perfectly, up
to sampling error.

The simultaneous comparison problem can be handled by
combining information from multiple statistical tests on the
same null hypothesis into an overall p-value, a procedure
known in statistics as meta-analysis. In our application, we
have (K − 1)P CDF equality tests, which provide evidence
that either supports or refutes the global null hypothesis that
a given SCRN adequately explains the data.

We first obtain an estimate of the p-value for the compar-
ison of a single pair of CDFs. We fix a distance tolerance
ε̄ and a confidence level α, and we perform S(c) (ε̄, α,M)
simulations of a candidate SCRN. With these choices the
right-hand side of (8) evaluates precisely to ε̄. As established
in Section III-D, if an experimental ECDF F̃Ykp

and the
corresponding simulated ECDF ĜXkp

have the same under-
lying exact CDF, then the inequality dSM

(
ĜXkp

, F̃Ykp

)
≤ ε̄

must hold with probability at least 1−α. Consequently, the
probability that dSM is greater than ε̄ with the null hypothesis
still being true, i.e. the p-value, is at most α.

Therefore, if for a given pair of CDFs the null hypothesis
can be rejected on the basis of (8), we take the associated
p-value to be α. On the other hand, if (8) holds, we have no
reason to believe that ĜXkp

and F̃Ykp
do not have the same

underlying CDF, hence the associated p-value is set to 1.
The final step is to combine the individual p-values into an

overall p-value for the global null hypothesis. One straight-
forward way of doing this is Fisher’s combined probability

test [12], which is based on the following statistic:

X2 = −2

K∑
k=2

P∑
p=1

log (αkp) . (10)

We recall that in our application αkp is either 1 or α. Under
the null hypothesis, the X2 statistic has the χ2 distribution
with 2(K−1)P degrees of freedom. Therefore, if we denote
by χ2

ν(x) the χ2 PDF with ν degrees of freedom, the p-value
for Fisher’s test is given by the tail probability of this PDF,
and can be readily computed as follows:

α(F ) =

∫ ∞
X2

χ2
2(K−1)P (τ)dτ

= 1−
∫ X2

0

χ2
2(K−1)P (τ)dτ.

(11)

It must be noted that Fisher’s p-value computed using (11)
is exact only if the p-values that are combined into X2 are
independent. If they are correlated, (11) should be viewed
as an approximation. As a result the confidence level that
is fixed for the individual hypotheses (α in our case), may
not be an adequate threshold for α(F ). In particular, it is
well-known in the literature that if the correlation is positive
(as it is usually the case), meta-analysis techniques have a
tendency to overstate significance [13], resulting in a more
likely rejection of the global null hypothesis.

Since the ranking of the candidate models is not affected
(see below), an accurate investigation of this effect is beyond
the scope of the present manuscript. However, we do remark
that care should be taken when deciding whether or not a
given SCRN is consistent with the experimental observations
based on α(F ), especially if this quantity turns out to be close
to the threshold.

F. Model selection algorithm

We are now ready to assemble all the notions we intro-
duced so far into a practical algorithm, which we call distri-
bution comparison model selection (DCMS). The algorithm
implements the two steps outlined in Section II as follows.

For each SCRN Σq , we compute the Fisher’s p-value α(F )
q .

Any SCRN for which α
(F )
q � α is discarded as a model

that is inconsistent with the experimental data (taking into
account the remarks of Section III-E). Then, the candidate
models are ranked according to two criteria: (i) the value
of Fisher’s statistic X2, and (ii) the cumulative Kolmogorov
distance of the simulated CDFs from the experimental CDFs,
i.e. the following quantity:

D =

K∑
k=2

P∑
p=1

dSM

(
ĜXkp

, F̃Ykp

)
. (12)

Among the candidates with the smallest value of X2, the one
with the smallest D is selected as the model that explains
the data the best.

The individual steps of the DCMS method are further
detailed in Algorithm 1.
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Data: a set of experimental samples Ykp and the
corresponding experimental ECDFs F̂Ykp

, a set
of SCRNs Σ1, . . . ,ΣQ

Result: the SCRN that best explains the data Ykp
begin

set confidence level α (e.g. 0.05);
set distance tolerance ε̄ (e.g. 0.25);
find the minimum number of samples M in Ykp;
evaluate S(c) (ε̄, α,M) using (9);

for q ← 1 to Q do
perform S(c) simulations of Σq and obtain the
simulated data set Xkp;
for k ← 2 to K do

for p← 1 to P do
evaluate dSM

(
ĜXkp

, F̃Ykp

)
;

if dSM > ε̄ then set αkp = α;
else set αkp = 1;

end
end
evaluate X2 and α(F )

q using (10) and (11);
if α(F )

q � α then
discard Σq as inconsistent;

end
end
rank the SCRNs according to the value of Fisher’s
statistic X2 and the cumulative Kolmogorov
distance (12);

end
Algorithm 1: The DCMS method.

IV. EXAMPLE

We now demonstrate the DCMS algorithm on stochas-
tic models of a popular synthetic gene regulation network
known as the repressilator. This circuit, first implemented
by Elowitz and Leibler in 2000 [14], consists of three genes
connected in a feedback loop where each gene produces the
repressor protein for the next promoter in the loop. The
repressilator has been analyzed extensively, both through
deterministic and stochastic models [15], and it is frequently
used as an example system for numerical methods [16], [17].

The stochastic repressilator candidate models we consider
here have up to N = 21 species and R = 48 reactions.
For each gene, up to 7 species are considered: unoccupied
promoter, promoter bound to 1–4 repressor proteins, mRNA
and protein. Their interactions are described by up to 16
reactions: binding and dissociation of up to 4 repressor
molecule proteins to/from the promoter (up to 8 reactions),
transcription from the unoccupied and from the occupied
promoter (up to 5 reactions), translation, degradation of the
mRNA and of the protein.

The purpose of the present example is to study cooperative
binding in the repressilator. In other words, we assume
that each promoter can have 1–4 binding sites for the
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Fig. 3. Simulated flow cytometry data set. The bold curve shows the
average fluorescence level of the second protein in the (2, 2, 2) repressilator
model Σ22 computed across M = 50000 simulations. The shaded area
around the curve represents a one standard deviation interval around the
mean. Note that fluorescence levels can not have negative values.

corresponding repressor protein and that each bound repres-
sor molecule increases the promoter affinity for additional
repressor molecules (positive cooperativity). This gives rise
to Q = 43 = 64 candidate models. We proceed by first
simulating a flow cytometry data set from the (2, 2, 2) model
(Σ22), which we consider to be the true network. We, then,
test all the other candidates against these data using the
DCMS algorithm.

We assume that the network is observed at K = 12 time
points (every 10 minutes for 2 hours), and that P = 1 species
is measured (the second protein in the loop). The model
selection data set was constructed using M = 50000 SSA
simulations of the “true” network, with reaction rates derived
from [14] and initial conditions adapted from [17] (Figure
3).

We fix a confidence level α = 0.05 and a distance
tolerance ε = 0.25. With these choices, the critical number
of simulations (9) evaluates to S(c) = 31.

The output of the DCMS algorithm is detailed in Table
I. For the sake of brevity, only the top 16 ranking models
are listed. The true model Σ22 is correctly picked as the
top-ranking candidate. We also note how all the other can-
didates have a value of α(F ) that is smaller than the chosen
confidence level α = 0.05. However, the second-ranking
model Σ26 has α(F ) = 0.025, which is relatively close to the
threshold: therefore, this candidate should still be regarded
as a plausible model for the process.

This analysis, which required a total of 1984 SSA simula-
tions of the candidate models (not including the ones required
for the generation of the simulated flow cytometry data), was
carried out using a single-processor 2.6 GHz laptop running
a custom-written C implementation of Gillespie’s SSA direct
method based on the GNU Scientific Library [18]. The total
running time was about 46 minutes.

V. CONCLUSIONS

In the present manuscript, we described a new method for
model selection in discretely observed stochastic chemical
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TABLE I
MODEL SELECTION FOR THE STOCHASTIC REPRESSILATOR

Ranking Model Binding sites X2 statistic Global p-value α(F ) Cumulative distance D DCMS result
1 Σ22 (2, 2, 2) 0 1 1.8983 accept
2 Σ26 (2, 3, 2) 41.9403 0.024899 5.5148 reject
3 Σ55 (3, 2, 4) 53.9232 0.0010381 4.3885 reject
4 Σ60 (4, 3, 4) 59.9146 0.00017219 4.8853 reject
5 Σ5 (1, 2, 1) 59.9146 0.00017219 5.6034 reject
6 Σ11 (3, 3, 1) 59.9146 0.00017219 6.0316 reject
7 Σ39 (3, 2, 3) 59.9146 0.00017219 6.1064 reject
8 Σ54 (2, 2, 4) 59.9146 0.00017219 6.3258 reject
9 Σ34 (2, 1, 3) 59.9146 0.00017219 7.3595 reject

10 Σ40 (4, 2, 3) 59.9146 0.00017219 8.1771 reject
11 Σ6 (2, 2, 1) 59.9146 0.00017219 8.2341 reject
12 Σ44 (4, 3, 3) 65.9061 2.5669e-05 5.1662 reject
13 Σ33 (1, 1, 3) 65.9061 2.5669e-05 5.2885 reject
14 Σ12 (4, 3, 1) 65.9061 2.5669e-05 5.3617 reject
15 Σ28 (4, 3, 2) 65.9061 2.5669e-05 5.6541 reject
16 Σ10 (2, 3, 1) 65.9061 2.5669e-05 6.1771 reject

The table shows the DCMS algorithm results for the top-ranking candidate models of the stochastic repressilator network. The “true” model Σ22 is
correctly picked as the one that best explains the simulated flow cytometry data set. The second-ranking model Σ26 has a value of α(F ) that is less than
α = 0.05, but relatively close to the threshold, so it should still be regarded as a plausible model.

reaction networks using flow cytometry data, which we
call distribution comparison model selection algorithm, or
DCMS. Our proposed procedure is based on the comparison
of empirical distributions from the candidate models and
from the experimental data.

Using the notion of Kolmogorov distance and the
Dvoretzky–Kiefer–Wolfowitz inequality, we derived a uni-
versal bound on the number of simulations needed for a
statistically significant comparison of two ECDFs, which is
independent of the functional form of the underlying exact
CDFs. Furthermore, we found that for common data set sizes
in flow cytometry experiments this number is surprisingly
small, allowing one to screen large candidate models and/or a
large number of candidate models in a very computationally
efficient manner. In our example, we were able to compare 64
candidate models using only measurements from one species
and 31 simulations for each SCRN.

Finally, we remark that the DCMS algorithm displays a
compromise between speed and strictness: for fixed confi-
dence level α and number of experimental samples M , a
smaller Kolmogorov distance tolerance ε̄, corresponds to a
larger critical number of simulations S(c). In other words, if
one performs a very small number of simulations per SCRN,
it is likely that more than one candidate will be accepted as
statistically consistent by DCMS. Keeping this in mind, when
screening a very large number of candidates, our proposed
method can be easily applied in several stages, reducing the
tolerance as the number of statistically consistent candidates
decreases. In the stochastic repressilator scenario of Section
IV, if we repeat the analysis using ε̄ = 0.6 (8 simulations
per SCRN), nineteen models are accepted as statistically
consistent. If we then reapply DCMS with ε̄ = 0.25 to these
five models only, we obtain the same result of selecting Σ22

as the top-ranking candidate.
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bilità,” Giorn Ist Ital Attuari, vol. 4, pp. 221–424, 1933.

[10] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax
character of the sample distribution function and of the classical
multinomial estimator,” Ann Math Statist, vol. 27, no. 3, pp. 642–669,
1956.

[11] P. Massart, “The tight constant in the Dvoretzky–Kiefer–Wolfowitz
inequality,” Ann Probab, vol. 18, no. 3, pp. 1269–1283, 1990.

[12] R. A. Fisher, Statistical Methods for Research Workers. Oliver and
Boyd, 1925.

[13] R. Delongchamp, T. Lee, and C. Velasco, “A method for computing
the overall statistical significance of a treatment effect among a group
of genes,” BMC Bioinformatics, vol. 7 (Suppl 2), p. S11, 2006.

[14] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, pp. 335–338, Jan 2000.

[15] A. Loinger and O. Biham, “Stochastic simulations of the repressilator
circuit,” Phys Rev E, vol. 76, p. 051917, Nov 2007.

[16] M. Quach, N. Brunel, and F. d’Alche Buc, “Estimating parameters
and hidden variables in non-linear state-space models based on ODEs
for biological networks inference,” Bioinformatics, vol. 23, no. 23,
pp. 3209–3216, 2007.

[17] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf,
“Approximate Bayesian computation scheme for parameter inference
and model selection in dynamical systems,” J R Soc Interface, vol. 6,
no. 31, pp. 187–202, 2009.

[18] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken,
M. Booth, and F. Rossi, GNU Scientific Library reference manual.
Network Theory, third ed., 2009.

1685


