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Abstract— An efficient optimization procedure is proposed for
computing a receding horizon control law for linear systems
with constrained control inputs and additive disturbances. The
procedure uses an active set method to solve the dynamic pro-
gramming problem associated with the min-max optimization
of a predicted cost. The active set at the solution is determined
at each sampling instant as a function of the current system
state using the first-order necessary conditions for optimality.
The computational complexity of each iteration is linear in
the length of the prediction horizon. We discuss conditions for
stability and bounds on state and input l2-norms in closed loop
operation.
Keywords: Dynamic programming, robust control, constrained
model predictive control, min-max optimization.

I. INTRODUCTION

The aim of robust control is to provide guarantees of stability
and of performance with respect to a suitable measure,
despite uncertainty in the model of the controlled system.
Model Predictive Control (MPC) uses a receding horizon
strategy to derive robust control laws by repeatedly solving
a constrained optimization problem online, and consequently
the approach is effective for systems with constraints and
bounded disturbances [1].

Robust receding horizon control based on a worst-case opti-
mization was first proposed in [2]. The approach employed
a min-max optimization, which was subsequently adopted
in [3] to derive an MPC law for linear systems with uncertain
impulse response coefficients. In this strategy, and in the re-
lated contribution of [4], an open loop predicted future input
sequence was used to minimize the worst-case predicted per-
formance. It was argued in [5] that by optimizing instead over
closed loop predicted input sequences, control laws with im-
proved performance and larger regions of attraction could be
obtained. However, unless a degree of optimality is sacrificed
through the use of sub-optimal controller parameterizations
(such as, for example, those proposed in [6], [7] and [8]),
strategies that involve a receding horizon optimization over
predicted feedback policies generally require impractically
large computational loads. For example [9] and [10] apply a
scenario-based approach to constrained linear systems with
bounded additive uncertainty, which leads to an optimization
problem in a number of variables which grows exponentially
with the prediction horizon length.
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Parametric solution methods aim to avoid the explosion in
computational complexity of robust dynamic programming
with horizon length by characterizing the solution of the
receding horizon optimization problem offline, typically as a
feedback law that is a piecewise affine function of the model
state. In [11] and [12] this method was applied to linear
systems with polytopic parametric uncertainty. However,
whereas MPC typically solves an optimization problem for
a unique initial condition at each time-step, this approach
requires the solution at all points in state space, and moreover
relies on being able to efficiently determine which of a
large number of polyhedral regions contains the current
state. Although efficient point location techniques have been
proposed (e.g. [13]), the method is generally applicable only
to small problems and horizon lengths.

The contribution of this paper is to extend the methodology
developed in [14], [15], [16] to the case of linear systems
with bounded additive uncertainty and input constraints in
order to derive a robust dynamic programming solver. An
online active set approach avoids the need to compute the
solution over the entire state space, and it also forms the basis
of an efficient line-search-based point location technique.
The resulting algorithm has complexity per iteration that
grows only linearly with the horizon length. We use a
quadratic cost, and to derive a convex-concave min-max
problem, an H∞ performance index is therefore employed.
The algorithm ensures closed loop stability and a specified
l2-disturbance gain bound.

II. PROBLEM STATEMENT

We consider linear discrete time systems with model

xt+1 = Axt +But +Dwt, t = 0, 1, . . . (1)

with state xt ∈ Rnx , control input ut ∈ Rnu and disturbance
input wt ∈ Rnw . Here ut and wt are subject to constraints:
ut ∈ U , wt ∈ W , in which U and W are assumed to be
convex polytopic sets defined by

U = {u ∈ Rnu : Fu ≤ 1} (2)
W = {w ∈ Rnw : Gw ≤ 1} (3)

for F ∈ RnF×nu , G ∈ RnG×nw , and where 1 = [1 · · · 1]T

denotes a vector of conformal dimensions.

We define the following closed loop robust optimal control
problem (see e.g. [11], [17]):(

u∗k(xk), w∗k(xk, uk)
)

= arg min
uk∈U

max
wk∈W

Jk(xk, uk, wk)

(4a)
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subject to xk+1 = Axk +Buk +Dwk, where Jk is defined
for k = 0, 1, . . . N − 1 by

Jk(xk, uk, wk) =
1

2

(
‖xk‖2Q + ‖uk‖2R − γ2‖wk‖2

)
+ J∗k+1(xk+1),

(4b)

J∗k (xk) = Jk
(
xk, u

∗
k(xk), w∗k(xk, u

∗(xk))
)
, (4c)

and is subject to initial and terminal conditions over a finite
horizon of N time-steps:

x0 = xpt (4d)

J∗N (xN ) =
1

2
‖xN‖2P . (4e)

Here xpt denotes the current plant state (at time t), R is
a positive-definite matrix (denoted R � 0), Q is positive
semidefinite (Q � 0), ‖x‖2Q denotes xTQx, and the scalar
γ is chosen (as explained in Section III-A) to be sufficiently
large that (4) is strictly concave in wk. We assume that P is
chosen so that J∗N (xN ) is equal to the infinite horizon cost:
J∗N (xN ) =

∑∞
k=N

1
2 (‖xk‖2Q + ‖u∗k‖2R − γ2‖w∗k‖2) that is

obtained under the optimal linear feedback law defined by
(4a-c) in the absence of the constraints uk ∈ U , wk ∈ W , and
with terminal condition limk→∞ J∗k (xk) = 0. Furthermore,
problem (4) is assumed to be feasible for the initial state xp0.

The problem formulated in (4) defines a closed loop optimal
control problem (see e.g. [5]), since the optimal control uk
depends on xk, while the worst-case disturbance wk depends
on uk and xk. The sequential nature of this min-max problem
and the fact that the optimization is performed over a set of
arbitrary feedback laws {uk(x), wk(x, u), k = 0, . . . , N−1}
imply that, unlike open-loop formulations of robust MPC, (4)
cannot be solved exactly by a single quadratic program.

For given x0, we denote the optimal state, input and distur-
bance sequences as

x(x0) = {x0, . . . , xN}
u(x0) = {u∗0(x0), . . . , u∗N−1(xN−1)}
w(x0) = {w∗0(x0, u

∗
0(x0)), . . . , w∗N−1(xN−1, u

∗
N−1(xN−1))}.

A receding horizon control law is defined by implementing
at each time t = 0, 1, . . . the initial optimal control law
evaluated at the current plant state, ut = u∗0(xpt ). The process
of solving the optimization problem is then repeated at each
subsequent time instant.

III. ACTIVE SET SOLUTION VIA RICCATI RECURSION

The objectives of this section are threefold. Firstly the
Karush-Kuhn-Tucker (KKT) conditions providing first-order
necessary conditions for optimality [18], [19] are stated for
the problem (4). We derive Riccati recursions to determine
the solution of an associated problem involving only equality
constraints, using a sweep method (as in [20]). Thus we ob-
tain the sequence of optimal control and disturbance policies
for an equality constrained problem corresponding to a given
active constraint set as a sequence of affine state feedback

functions. We give necessary and sufficient conditions for
these control policies to be optimal with respect to the
original problem (4).

Secondly, having determined the optimal feedback laws at
each point on the horizon via backwards recursion of the
KKT conditions, we then determine state, input, disturbance,
costate and multiplier sequences as functions of the initial
state x0 by forward simulation using the system model (1).
We show that it is possible to devise a line-search through
polyhedral partitions of x0-space, starting from an estimate
of the optimal solution, and successively updating the active
set as a function of x0 until x0 = xp, as in [14]. Finally we
determine how the computation required by this approach
depends on the problem size.

A. KKT conditions and Riccati recursion

Let λk denote the vector of Lagrange multipliers associated
with the constraints xk+1 = Axk +Buk +Dwk and let µk
and ηk denote the Lagrange multipliers of constraints uk ∈ U
and wk ∈ W respectively, for k = 0, . . . , N−1. Then, using
standard results (see e.g. [19]), the KKT conditions defining
first order necessary conditions for the optimal solution of
problem (4) can be expressed as follows.

xk+1 = Axk +Buk +Dwk for k = 0, . . . , N − 1 (5)

λk−1 = ATλk +Qxk for k = 1, . . . , N − 1 (6)

Ruk = −BTλk − FTµk (7a)

µk ≥ 0, µTk (1− Fuk) = 0, 1− Fuk ≥ 0 (7b)

γ2wk = DTλk −GT ηk (8a)

ηk ≥ 0, ηTk (1−Gwk) = 0, 1−Gwk ≥ 0 (8b)

for k = 0, . . . , N−1, with the initial and terminal conditions:

x0 = xp (9)
λN−1 = PxN . (10)

An active set approach solves the optimization problem (4)
by solving a sequence of problems involving only equality
constraints. Let s = (su, sw) define a set of active constraints
in (4), namely a set of constraints that are satisfied with
equality at a solution of (4) for some initial state x0.
Specifically, let su = {su0,i, . . . , suN−1,i, i = 1, . . . , nu} and
sw = {sw0,i, . . . , swN−1,i, i = 1, . . . , nw}, where sui,k, s

w
i,k can

take values of 0 or 1, and rewrite (7b) and (8b) as

eTi Fuk = 1

eTi µk ≥ 0

}
if suk,i = 1,

eTi Fuk ≤ 1

eTi µk = 0

}
if suk,i = 0 (11)

eTi Gwk = 1

eTi ηk ≥ 0

}
if swk,i = 1,

eTi Gwk ≤ 1

eTi ηk = 0

}
if swk,i = 0 (12)

where ei denotes the ith column of an identity matrix of
conformal dimensions. Furthermore, let Fk, Gk denote the
matrices that consist of the rows of F , G corresponding to the
active sets indicated by suk,i = 1, i = 1, . . . , nu, and swk,i = 1,
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i = 1, . . . , nw respectively. Also denote the multipliers of
these active constraints as µa,k and ηa,k. Then the equality
constraints in (7a),(11) and (8a),(12) are equivalent to

Ruk = −BTλk − FTk µa,k (13a)
Fkuk = 1 (13b)

γ2wk = DTλk −GTk ηa,k (14a)
Gkwk = 1. (14b)

For any s ∈ Σ, where Σ denotes the set of all s such that the
equality constrained problem admits a solution for some x0,
the equality constraints of the KKT conditions, namely (5)-
(6) and (13)-(14), together with (9)-(10), define a two-point
boundary value problem.

In order to solve this equality constrained problem for given
s ∈ Σ using a Riccati recursion, we first express the costate
variables as

λk = Pkxk+1 + qk. (15)

Then, using (5), (14) gives[
γ2I−DTPkD GTk

Gk 0

][
wk
ηa,k

]
=

[
DTPk(Axk+Buk)+DTqk

1

]
.

(16)
Under the assumption that (16) has a unique solution:[

wk
ηa,k

]
=

[
Mw
k

Mη
k

]
(Axk +Buk) +

[
mw
k

mη
k

]
, (17)

(15) gives λk= P̂k(Axk+Buk)+q̂k, where P̂k, q̂k are defined

P̂k = Pk(I +DMw
k ) (18a)

q̂k = qk + PkDm
w
k . (18b)

Hence (13) gives[
R+BT P̂kB FTk

Fk 0

] [
uk
µa,k

]
=

[
−BT P̂kAxk −BT q̂k

1

]
.

(19)
Assuming that (19) has a unique solution:[

uk
µa,k

]
=

[
Luk
Lµk

]
xk +

[
luk
lµk

]
, (20)

equation (6) yields λk−1 = Pk−1xk + qk−1, where

Pk−1 = Q+AT P̂k(A+BLuk) (21a)

qk−1 = q̂k +AT P̂kBl
u
k (21b)

Finally, since (10) has the form of (15), with PN−1 = P
and qN−1 = 0, it follows by induction that (15) holds for
k = 0, . . . , N − 1.

The following result gives conditions for optimality of the
Riccati recursion (17)-(18) and (20)-(21).

Lemma 1: The optimal solution of problem (4) is given by

w∗k(xk, uk) = Mw
k (Axk +Buk) +mw

k (22a)
u∗k(xk) = Lukxk + luk (22b)

if and only if

GTk,⊥(γ2I −DTPkD)Gk,⊥ � 0 (23a)

FTk,⊥(R+BT P̂kB)Fk,⊥ � 0 (23b)

(where the columns of Fk,⊥ and Gk,⊥ form bases for the
kernels of Fk and Gk respectively), and

G
(
Mw
k (Axk+Buk)+mw

k

)
≤ 1, F (Lukxk+luk ) ≤ 1 (24a)

Mη
k (Axk+Buk)+mη

k ≥ 0, Lµkxk+lµk ≥ 0. (24b)

Proof: Problem (4) is respectively strictly concave in wk and
strictly convex in uk iff conditions (23a) and (23b) hold. In
this case the KKT conditions have a unique solution and
are sufficient as well as necessary for optimality. Conditions
(24a,b) ensure that the solution of the equality constraint
problem (5)-(6), (13)-(14), (9), coincides with that of the
KKT conditions (5)-(9), for the given active set s and x0.

Remark 2: It is easy to show that the conditions in (23a,b)
ensure that (16) and (19) admit unique solutions.

Remark 3: Condition (23b) is necessarily satisfied since
R � 0 by assumption and Q � 0 implies Pk, P̂k � 0 for all
k. However (23a) is very difficult to verify in practice, since
this requires checking all active sets s ∈ Σ. In this paper we
simply assume that γ is sufficiently large to satisfy (23a) for
all active sets likely to be encountered.

B. Active set method

Using the feedback law (22) in conjunction with (5) to
simulate forward over the prediction horizon, we obtain:

xk = Φkx0 + φk for k = 1, . . . , N (25)

where Φk ∈ Rn×n and φk ∈ Rn are defined by

Φk+1 = (I+DMw
k )(A+BLuk)Φk (26a)

φk+1 = (I+DMw
k )
(
(A+BLuk)φk+Bluk

)
+Dmw

k (26b)

with inital conditions Φ0 = I and φ0 = 0. Therefore the
input, disturbance and costate sequences u(x0), w(x0) and
λ(x0) = {λ0, . . . , λN−1}, as well as the corresponding
multiplier sequences µ(x0) = {µ0, . . . , µN−1} and η(x0) =
{η0, . . . , ηN−1} can be determined as affine functions of x0

by substituting (25) into (17), (20) and (15). Hence, for a
given active set s, we can define a region of state space
X (s) ⊂ Rnx in which the KKT conditions hold:

X (s) =
{
x0 : x(x0) satisfies (24a,b)

}
. (27)

Lemma 4: The sets X (s) defined by (27) are convex poly-
hedra, and the collection {X (s) : s ∈ Σ} is a complex with
the properties (see e.g. [21]):

∂X (s) ⊂ X (s) (28a)
X (s1) ∩ X (s2) = ∂X (s1) ∩ ∂X (s2) (28b)

for any s1, s2 ∈ Σ (where ∂X (s) denotes the boundary
of X ). Furthermore the union

⋃
s∈Σ X (s) of all admissible

active sets covers the set of feasible initial conditions for (4).
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Proof: The convexity property and (28a) follow from
the linear inequality constraints of (24a,b). Property (28b)
results from the piecewise continuity of the trajectories
x(x0),λ(x0),u(x0),w(x0),µ(x0), and η(x0). Furthermore,
since a solution of (4) exists for all feasible xp,

⋃
s∈Σ X (s)

necessarily covers the set of feasible initial conditions xp.

The algorithm we propose solves (4) by solving the equality
constrained problem for an estimate of the optimal active set,
and then updates this active set at successive iterations. At
each iteration i = 0, 1, . . . the algorithm determines s(i+1)

from s(i) by performing a line search over x0 ∈ X (s(i))
in the direction of the current plant state xp. This results
in a sequence of dual-feasible iterates x(k) that generate
trajectories satisfying (24a,b) but not necessarily (9).

Algorithm 1: Initialize with x(0)
0 and an active set s(0) such

that x(0)
0 ∈ X (s(0)), and set i = 0. At iteration i = 0, 1, . . .:

(i) Compute {Pk, qk} for k = N −1, . . . , 0, and {Φk, φk}
for k = 0, . . . , N − 1, and hence X (s(i)).

(ii) Perform the line search:
α(i) = max

α∈(0,1]
{α : x

(i)
0 + α(xp − x(i)

0 ) ∈ X (s(i))}.

(iii) If α(i) < 1, then set x(i+1)
0 := x

(i)
0 + α(i)(xp − x(i)

0 ),
i := i+ 1, and update s(i) on the basis of the new set
of active constraints. Return to step (i).

(iv) Otherwise set s∗ := s(i), compute u∗0(xp) and stop.

Theorem 5: Algorithm 1 converges to s∗ such that (4) is
minimized by the trajectories for x, u and w that are
generated by (5) and (22) with s = s∗ .

Proof: The line search in step (ii) of Algorithm 1 implies
that each iterate x

(i)
0 lies on the line segment defined by

x
(0)
0 + β(i)(xp − x(0)

0 ) with β(i) ∈ [0, 1]. Since the sequence
{β(i), i = 0, 1, . . .} is non-decreasing and each iterate x(i)

lies either at an intersection of the line with the boundary
∂X (s(i)) or at x(i)

0 = xp, the sequence {β(i), i = 0, 1, . . .}
must converge to 1 after a finite number of iterations (due to
the finite number of admissible active sets s ∈ Σ). It follows
that Algorithm 1 terminates with x

(i)
0 = xp after a finite

number of iterations.

Remark 6: xp is assumed to be a feasible initial condition
for (4), therefore a trivial initialization for Algorithm 1 is
the choice x(0)

0 = 0 and s(0) = {0, . . . , 0}. In the context
of MPC, further computational savings can be achieved by
warm-starting Algorithm 1. This can be done by choosing
x

(0)
0 at time k+1 equal to the second element of the optimal

sequence at time k, i.e. x∗1(k). Correspondingly, under the
assumption that the state enters a terminal set after N time-
steps (as discussed in section IV), the active set can be
initially chosen as s(0) = {s∗1(k), . . . , s∗N (k), s∗N+1(k)}, i.e.
by applying a time-shift to the optimal active set at time k,
s∗(k). Here s∗N+1(k) is determined from the dynamics of (5)
under the terminal feedback law described in section IV.

C. Computation

In order to estimate how the computational complexity of
Algorithm 1 depends on the problem size, we make the
assumption that (16) and (19) are solved using the null space
method commonly employed by QP active set solvers (see
e.g. [22]). This approach, applied to (16), involves computing
the QR decomposition of Fk, which requires O(n2

w) floating
point operations (assuming that incremental rank-1 updates
are employed), as well as calculating the inverse of the
matrix on the LHS of (23a), which requires O

(
(nw − nF )3

)
operations (assuming Cholesky decomposition is used, where
nF ≤ nw is the number of rows of Fk). Applying the same
approach to the solution of (19) requires O(n2

u) operations
(for the QR decomposition of Gk) plus O

(
(nu − nG)3

)
operations (for the Cholesky decomposition of the LHS of
(23b), where nG ≤ nu is the number of rows of Gk). The
other significant contribution to the computation in (17)-(21)
is due to the matrix multiplications in (18) and (21), which
require O

(
(2n3

x + (3nu + 2nw)n2
x + n2

unx)
)

operations.

Combining these estimates, and noting that the computation
required for the forward simulation is O(n2

xN) (since only
the projection, Φk(xp − x(i)

0 ), of Φk in (26a,b) is needed),
and also that the computation involved in the line search
in step (ii) is comparatively insignificant, we estimate the
computation per iteration of Algorithm 1 to grow as

O
((

2n3
x+n2

x(3nu+2nw)+c1(n3
w+n3

u)+c2(n2
w+n2

u)
)
N
)
.

Here c1, c2 are constants that depend on the implementations
of Cholesky and QR decompositions, and we have used
conservative approximations: nu−nG ≈ nu, nw−nF ≈ nw.

Thus the dependence of computation per iteration on the
horizon length, N is linear. The required number of iterations
is problem-dependent, but empirical evidence (see e.g. the
example of Section V) suggests that this also grows roughly
linearly with N . Furthermore the number of iterations can be
minimized using warm-starts, as described in Remark 6. This
is in stark contrast to existing schemes for min-max receding
horizon control, which, for the case of optimal approaches
that are based on dynamic programming, have computational
loads that depend exponentially on N (see e.g. [9], [10]).
Likewise, approaches such as [7], [8] based on suboptimal
controller parameterizations require the solution of a QP in
a number of optimization variables that grows quadratically
with the horizon length; hence these are likely to have much
higher computational load than Algorithm 1.

IV. CLOSED LOOP STABILITY AND l2-GAIN BOUND

This section discusses the stability and disturbance attenua-
tion properties of the feedback law defined by the receding
horizon implementation of Algorithm 1. The problem de-
scription (4) does not include explicit state constraints, and
hence does not allow terminal state constraints to be included
in the definition of the receding horizon policy. However we
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are able to ensure robust stability and a specified l2-gain
bound within a given set of initial conditions in state space.

The analysis involves three steps. Firstly, assuming dual
mode predictions, we calculate an unconstrained optimal
feedback law as the terminal control law and also deter-
mine a robust, controlled, positive invariant set X f as a
corresponding terminal set [1]. A specified l2-gain bound
is thus ensured if x0 ∈ X f . Secondly, we find an N -step
backwards-reachable set, XN , from which from the terminal
set X 0 = X f is reachable in N steps under the receding
horizon application of the feedback law of Algorithm 1. This
gives XN as a region of attraction for the receding horizon
control law. Finally we show that the receding horizon
application of Algorithm 1 ensures that the specified l2-gain
bound holds for all initial conditions in XN .

Lemma 7: If the matrix inequality:
P 0 (A+BKf )TP [Q KT

f R]

? γI DTP 0
? ? P 0
? ? ? γI

 � 0 (29)

holds for some P and Kf , then in the absence of constraints
on ut, wt, the system xt+1 = Axt +But +Dwt, with ut =
Kfxt, satisfies the following bound on disturbance l2-gain∑∞

t=0 (‖xt‖2Q + ‖ut‖2R)∑∞
t=0 ‖wt‖

2 ≤ γ2. (30)

Proof: This follows from standard results (see e.g. [23]).

Remark 8: Condition (29) can be formulated as a linear
matrix inequality in S = P−1, Y = KfP

−1 and γ:
S 0 (AS +BY )T [SQ Y TR]
? γI DT 0
? ? S 0
? ? ? γI

 � 0. (31)

Values for P and Kf can be computed for given (sufficiently
large) γ by minimizing the trace of P = S−1 subject to
(31). The optimal P is the solution of the corresponding
steady-state H∞ Riccati equation [24], and hence defines
the terminal cost in (4e) and also determines the gain Kw in
the unconstrained optimal disturbance function wt = Kwxt.

Definition 1: A set Xf ⊆ Rnx is robust positive invariant
for xt+1 = (A + BKf )xt + Dwt if: (i). Xf ⊆ Xu, where
Xu = {x ∈ Rnx : Kfx ∈ U and Kwx ∈ W}; and (ii).
(A+BKf )x+Dw ∈ X f for all x ∈ X f and all w ∈ W .

Definition 2: For t = 1, . . . , N , the set X t−1 is the preimage
of X t under the receding horizon application of the optimal
feedback policy, u∗0(x), of Algorithm 1 if X 0 = X f and
X t = {x ∈ Rnx : Ax+Bu∗0(x) +Dw ∈ X t−1, ∀w ∈ W}.

Theorem 9: If x0 ∈ XN , then for all admissible disturbance
sequences {wt ∈ W, t = 0, 1, . . .}, the state of the closed
loop system, xt+1 = Axt +But +Dwt under the receding
horizon application of the control law ut = u∗0(xt) of
Algorithm 1, enters the terminal set X f in N time-steps,

i.e. xt ∈ X f for some t ≤ N . Furthermore, the disturbance
l2-gain of the closed loop system is bounded by∑∞

t=0 (‖xt‖2Q + ‖ut‖2R)∑∞
t=0 ‖wt‖

2 ≤ γ2. (32)

Proof: If x0 ∈ XN , then xt ∈ X f for t ≤ N follows directly
from Definitions 1 and 2. To demonstrate the bound on l2-
gain, we first show that the optimal cost J∗0 (xt) is finite for
all t ≥ 0. Consider the evolution of the optimal cost, J∗k (x̂k),
after k steps along the optimal state sequence predicted at
time t, which is denoted here as x(xt) = {x̂0, x̂1, . . .}, with
x̂0 = xt, in order to distinguish predicted states x̂k from
the actual plant state xt. Clearly J∗k (x̂k) in (4e) is finite for
k = N since (29) is assumed to be feasible. Furthermore,
if J∗k (x̂k) is finite, then J∗k−1(x̂k−1) must also be finite
because the optimization in (4a) is necessarily feasible. Since
the horizon length N is by assumption finite, it follows by
induction that J∗0 (xt) is bounded. Next, from the definition
of problem (4), at time t we obtain:

J∗0 (xt)− J∗1 (x̂1) = 1
2 (‖xt‖2Q + ‖u∗t ‖

2
R − γ

2 ‖w∗t ‖
2
)

and therefore by optimality the following inequality holds:

J∗0 (xt) − J∗0 (xt+1) ≥ 1
2 (‖xt‖2Q + ‖u∗t ‖

2
R − γ

2 ‖wt‖2)

and since J∗0 (xt) is bounded for all t, this implies:

lim
m→∞

1

m
(J∗0 (x0)− J∗0 (xm+1)) = 0

which implies the l2-gain bound stated in (32).

V. NUMERICAL EXAMPLE

The proposed robust MPC algorithm was applied to (1) with

A =

[
1 1
0 1

]
, B = 1

2

[
1
1

]
, D =

[
1 0
0 1

]
,

and with constraint sets U = {u ∈ R : −1 ≤ u ≤ 1} and
W = {w ∈ R2 : −0.1 ≤ wi ≤ 0.1 for i = 1, 2}, and cost
weights Q = I , R = 1. Using Remark 8, P , Kf , and Kw

were computed with γ chosen sufficiently large to satisfy
conditions (23a,b) of Lemma 1. For N = 4 this gives

P =

[
2.422 1.160
1.160 3.770

]
, Kf =

[
−0.580 −1.385

]
Kw =

[
0.0178 0.0145
−0.0033 0.0201

]
, γ2 = 80.

A robust positive invariant set X f was obtained using the
procedure of [25] and the preimage sets X k for k = 1, . . . , 4
were determined numerically (Fig. 1). By Theorem 10, under
ut = u∗0(xt), X 4 is therefore a region of attraction of X f .

Figure 2 demonstrates that the computational complexity per
iteration of Algorithm 1 scales linearly with horizon length
N , in agreement with Section III-C. Average computation
times (shown in blue) are given for two sets of 180 plant
states ‖xp‖, which are equispaced around circles of radius
1.5 (with γ2 = 80) and radius 2.5 (γ2 = 480) respectively.
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In each case Algorithm 1 was initialized with x
(0)
0 = 0.

For this example, the number of iterations required to reach
convergence (shown in green) initially increases linearly with
N , but reaches a maximum when N is sufficiently large
that an increase in N causes no more constraints to become
active. Thus, for example, the circle of radius 1.5 lies entirely
within X 4, so the number of iterations is constant for N ≥ 4
for the case of ‖xp‖ = 1.5, and hence the computation time
increases quadratically for N < 4 and linearly for N > 4.
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Fig. 1. Robust Positive Invariant Set X f = X 0 and numerically computed
backwards-reachable sets for N = 4
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Fig. 2. CPU time (blue) and number of iterations (green) for convergence of
Algorithm 1 vs horizon length, averaged over 180 plant states with ||xp|| =
2.5 (marked –◦–) and 180 states with ||xp|| = 1.5 (marked –∗–).

VI. CONCLUSIONS

This paper considers a robust min-max MPC problem for
input constrained linear systems with bounded disturbances.
We give necessary and sufficient conditions for optimality
and propose an algorithm based on Riccati recursions which
can be warm started. In addition, a guaranteed l2-gain bound
is derived under the condition that the initial system state is
inside the region of attraction of the closed loop system.

Future work will incorporate linear state constraints. Recur-
sive feasibility will be ensured through the use of polyhedral

backwards reachable sets guaranteeing that state predictions
enter a robust positive invariant terminal set. In the presence
of state constraints, the optimal value of the cost can be
discontinuous in xpt [17], and the subproblems analogous
to (16) and (19) are degenerate at such points; handling
degenerate constraints is one of the main challenges of this
work. The inclusion of state constraints is however expected
to lead to an active set algorithm with complexity per
iteration that remains linearly dependent on horizon length.
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