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Abstract—We consider the problem of designing H2 and H∞

linear estimators for time-varying spatially interconnected sys-
tems distributed in one spatial dimension. In general, numerical
implementation of the algebraic Riccati equation (ARE) solution
for such systems is a complex and computationally expensive
operation. However, the spatially interconnected systems can be
described by state-space models whose matrices have a special
structure, called “sequentially semi-separable” (SSS). Using only
efficient and structure-preserving arithmetic operations, the H2

and H∞ estimation problems are solved by means of square-root
array algorithms. Our solution has thus, linear computational
complexity and is a viable approach for large scale systems.

I. INTRODUCTION

The subject of estimation and control theory assesses a

fundamental importance to H2 and H∞ filtering problems, as

their solution is required in many cases. As the mathemat-

ical models of large-scale distributed physical systems have

increased dimensionality, the numerical computation of the

algebraic Riccati equation (ARE) solution is a complex and

computationally expensive task [1]. However, most of these

complex large-scale systems consist of spatially distributed

interconnected subsystems and efficient distributed methods

have been derived for solving estimation and control problems.

The model class of spatially distributed interconnected

subsystems describes very well: a number of physical systems

involving discretized partial differential equations, such as

flexible structures [2], turbulent flow relaminarization [3]; het-

erogeneous subsystems with various interconnection patterns,

such as highway traffic control [4], formation flights [5], large

adaptive mirrors for telescopes [6]; and time-space correlated

shifts, such as frozen-flow propagating wavefronts [7].

These systems typically have very high dimensionality.

Given a number of N interconnected subsystems, each of order

n, the state-space model of the overall system will have an

order of nN, thus most matrix arithmetic operations will have

a computational complexity of O(n3N3). In this framework,

a traditional approach for solving optimal estimation or con-

trol problems is a very computationally expensive operation.

Therefore, the need for developing efficient analysis and

controller synthesis techniques has arisen. Structure preserving

arithmetics along with fast (O(n3N)), iterative and structure

preserving ARE solvers that exploits the interconnected system
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Fig. 1. A string of N interconnected subsystems.

matrix structure have been derived by Rice et al. [8]. Their

proposed method for solving the ARE is based on the matrix

sign function, which might be slow convergent and numeri-

cally instable if no other expensive iterative refinement is used

[9], [10]. Currently, the preferred method for solving H2 and

H∞ filtering problems involves square-root array algorithms,

which are typically more numerically stable and reliable [11].

The goal of this paper is to derive a square-root array

algorithm for efficiently (O(n3N)) solving the ARE’s involved

in the H2 and H∞ estimation problems, for spatially-varying

one-dimensional string interconnected systems.

The paper is structured as follows: in Section 2, we present

an overview of the subsystem models and interconnection

structure. In Section 3 we formulate the H2 and H∞ estimation

problems and we approach them from a square-root algorith-

mic point of view. In Section 4 we adapt the square-root

algorithm to the SSS structured matrix framework. Section

5 presents the experimental results of our algorithm. Finally,

Section 6 concludes the paper.

II. PRELIMINARIES

A. Sequentially semi-separable matrices

The subsystem model and interconnections considered in

this paper are such as those discussed in [8]. The structure of

such interconnected subsystems is presented in Figure 1. A

subsystem Σs is described by a linear model of the form




fs

qs−1

ps+1



=





Ds Ps Us

Qs Rs 0

Vs 0 Ws









es

qs

ps



 , (1)

where es ∈ R
ne,s and fs ∈ R

n f ,s are the input and the output

vectors of the subsystem Σs and qs ∈ R
nq,s and ps ∈ R

np,s

describe the interconnections between subsystems.
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When considering a string of N interconnected subsystems

of type (1), with zero boundary inputs (p1 = 0,qN = 0), we can

derive the behavior of the interconnected system by ’lifting’

the input and output vectors over the index s ∈ {1,2, . . . ,N},

e.g. e = [eT
1 eT

2 . . . eT
N ]

T and f = [ f T
1 f T

2 . . . f T
N ]T , where

ei ∈ R
ne,i and fi ∈ R

n f ,i , and by resolving the interconnection

variables. Thus, the lifted linear equation describing the be-

havior of the system will be

f = S e, (2)

where e ∈ R
Ne and f ∈ R

N f are the lifted input and output

vectors, with Ne = ne,1 + . . .+ne,N and N f = n f ,1 + . . .+n f ,N .

The consequent matrix S ∈ R
Ne×N f has a special block-

partitioned structure called ‘Sequentially Semi-Separable’

(SSS). We explicitly write the block-partitioned matrix S as

follows:

S = [Ss,t ], for s, t = 1,2, . . .N,

where Ss,t ∈R
ne,s×n f ,t and

Ss,t =







Ds, if s = t,
PsRs+1...Rt−1Qt , if t > s,
UsWs−1...Wt+1Vt , if t < s.

Note that the SSS structured matrix S is defined only by some

lower-dimensional blocks Ds, Ps, Qs, Rs, Us, Vs, Ws, which

are called ‘generators’ of a SSS matrix. For such matrices, we

will use the following notation:

S = SSS(Ps,Rs,Qs,Ds,Us,Ws,Vs). (3)

Such a structure has been efficiently exploited in [12], where

usual arithmetic operations, such as matrix addition, multipli-

cation, inversion, permutation and transposition, are performed

at the level of generators. Efficient methods for solving more

complex numerical problems, such as QR factorization [13],

Lyapunov or Ricatti solvers [8] or model order reductions

[14], have been further developed. Moreover, the class of SSS

matrices is closed under all these operations.

B. Permutations of sequentially semi-separable matrices

Typically, in the context of array algorithms, one must form

a prearray out of given data, perform a sequence of elementary

operations and then read the quantities of interest out of the

resulting postarray. For example, the square-root algorithms

for solving H2 and H∞ estimation problems, as illustrated in

the subsequent equations (16) and (24), require the triangular-

ization of the prearrays in the left terms via LQ factorizations.

In [13], Eidelman et al. proposed an efficient (O(n3N))
algorithm for performing QR factorizations for SSS matrices.

We will use this algorithm to derive its equivalent form for LQ

factorizations for SSS matrices. However, in the subsequent

equations (16) and (24) below, the resulting prearrays will

not be SSS, but block SSS, i.e. they are column and/or row

stacking of SSS matrices. Therefore, the procedure for the QR

factorization, as presented in [13], can not be directly applied

for the block SSS prearrays. Permuting rows and columns

of block SSS matrices can produce equivalent SSS matrices

and vice versa. These permutations are essential in order to

preserve the linear complexity of the QR factorization and to

avoid using more computationally expensive block arithmetic.

In the following, we will explain how a block SSS matrix can

be permuted into a SSS matrix and what are the consequences

of these operations at the level of generators.

For example, let us consider two SSS systems

of type (2), described by two SSS matrices

Si = SSS(Ps,i,Rs,i,Qs,i,Ds,i,Us,i,Ws,i,Vs,i), with i ∈ {1,2}.

In order to show the row permutation of two SSS matrices,

let us assume that the same input e is applied to both

systems. If we concatenate the two resulting output vectors,

the input-output dependency of the overall system can be

written as
[

f 1

f 2

]

=

[

S1

S2

]

e. (4)

However, we are interested in obtaining a linear dependency

involving a SSS matrix, as in (2), not a two-block SSS matrix,

as in (4). To this purpose, a permutation matrix ΠL is used for

shuffling the output vector of (4), along with the corresponding

rows of the two-block SSS matrix, such that ΠL

[

f 1

f 2

]

= f and

ΠL

[

S1

S2

]

= S. The generators of the SSS matrix S will be:

Ds =
[

DT
s,1DT

s,2

]T
, Ps = diag(Ps,1,Ps,2), Rs = diag(Rs,1,Rs,2),

Qs =
[

QT
s,1QT

s,2

]T
, Us = diag(Us,1,Us,2), Ws = diag(Ws,1,Ws,2),

Vs =
[

V T
s,1V T

s,2

]T
.

A similar approach is used when dealing with column

permutation of two SSS matrices. Let us consider an output

vector f that is obtained as a linear combination of two input

vectors, such as

f =
[

S1 S2

]

[

e1

e2

]

. (5)

Now a permutation matrix ΠR is used for shuffling the input

vector of (5), along with the corresponding columns of the

two-block SSS matrix, such that another system of type (2)

is derived, with
[

S1 S2

]

ΠR = S and ΠT
R

[

e1

e2

]

= e. The SSS

matrix S is given by the following generators: Ps =
[

Ps,1 Ps,2

]

,

Rs = diag(Rs,1,Rs,2), Qs = diag(Qs,1,Qs,2), Ds =
[

Ds,1 Ds,2

]

,

Us =
[

Us,1 Us,2

]

, Vs = diag(Vs,1,Vs,2), Ws = diag(Ws,1,Ws,2).

C. Sequentially semi-separable structured systems

In the following, we will show how the representation (1)

can be used in order to derive a linear time-varying state-

space model with SSS matrices. Let us consider the following

subsystem model:









xs,k+1

qs−1,k

ps+1,k

ys,k









=









As,k B
q
s,k B

p
s,k Bs,k 0

C
q
s,k W

q
s,k 0 L

q
s,k J

q
s,k

C
p
s,k 0 W

p
s,k L

p
s,k J

p
s,k

Cs,k H
q
s,k H

p
s,k 0 Ds,k





















xs,k

qs,k

ps,k

ws,k

vs,k













,

where xs,k ∈ R
nx,s is the state vector, ys,k ∈ R

ny,s is the output

vector, ws,k ∈ R
nw,s and vs,k ∈ R

nv,s are the process and the
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measurement noise, respectively. After resolving the intercon-

nection variables qs,k and ps,k, the lifted system will have a

state-space realization of the form
{

xk+1 = Akxk +Bkwk

yk = Ckxk +Dkvk
(6)

where xk ∈ R
Nx , yk ∈ R

Ny , wk ∈ R
Nw and vk ∈ R

Nv are the

lifted state, output, process and measurement noise vectors,

respectively, with Nx = nx,1 + . . .+ nx,N and Ny, Nw and Nv

defined similarly. By using the notation (3), the SSS structured

matrices Ak, Bk, Ck and Dk can be written in terms of their

generators as follows:

Ak = SSS(B
q

s,k,W
q

s,k,C
q

s,k,As,k,B
p
s,k,W

p
s,k,C

p
s,k), (7)

Bk = SSS(Bq
s,k,W

q
s,k,L

q
s,k,Bs,k,B

p
s,k,W

p
s,k,L

p
s,k), (8)

Ck = SSS(Hq
s,k,W

q
s,k,C

q
s,k,Cs,k,H

p
s,k,W

p
s,k,C

p
s,k), (9)

Dk = SSS(Hq

s,k,W
q

s,k,J
q

s,k,Ds,k,H
p

s,k,W
p

s,k,J
p

s,k). (10)

III. ESTIMATION PROBLEMS

In this section we state the H2 and H∞ estimation problems

and we present their solutions, cf [11].

Recall the LTV state-space model (6). Without loss of gen-

erality, in the following we will consider that the measurement

vector is directly corrupted by noise, thus J
q
s,k and J

p
s,k are zero

matrices and Ds,k are identity matrices. The model (6) becomes

{

xk+1 = Akxk +Bkwk

yk = Ckxk + vk
(11)

with known state-space matrices Ak, Bk and Ck having the SSS

structure defined by (7)-(9), with unknown initial state x0 and

unknown stochastic processes wk and vk.

The estimation problem that we typically want to solve

consists in finding some linear combination of the state

zk = Lkxk,

where zk ∈ R
Nz and Lk is a known matrix, using the set of

observations {y0, . . . ,yk−1}. If we denote the estimate of zk

based on the observations from time 0 to time k − 1 with

ẑk|k−1 =F (y0, . . . ,yk−1), where F (·) is a linear operator, then

the corresponding estimation error will be z̃k|k−1 = zk − ẑk|k−1.

The main goal in estimation problems is making this quantity

small in a certain sense. The H2 and H∞ estimation prob-

lems make different assumptions on the stochastic processes

involved in the system description and use different cost

functions for evaluating the estimation error.

A. H2 estimation problem

In H2 estimation problems, the stochastic exogenous signals

are assumed to be zero-mean white noise sequences with

known statistical properties. On this basis, we can define the

joint covariance matrix of the noise sequences as

E

[

wk

vk

]

[

wT
l vT

l

]

=

[

Qk Sk

S
T

k Rk

]

δk−l , (12)

where δk is the unit pulse. Moreover, we point out that the

measurement noise covariance matrix Rk is assumed to be

positive definite.

The goal of the H2 estimation problem is to find a linear

estimate of zk such that the mean squared estimation error is

minimized. We can now formulate the H2 estimation problem.

Problem 1: (H2 Estimation Problem) Given the state-space

model (6) with known measurement sequence {y0, . . . ,yk−1}
and unknown zero-mean white-noise sequences wk and vk

having known joint covariance matrix given by (12), find a

linear estimate of zk, denoted by ẑk|k−1, that minimizes the

mean squared estimation error, i.e.,

min
F (.)

E
k

∑
j=0

(zk − ẑk|k−1)
T (zk − ẑk|k−1).

The solution to the H2 estimation problem is the minimum

variance unbiased estimation, given by the Kalman filter.

Theorem 1: (H2/Kalman Filter) [11] The solution to Prob-

lem 1 is given by the linear estimate ẑk|k−1 = Lk x̂k|k−1, where

x̂k|k−1 denotes the 1-step ahead prediction of the state, given

by the following recursion

x̂k+1|k = Akx̂k|k−1 +Kk(yk −Ckx̂k|k−1).

Here,

Kk = (Sk +AkPk|k−1C
T

k )R
−1
e,k, (13)

R
e,k = Rk +CkPk|k−1C

T

k , (14)

and Pk|k−1 is the state estimation error covariance matrix

(EECM) and satisfies the following Riccati recursion

Pk+1|k = AkPk|k−1A
T

k +BkQkB
T
k − (Sk +AkPk|k−1C

T

k )×

×R
−1
e,k(Sk +AkPk|k−1C

T

k )
T . (15)

The state EECM can also be derived by means of a square-

root array algorithm, which will be described in the following.

For the state-space model (6), let the initial state, x0|−1, and

the square-root of its covariance matrix, P
1/2

0|−1, be given. The

state EECM Pk+1|k can be derived by finding an orthogonal

transformation Φk such that, for k = 0,1,2, . . .,
[

CkP
1/2

k|k−1 R
1/2

k 0

AkP
1/2

k|k−1 Xk Q
1/2

x,k

]

Φk =

[

R
1/2

e,k 0 0

Gk P
1/2

k+1|k 0

]

, (16)

where

X k = SkR
−T/2

k

Q
x,k = BkQkB

T
k − SkR

−1
k S

T

k .

Then, the Kalman filter of type (13) will be given by

Kk = GkR
−1/2

e,k , (17)

and the state EECM is obtained by

Pk+1|k = P
1/2

k+1|kP
T/2

k+1|k. (18)

Note that all necessary quantities for updating the estimated

state and the state EECM can be recovered from the post-array

of (16), so no other additional operations are required once the

triangularization is solved.
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B. H∞ estimation problem

In H∞ estimation problems, no assumptions are made on the

statistics and distributions of the stochastic processes involved

in the model. The disturbances are only considered to be

bounded. The objective of the H∞ estimation is to find an

estimate of zk such that the maximum energy gain from

the unknown disturbances wk, vk and initial state x0 to the

estimation error z̃k|k−1 is minimized or bounded over the

whole time horizon. We can now formulate the H∞ estimation

problem.

Problem 2: (H∞ Estimation Problem) Consider the state-

space model (6) with known measurement sequence

{y0, . . . ,yk−1}, unknown disturbances wk, vk and unknown

initial state vector x0, with given covariance matrix P0. Given

a scalar γ ≥ 0, find, if it exists, an estimate of zk that bounds

the worst-case energy gain over all possible disturbances of

fixed energy, i.e.,

sup
x0,{wk},{vk}

∑k
j=0 z̃

T
k|k−1z̃k|k−1

xT
0 P

−1
0 x0 +∑k

j=0 wT
j w j +∑k

j=0 vT
j v j

≤ γ2. (19)

An alternative representation of (19) is the following

indefinite-quadratic form [11]:

Jk = xT
0 P

−1
0 x0 +

k

∑
j=0

wT
j w j +

+
k

∑
j=0

[

y j −C jx j

ẑ j| j−1 −L jx j

]T [
INy 0

0 −γ2INz

][

y j −C jx j

ẑ j| j−1 −L jx j

]

.

(20)

Imposing Jk > 0 guarantees the existence of the solution to the

H∞ estimation problem, as stated by the following theorem.

Theorem 2: (H∞ Filter) [11] The solution to Problem 2 is

given by an H∞ filter of level γ , which exists if and only if

Rk =

[

INy 0

0 −γ2INz

]

and R
e,k = Rk +

[

Ck

Lk

]

Pk|k−1

[

C
T

k L
T
k

]

(21)

have the same inertia, i.e. the same number of positive,

negative and zero eigenvalues, for all time instants from 0 to

k. The matrix Pk|k−1 satisfies the following Riccati recursion

Pk+1|k = AkPk−1|kA
T

k +BkB
T
k −AkPk−1|k

[

C
T

k L
T
k

]

×

×R
−1
e,k

[

C
T

k L
T
k

]T

Pk−1|kA
T

k . (22)

If this is the case, then an H∞ estimation is given by ẑk|k−1 =
Lk x̂k|k−1, where x̂k|k−1 denotes the predicted state estimate

given by the recursion

x̂k+1|k = Ak x̂k|k−1 +Kk

(

yk −Ck x̂k|k−1

)

,

with

Kk = AkPk−1|k

[

C
T

k L
T
k

]

R
−1
e,k. (23)

The solution to the H∞ estimation problem has the same

Kalman filter-like structure as the solution as the H2 estimation

problem, except for some differences in the Riccati equations,

such as: the presence of an indefinite “covariance” matrix Rk;

the assumption that Qk is an identity matrix and Sk is a zero

matrix, as they result from the indefinite-quadratic criterion

formulation (20); the fact that the matrix Lk also enters the

Riccati equation; and the additional condition (21) giving

information about the existence of a solution. However, the

similarities between the two problems have been exploited in

[11], where a special kind of indefinite metric space, called a

Krein space, along with a special type of projections, called

J-unitary transformations, have been introduced and used for

a more convenient formulation of the H∞ estimation problem.

This way, previous derivations for some of the main results in

Kalman filtering theory have been extended to the H∞ case, by

means of Krein spaces. Among these methods, we focus on

the square-root implementation of the Riccati equation and, in

the following, we present such square-root array algorithms

for the H∞ estimation problem with SSS matrices.

As the H∞ estimation problems are formulated in Krein

spaces, the orthogonal transformations are replaced here by J-

unitary transformations. A transformation Ψ is called J-unitary

if ΨJΨT = J, where J is a signature matrix, i.e. a diagonal

matrix with only −1 and +1 diagonal elements.

For a state-space model of type (6), with unknown and

bounded disturbance sequences wk and vk, with given initial

state x0|−1 and given square root of its covariance matrix P0|−1,

the state EECM Pk+1|k of type (22) can be derived by finding

a J-unitary transformation Ψk, such that, for k = 0,1,2, . . .,






[

Ck

Lk

]

P
1/2

k|k−1
R

1/2

k 0

AkP
1/2

k|k−1 0 Bk






Ψk =

[

R
1/2

e,k 0 0

Gk P
1/2

k+1|k 0

]

, (24)

where

R
1/2

k =

[

INy 0

0 γINz

]

(25)

and the signature matrix is

J =

[

J1

INw

]

, with J1 =





INx
[

INy 0

0 −INz

]



 . (26)

Then, both the state EECM of type (22) and the Kalman

filter of type (23) can be derived using equations (17)-(18).

IV. SQUARE-ROOT ARRAY ALGORITHMS WITH SSS

MATRICES

Both iterations (16) and (24) require a LQ factorization of

a particular prearray having a block SSS structure. Therefore,

the LQ factorization described in [13] can not be directly

applied. In the following, we will show how we can still

exploit the SSS structure in the blocks of the prearrays to

efficiently compute the postarrays.

Let us consider that the prearray in either (16) or (24) is

denoted by A . This matrix can be lifted into a SSS matrix,

denoted by A , using row and column permutation matrices

ΠL and ΠR, respectively:

A = ΠLA ΠR. (27)
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The matrix A can now be triangularized using a single SSS

structured LQ decomposition, thus

A Φ = L , (28)

where L is an SSS lower triangular matrix and Φ is an SSS

orthogonal (or J-unitary) matrix, for H2 (or H∞) estimation.

However, we are interested in finding a triangular matrix

that has a similar block SSS structure as the matrix A . Thus,

using (27), we rewrite (28) in terms of this matrix and we get

A ΠR Φ=ΠT
L L . As the permutation matrix ΠR is orthogonal,

the product ΠR Φ remains orthogonal (or J-unitary). However,

the permutation matrix ΠT
L will interchange the rows of the

matrix L . This yields to the loss of its lower triangular form,

such that the postarray may not be block lower triangular

anymore. To guarantee that it will be lower block triangular,

our approach in handling the block SSS matrix A implies first

partitioning it into two SSS row blocks and then triangulate

the two SSS row blocks, in turns.

We start by only permuting the columns of the matrix A .

This is done by right multiplying A with a permutation matrix

ΠR, in order to obtain a matrix with two SSS row blocks,

denoted by A 1 and A 2:
[

A 1

A 2

]

= A ΠR. (29)

Then, we search for a decomposition of the form
[

A 1

A 2

]

[

Φ1 Φ2

]

=

[

L 11 0

L 21 L 22

]

, (30)

where L 11 and L 22 are SSS lower triangular matrices, L 21

is a SSS matrix and
[

Φ1 Φ2

]

is an orthogonal (or J-unitary)

block SSS matrix.

Using (29), we can rewrite (30) as follows:

A ΠR

[

Φ1 Φ2

]

=

[

L 11 0

L 21 L 22

]

.

As
[

Φ1 Φ2

]

is orthogonal (or J-unitary), left multiplying it

with ΠR preserves orthogonality. Moreover, the lower triangu-

lar form of the right term in (30) is also preserved.

The above mentioned triangularization can be easily

implemented in a sequence of SSS structure preserving

operations, synthesized in the following.

The SSS square-root iteration k:

Step 1. Find an orthogonal (or J-unitary) transformation

Φ1,k such that A 1,kΦ1,k = L 11,k.

Step 2. Compute L 21,k = A 2,kΦ1,k.

Step 3. Find an orthogonal transformation Φ2,k such that

A 2,k

(

I−Φ1,kΦ
T

1,k

)

Φ2,k = L 22,k.

Steps 1 and 3 comprise an SSS structured LQ decomposition

each, while Step 2 consists of an SSS matrix multiplication.

All operations have linear computational complexity [13], [8].

We can now explicitly present the square-root array

algorithms for solving the H2 and H∞ estimation problems

for SSS structured systems.

Algorithm 1: H2 Square-root array algorithm for SSS

structured systems.

Given the matrices Ak, Bk, Ck, Qk, Rk, Sk. Initialize with:

x̂0|−1 = E[x0] and P
1/2

0|−1
=
(

E[(x0 − x̂0|−1)(x0 − x̂0|−1)
T ]
)1/2

For k = 0,1,2, . . .,

1. Find a permutation matrix ΠR such that

A 1,k =
[

CkP
1/2

k|k−1 R
1/2

k 0

]

ΠR and

A 2,k =
[

AkP
1/2

k|k−1 Xk Q
1/2

x,k

]

ΠR

are SSS matrices.

2. Execute the SSS square-root iteration for A 1,k and A 2,k,

and get R
1/2

e,k = L 11,k, Gk = L 21,k, and P
1/2

k+1|k = L 22,k.

Algorithm 2: H∞ Square-root array algorithm for SSS

structured systems.

Given the scalar γ , the matrices Ak, Bk, Ck, Lk and R
1/2

k as in

(25). Initialize with:

x̂0|−1 = E[x0] and P
1/2

0|−1
=
(

E[(x0 − x̂0|−1)(x0 − x̂0|−1)
T ]
)1/2

For k = 0,1,2, . . .,

1. Find a permutation matrix ΠR such that

A 1,k =

[[

Ck

Lk

]

P
1/2

k|k−1
R

1/2

k 0

]

ΠR and

A 2,k =
[

AkP
1/2

k|k−1
0 Bk

]

ΠR

are SSS matrices.

2. Execute the SSS square-root iteration for A 1,k and A 2,k

with the signature matrix given by the matrix J1 in (26),

and get R
1/2

e,k = L 11,k, Gk = L 21,k, and P
1/2

k+1|k = L 22,k.

V. EXPERIMENTAL RESULTS

For our experiments, we used a structured model derived

from the discretization of a 1-dimensional spatially hetero-

geneous wave equation, cf. [8]. The generators of the SSS

matrices Ak, Bk and Ck, as shown in (7)-(9), are as follows:

As,k =

[

0 1
−5
2

0

]

,Bq
s,k = B

p
s,k =

[

0 0
2
3

2
3

]

,Cq
s,k =C

p
s,k =

[

1 0

1 0

]

,

Bs,k =

[

0 0

1 0

]

,Cs,k =
[

1 0
]

,W
q

s,k =W
p

s,k =

[

0 −1
8

0 0

]

,

and the other terms are 0, for s ∈ {0,1, . . . ,N}.

Although the derivations of the previous sections were

made for the more general case of time varying systems, for

simplicity reasons we considered a time invariant approach

when running our experiments.

We ran our simulations using MATLAB and a toolbox

called ”Sequentially Semi-Separable Matrix Toolbox“ [15].
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First, the state EECM is computed for the unstructured

model, using the square-root algorithm. We consider this state

EECM to give the most accurate estimation of the state.

Then, two state EECM’s are computed for the SSS structured

model; one using the square-root algorithm and one using

the Riccati propagation. The relative errors of these two state

EECM’s with respect to the unstructured state EECM are then

calculated. Finally, the accuracy of the two methods is shown

by comparing the two relative errors. In order to prevent the

effects of the round-off errors, we computed the SSS structured

state EECM’s in single precision and the unstructured state

EECM in double precision. Figure 2 shows the relative error in

the computation of the state EECM’s for a system with N = 50

subsystems, for both H2 and H∞ estimation problems. The H∞

estimators have been obtained using the tolerance γ = 10−3. As

can be seen from Figure 2, the solution obtained with the SSS

structured square-root algorithm has much better numerical

stability then the the solution obtained using SSS structured

Riccati propagations.

In this paper we claim that our approach is less compu-

tationally expensive than the classic approach. To test this

assertion, we ran experiments where we measured the time

taken to compute H2 and H∞ estimation, for systems with

N ∈ {10, 25, 50, 100, 175, 250, 500} subsystems. As

seen in Figure 3, for the high system orders, the Riccati

propagation computed in unstructured arithmetic shows an

increased computational time when compared to the SSS struc-

tured approaches. As expected, the SSS structured square-root

algorithm has a linear computational complexity. Although the

square-root algorithm shows a slightly increased computing

time compared to the Riccati propagation, the use of the

square-root algorithm is recommended due to its stability and

better accuracy.
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Fig. 2. Accuracy of the state EECM for H2 and H∞ estimation problems,
computed in SSS arithmetic.

VI. CONCLUSIONS

In this paper we have considered the problem of design-

ing H2 and H∞ linear estimators for time-varying spatially

interconnected systems distributed in one spatial dimension.

One of the most difficult aspects of current numerical im-

plementations for algebraic Riccati equation (ARE) solvers

lays in the high computational complexity. We based our

work on a de-composition technique called “sequentially semi-

separable” structures to lower the computational effort. Our
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Fig. 3. Computational time comparison between single precision SSS square-
root algorithm, single precision SSS Riccati propagation and double precision
full-matrix square-root algorithm, for H2 and H∞ estimation problems.

novel approach to increase stability of the estimator is to

employ a square-root array algorithm. The experimental results

confirm that this method is highly promising for large scale

systems.
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