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Abstract—This paper highlights a limitation of state space
aggregation based model reduction of Hidden Markov Models.
We construct an n̂ dimensional Hidden Markov Model that is
equivalent to a lower dimensional one of order n < n̂ for which
aggregation based reduction of the high dimensional model is
guaranteed not to produce an error free low dimensional model
of order n.

I. INTRODUCTION

Hidden Markov Models (HMM’s) are one of the most basic
and widespread modeling tools for discrete-time stochastic
processes that take values on a finite alphabet. A compre-
hensive review paper is [6]. Applications of HMM’s are
found across the spectrum of engineering and science in fields
as diverse as speech processing, computational biology and
financial econometrics (e.g. [12], [9] and [3]).

Very often the cardinality of the state space of the un-
derlying Markov chain renders the use of a given HMM
for statistical inference or decision making purposes as in-
feasible, motivating the investigation of possible algorithms
that compress the state space without incurring much loss
of information. In [18] it was suggested that the concept
of approximate lumpability can be used in the context of
model reduction of HMM’s. Further work on aggregation
based model reduction of HMM’s can be found in [17],
[4]. In contrast to aggregation based methods, in [8] the
authors develop a balanced truncation based model reduction
algorithm for HMM’s, that is characterized by an a priori
computable bound to the approximation error.

Apart from the a priori bound to the approximation error
the balanced truncation type algorithm proposed in [8] offers
several additional advantages over aggregation based reduction
methods. In particular no structural assumptions are imposed
to the high dimensional model and the appropriate projection
operator is computed by solving Lyapunov like linear algebraic
equations. In contrast, aggregation based reduction methods
don’t come with a priori bounds on the approximation error.
They require in essence the solution of a combinatorial op-
timization problem whose complexity grows exponentially in
the size of the underlying state space for the determination
of the appropriate aggregation operator and relaxations to that
problem are based only on qualitative arguments that involve
the weak lumpability structural assumption.

In this paper a further shortcoming of aggregation based
reduction methods is exposed. It is shown that there exist
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exactly reducible high dimensional models and aggregation
based reduction is guaranteed not to produce an error free low
dimensional model. In contrast to that, if exact reduction of
a high dimensional model is possible, the balanced trunca-
tion type reduction method in [8] guarantees to produce the
minimal equivalent model within the larger class of quasi-
realizations (cf.).

A. Notation and mathematical preliminaries

The set of nonnegative integers is denoted by N, the set of
positive integers by Z+ and the set of real numbers by R. The
set of positive integers between 1 and n inclusive is denoted
by Zn, i.e. Zn = {1, ..., n}. For n ∈ Z+ let Rn denote the
Euclidean n-space. The transpose of a column vector x ∈ Rn

is x′. For x ∈ Rn let |x|2 = x′x denote the square of the
Euclidean norm. For P ∈ Rn×n let P > 0, (P ≥ 0) indicate
that it is a positive (semi-)definite matrix. The identity matrix
in Rn×n is written as In. The set of all permutation matrices
of size n is denoted by Pn. For 1n ∈ Rn, 1′n = (1, . . . , 1).
For n,m ∈ Z+, a, b ∈ R, with a < b, let [a, b]n×m = {A ∈
Rn×m | Aij ∈ [a, b], ∀i ∈ Zn, ∀j ∈ Zm}. Let a ∈ Rn,
diag[a] denotes the diagonal matrix a1 0

. . .
0 an

 .
Let A = rand[S] stand for A being sampled uniformly out of
the elements of S. For two sets A,B denote their difference as
A−B = {x ∈ A | x /∈ B}. For n,m ∈ Z+ and A ∈ Rn×m,
the notation A� 0 indicates that Aij > 0,∀i ∈ Zn,∀j ∈ Zm.

II. PRELIMINARIES ON HIDDEN MARKOV MODELS

A. HMM’s and their statistical description

Hidden Markov Models can be defined in many equivalent
ways. The basic definitions and notation introduced in the
context of realization theory of HMM’s will be used. One can
find them for instance in slightly varying language in [11], [1],
[15], [16] . Let {Y (t)} be a discrete-time, stationary stochastic
process over some fixed probability space {Ω,F ,P}, with
values on a finite set Y = Zm, m ≥ 2. The set Y is called
the alphabet and its elements are referred to as letters. For
a given Y, define Y∗ as the set of all finite sequences of
elements of Y, including the empty sequence, denoted by ∅.
The finite sequences of letters are called words or strings,
if needed they are surrounded by quotation marks to avoid
confusion. The set Y∗, referred to as the language, is equipped
with a non-commutative “multiplication” operation defined as
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concatenation of strings and the identity element is the empty
sequence ∅, (i.e. Y∗ is a monoid). Let v be a word, its length
is denoted by |v|, and by convention |∅| = 0. The set of all
strings of length k ∈ N is denoted by Yk. The concatenation
of v and u is written as vu, and |vu| = |v| + |u|. Strings
are read from right to left, in the sense that in the expression
vu, u is followed by v. The strict future of the process after
time t is denoted by Y +

t = {. . . , Y (t + 2), Y (t + 1)} and
Y −t = {Y (t), Y (t− 1), . . .} denotes its past and present. Let
v = “vk . . . v1” ∈ Y∗ the notation {Y +

t ≡ v} stands for the
event {ω ∈ Ω | Y (t + k) = vk, . . . , Y (t + 1) = v1}, by
convention {Y +

t ≡ ∅} = Ω.
Definition 2.1: The probability function of the process

{Y (t)} is a map p : Y∗ → R+ where p[v] = Pr[Y +
t ≡

v], ∀v ∈ Y∗,∀t ∈ Z. Note that since the process is stationary,
the value of p[v] in the above definition does not depend on t.
It can be readily verified, that the probability function satisfies
the properties: p[∅] = 1, p[v] ∈ [0, 1], ∀v ∈ Y∗, p[v] =∑
u∈Yk p[vu], ∀v ∈ Y∗, k ∈ N.

Definition 2.2: Let {Y (t)}, {Ỹ (t)} be discrete-time, sta-
tionary stochastic processes over the same alphabet Y. The
two stochastic processes are equivalent if ∀t ∈ Z, ∀v ∈ Y∗

Pr[Y +
t ≡ v] = Pr[Ỹ +

t ≡ v]. (1)

According to the definition above the two stochastic processes
must only coincide in their probability laws in order to
be equivalent. They don’t have to be defined on the same
underlying probability space {Ω,F ,P}. In the context of this
work when referring to a stationary stochastic process over
the alphabet Y, one is thinking of an equivalence class of
processes in the sense of (1). No explicit distinction between
the members of the equivalence class is made, the concept
of strong realization is not used, it is only the statistical
description that matters.

Definition 2.3: A discrete-time, stationary process {Y (t)}
over the alphabet Y has a realization as a stationary HMM of
size n ∈ Z+, n ≥ 2 of the joint Markov process type if there
exists a pair of discrete-time, stationary stochastic processes
{X(t)}, {Ỹ (t)} taking values on the finite sets X = Zn and Y
respectively, such that {Y (t)} and {Ỹ (t)} are equivalent, the
joint process {X(t), Ỹ (t)} is a Markov process and ∀σ ∈ X∗,
∀v ∈ Y∗, the following “splitting property” holds Pr[X+

t ≡
σ, Ỹ +

t ≡ v|X−t , Ỹ −t ] = Pr[X+
t ≡ σ, Ỹ +

t ≡ v|X(t)].
The above definition insures that {X(t)} is by itself a

Markov chain of order n, meaning Pr[X+
t ≡ σ|X−t ] =

Pr[X+
t ≡ σ|X(t)]. It also insures that {Ỹ (t)} is a probabilistic

function of the Markov chain {X(t − 1)} in the sense that
Pr[Ỹ +

t ≡ v|X−t , Ỹ −t ] = Pr[Ỹ +
t ≡ v|X(t)]. Consider the

map M : Y∗ → Rn×n
+ where M [v]ij = Pr[X(t + |v|) =

i, Ỹ +
t ≡ v|X(t) = j], i, j ∈ X, v ∈ Y∗, t ∈ N. Note that

the state transition matrix of the underlying Markov process
{X(t)} is given by Π =

∑
v∈Y

M [v]. Consider π ∈ Rn
+, such

that Ππ = π, 1′nπ = 1. The vector π corresponds to an
invariant distribution of {X(t)}, which is unique if the Markov
process has a single ergodic class. Since the processes {Y (t)}

and {Ỹ (t)} are equivalent, one has p[v] = Pr[Y +
t ≡ v] =

Pr[Ỹ +
t ≡ v],∀t ∈ Z, ∀v ∈ Y∗.

Assumption: In the following it assumed that the entries
of any stochastic transition matrix are strictly positive. This
is a sufficient condition for uniqueness of the stationary
distribution of the corresponding Markov process.

Lemma 2.1: Consider k ∈ N, v = “vkvk−1 . . . v1” ∈ Yk.
The probability of that particular string can be computed
recursively according to p[v] = 1′nM [v]π, where M [v] =
M [vk] . . .M [v1], M [∅] = In.

Proof: See for instance [1], [16].
The preceding lemma shows that if a given stationary

process {Y (t)} over the alphabet Y has a realization as a
stationary HMM of size n of the joint Markov process type,
then its probability function is completely encoded by the
ordered triple H = (1n, {M [v], v ∈ Y}, π). Accordingly in
the following discussion referring to a HMM of size n of the
joint Markov process type will be in terms of the ordered
triple H = (1n, {M [v], v ∈ Y}, π). The space of all HMM’s
of size n of the joint Markov process type over the alphabet
Y is denoted by Hn,Y. An element of that space will be
abbreviated as a JMP HMM. The preceding definition of a
HMM leads to the most economical description in terms of
the size of the underlying state space. The next two definitions
of a HMM are common in the literature and are used in the
context of aggregation.

Definition 2.4: A discrete-time stationary process {Yt} has
a realization as stationary HMM of size n ∈ Z+, n ≥ 2 of the
deterministic function of a Markov chain type, if there ex-
ists a discrete-time, stationary Markov process {X(t)}, taking
values on the finite set X and a function f : X→ Y such that
Yt = f(Xt). The statistical description of a HMM H of the
deterministic function of a Markov chain type is given by the
tuple H = (1n, O,Π, π) where O ∈ {0, 1}n×m,Π ∈ Rn×n

and π ∈ Rn×1. In particular Πij = Pr[Xt+1 = i|Xt =
j], Oij = 1 if j = f(i) and 0 otherwise, πi = Pr[X0 = i].

The space of all HMM’s of size n of the deterministic
function of a Markov chain type over the alphabet Y is
denoted by HDn,Y. An element H = (1n, O,Π, π) ∈ HDn,Y
will be abbreviated as a DFMC HMM.

Definition 2.5: A discrete-time stationary process {Yt} has
a realization as stationary HMM of size n ∈ Z+, n ≥ 2
of the random function of a Markov chain type, if there
exists a discrete-time, stationary stochastic process {X(t)},
taking values on the finite set X and a discrete-time, stationary
stochastic process {Ỹ (t)}, taking values on the finite set Y, as
well as matrices O ∈ Rn×m,Π ∈ Rn×n and π ∈ Rn×1, such
that Πij = Pr[Xt+1 = i|Xt = j], Oij = Pr[Ỹt = j|Xt =
i], πi = Pr[X0 = i], and the processes Yt, Ỹt have the same
probability law. The i’th column of O will be denoted as oi,
so that O = [o1, . . . , om].

The space of all HMM’s of size n of the random function
of a Markov chain type over the alphabet Y is denoted
by HRn,Y. An element H = (1n, O,Π, π) ∈ HRn,Y will
be abbreviated as a RFMC HMM. Let H ∈ HDn,Y, it is
immediate that H ∈ HRn,Y, and therefor HDn,Y ⊂ HRn,Y. Given
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H = (1n, O,Π, π) ∈ HRn,Y there exists H̃ = (1n, {M̃ [v], v ∈
Y}, π̃) ∈ Hn,Y such that pH[v] = pH̃[v], ∀v ∈ Y∗. To see
this one can set π̃ = π, M̃ [y] = diag[oy] Π, y ∈ Y. On the
above grounds one has HRn,Y ⊂ Hn,Y.

B. Generalized Automata and Quasi-realizations of finite
stochastic systems.

The concept of a generalized automaton was formally
introduced in [14]. Prior to that, with a slightly different
terminology the same objects appeared in connection wih
quasi-realizations of discrete-time, finite valued stochastic
processes of finite rank, see [16] for more information and the
references therein. Generalized automata (GA) are equivalent
to recognizable Formal Power Series in several noncommuting
indeterminates with real coefficients, that have been frequently
used in the study of formal languages in theoretical computer
science, see for instance [2], [5], [13].

Definition 2.6: A generalized automaton of size n over
the alphabet Y is defined as an ordered triple G =
(c, {A[v], v ∈ Y}, b), where c ∈ Rn, A : Y → Rn×n,
b ∈ Rn.

Some of the references in the literature including [14]
incorporate a finite state space X of cardinality n in the
definition, thus making G an ordered quadruple. This is not
pursued in this work since no explicit use of the state space
X is being made. Let v = “vk . . . v1”, ∈ Y∗, where k ∈ N,
the domain of A is extended from Y to Y∗ by means of the
homomorphism A[v] = A[vk] . . . A[v1], A[∅] = In.

Definition 2.7: The word function of G is a map qG :
Y∗ → R, where qG[v] = c′A[v]b, ∀v ∈ Y∗.

The set of all GA of size n over the alphabet Y is denoted
by Gn,Y.

Definition 2.8: Let ni ≥ 2, i ∈ {1, 2}. Two generalized
automata G1 ∈ Gn1,Y, G2 ∈ Gn2,Y are equivalent if
qG1

[v] = qG2
[v], ∀v ∈ Y∗.

Definition 2.9: The GA G ∈ Gn,Y is minimal if for all ñ,
2 ≤ ñ < n there is no G̃ ∈ Gñ,Y that is equivalent to G.

Lemma 2.2: Two generalized automata G1 ∈ Gn,Y, G2 ∈
Gn,Y are equivalent if and only if there exists a non singular
matrix T ∈ Rn×n such that A1[y] = T−1A2[y]T, ∀y ∈
Y, b1 = T−1b2, c1 = c2T.

Proof: See for instance [16].
A HMM can be interpreted as a generalized automaton.

Let H = (1n, {M [v], v ∈ Y}, π) ∈ Hn,Y then clearly
G ∈ Gn,Y with c = 1n, A[y] = M [y], y ∈ Y, b = π
satisfies qG[v] = pH[v], ∀v ∈ Y∗, thus Hn,Y ⊂ Gn,Y. This
observation motivated the concept of a quasi-realization.

Definition 2.10: A quasi-realization of order n of a
discrete-time, finite rank, finite valued, stationary stochastic
process {Y (t)} over the alphabet Y is a generalized automa-
ton G ∈ Gn,Y, whose word function satisfies q[v] = Pr[Y +

t ≡
v] = c′A[v]b, ∀v ∈ Y∗, and additionally c′ = c′(

∑
v∈Y

A[v]),

b = (
∑
v∈Y

A[v])b.

The quasi-realization is minimal if the size of the automa-
ton equals the rank of the given process. Minimal quasi-

realizations are also termed as regular. The underlying param-
eters of the automaton, being arbitrary real numbers, do not
necessarily have a probabilistic interpretation. The connection
between discrete-time, finite valued, stationary stochastic pro-
cesses of finite rank and GA, has been long recognized in the
literature, essentially in the work of [7].

III. AGGREGATION OF HIDDEN MARKOV MODELS

The concept of state space aggregation as means of reducing
the dimensionality of HMM’s has been studied in [18], [17],
[4]. Let Y = Zm with m ≥ 2. Consider two HMM’s
H = (1n, O,Π, π) ∈ HRn,Y and Ĥ = (1n, O,Π, π) ∈ HRn̂,Y
with state spaces S = {s1, . . . , sn} and Ŝ = {ŝ1, . . . , ŝn̂}
respectively, where n̂ ≥ 3, n < n̂. For the two models to be
related by aggregation one needs to introduce a surjective map
φ : Ŝ → S, that naturally partitions the domain into equiva-
lence classes. For a given s ∈ S, define Φs = {ŝ ∈ Ŝ | φ(ŝ) =
s}, one has Φs ∩Φs̄ = ∅ if s 6= s̄ and

⋃
s∈S Φs = Ŝ. The

surjective map φ is called a partition function. The set of all
partition functions involving the sets Ŝ and S is denoted by
Sn̂,n, Sn̂,n = {φ : Ŝ→ S | φ is surjective}.

Definition 3.1: For a given φ ∈ Sn̂,n, the corresponding
aggregation operator Lφ is a map Lφ : Rn̂ → Rn with

Lφij =

{
1 if φ(ŝj) = si,
0 otherwise.

The set of all possible aggregation operators between the sets
Ŝ and S is denoted by Ln̂,n, Ln̂,n = {Lφ | φ ∈ Sn̂,n}. The
corresponding set of dilation operators is denoted by Dn,n̂,
Dn,n̂ = {Dφ : Rn → Rn̂ | LφDφ = In, Lφ ∈ Ln̂,n}.
Frequently the dilation operators are restricted to be of the
form

Dφij =

{
µi if φ(ŝi) = sj ,
0 otherwise,

where
∑
i∈Φsj

µi = 1, µi ≥ 0, ∀i ∈ {1, . . . , n̂}. In that
case µi admits the interpretation of conditional probability
of state ŝi within the cluster φ(ŝi) = sj . These conditional
probabilities relate to the nonstationary Markovian evolution
of the aggregated state process, see for instance [10]. This
structural restriction on dilation operators is not imposed in
this work.

Definition 3.2: Consider two HMM’s, Ĥ = (1n, O,Π, π) ∈
HRn̂,Y with state space Ŝ = {ŝ1, . . . , ŝn̂} and H =

(1n, O,Π, π) ∈ HRn,Y with state space S = {s1, . . . , sn}.
Model H is the outcome of an aggregation based model
reduction applied to Ĥ if there exists Lφ ∈ Ln̂,n and
Dφ ∈ Dn,n̂ such that

π = Lφπ̂ (2)

Π = LφΠ̂Dφ (3)
diag[oy] = Lφ diag[ôy] Dφ, ∀y ∈ Y. (4)

Accordingly define for a fixed φ ∈ Sn̂,n and Dφ ∈ Dn,n̂
Aφ,Dφ : HRn̂,Y → HRn,Y where Aφ,Dφ [Ĥ] = H, and the
parameters of Ĥ and H are related by (2) - (4).
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IV. MAIN RESULT

A. A counterexample to aggregation based model reduction of
Hidden Markov Models.

In this section we construct an n̂ dimensional Hidden
Markov Model that is equivalent to a lower dimensional one
of order n < n̂ for which aggregation based reduction of the
high dimensional model is guaranteed not to produce the low
dimensional model nor one that is equivalent to it and has
order n.

Some more notation needs to be introduced. Given H ∈
HRn,Y, let ERH denote the set of RFMC HMM’s that are
equivalent to H and have same size, i.e. ERH = {H̃ ∈
HRn,Y | pH ≡ pH̃}. Similarly define EH = {H̃ ∈ Hn,Y | pH ≡
pH̃}, EGH = {G̃ ∈ Gn,Y | pH ≡ qG̃}.

Lemma 4.1: Consider H = (1n, O,Π, π) ∈ HRn,Y. Suppose
that an arbitrary G ∈ EGH is minimal. Furthermore suppose that
Π is a full rank matrix and that for some y∗ ∈ Y, if i 6= j →
Oiy∗ 6= Ojy∗ , ∀i, j ∈ Zn. Every H̃ = (1n, Õ, Π̃, π̃) ∈ ERH is
obtained by permuting the states of H.

Proof: Lemma 2.2 is employed. In particular there exists
a non singular matrix T ∈ Rn×n, such that

diag[õy]Π̃ = T−1diag[oy]ΠT, ∀y ∈ Y (5)
1′n = 1′nT (6)

Using the fact that
∑
y∈Y diag[õy] =

∑
y∈Y diag[oy] = In

one obtains from (5) Π̃ = T−1ΠT which shows that Π̃ is
a full rank matrix as well. Moreover combining the above
equation and (5) gives

Tdiag[õ∗y] = diag[o∗y]T. (7)

Since T is full rank ∀j ∈ {1, . . . , n} ∃k : Tkj 6= 0. Using (7)
this implies that Õy∗j = Oky∗ . Suppose that ∃m 6= k : Tmj 6=
0. This would imply Õy∗j = Omy∗ and therefor Omy∗ = Oky∗

which contradicts the assumption that ∀m 6= k Omy∗ 6= Oky∗ .
So one has that ∀j ∈ {1, . . . , n} ∃!k : Tkj 6= 0 and using (6)
one gets that Tkj = 1 which shows that T ∈ Pn.

Let HR,Pn,Y ⊂ HRn,Y denote the set of models that fulfill the
assumptions of lemma 4.1. If H ∈ HR,Pn,Y then ERH is a finite
set.

Lemma 4.2: Consider H = (1n, {M [v], v ∈ Y}, π) ∈
Hn,Y. Let n̂ = n × |Y| = n × m. There exists Ĥ =
(1n̂, Ô, Π̂, π̂) ∈ HRn̂,Y that is equivalent to H.

Proof: The lemma is intuitively true based on the
following reasoning. For a given JMP HMM the joint process
{Xt, Yt} is a Markov process, and one can clearly write
Y (t) = f(X(t), Y (t)) for in fact a deterministic function
f . Formally for H = (1n, {M [v], v ∈ Y}, π) ∈ Hn,Y let

Ĥ = (1n̂, Ô, Π̂, π̂) ∈ HRn̂,Y where

Π̂ =

 M [1] . . . M [1]
...

...
M [m] . . . M [m]

 (8)

Ôiy =

{
1 if (y − 1)n+ 1 ≤ i ≤ ny, y ∈ Y,

0 otherwise,
(9)

π̂ = Π̂π̂. (10)

Let π̂ be partitioned as π̂′ = [π̂′1, . . . , π̂
′
m]. It follows that

M [y](
∑
k∈Y π̂k) = π̂y, y ∈ Y, and therefor

∑
k∈Y π̂k =

π. Let M̂ [y] = diag[ôy]Π̂, y ∈ Y, and note that 1′n̂ =
[1′n, . . . , 1

′
n]. For an arbitrary v = “vk . . . v1”, ∈ Y∗, where

k ∈ N one has

pĤ[v] = 1′n̂M̂ [vk] . . . M̂ [v1]π̂

= [. . . , 1′nM [vk] . . .M [v1], . . .]

 π̂1

...
π̂m


= 1′nM [vk] . . .M [v1](

∑
k∈Y

π̂k)

= 1′nM [vk] . . .M [v1]π = pH[v],

proving that pĤ ≡ pH.
The above construction will be summarized by introducing

the map Cn,n̂ : HRn,Y → Hn̂,Y where Cn,n̂[H] = Ĥ, and the
parameters of Ĥ and H are related by (8) - (10).

Theorem 4.1: There exists HMM’s H = (1n, O,Π, π) ∈
HRn,Y and Ĥ = (1n, O,Π, π) ∈ HRn̂,Y with state spaces
S = {s1, . . . , sn} and Ŝ = {ŝ1, . . . , ŝn̂} respectively, that are
equivalent, i.e. pH ≡ pĤ, however ∀φ ∈ Sn̂,n and Dφ ∈ Dn,n̂
one has Aφ,Dφ [Ĥ] /∈ ERH.

Proof: An example will be provided that justifies the
theorem. Let n = 2, n̂ = 4,Y = {1, 2}. Consider the model
H = (12, O,Π, π) ∈ HR,P2,Y , with

π =

[
0.25
0.75

]
Π =

[
0.70 0.10
0.30 0.90

]
O =

[
0.20 0.80
0.10 0.90

]
Note that H fulfills the assumptions of lemma 4.1 and therefor
within HR2,Y the only other model equivalent to H is obtained
by permuting the states and will be denoted by H̃, so ERH =
{H̃,H} . Consider now H̄ = (12, {M̄ [v], v ∈ Y}, π̄) ∈ H2,Y

that is equivalent to H, i.e. H̄ ∈ EH. With

T =

[
1.20 −0.20
−0.20 1.20

]
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the parameters of H̄ are

π̄ = Tπ =

[
0.15
0.85

]
M̄ [1] = Tdiag[o1]ΠT−1 =

[
0.14 0.02
0.03 0.09

]
M̄ [2] = Tdiag[o2]ΠT−1 =

[
0.56 0.08
0.27 0.81

]
.

Now consider the model Ĥ = (14, Ô, Π̂, π̂) ∈ HR4,Y that is
equivalent to H̄ and therefor to H, where Ĥ = C2,4[H̄]. The
unique steady state distribution of Π̂ is

π̂ =


0.045
0.080
0.105
0.770

 ,
A quick calculation shows that ∀Lφ ∈ L4,2 one has

Lφπ̂ 6∈ {
[

0.25
0.75

]
,

[
0.75
0.25

]
}.

and therefor ∀φ ∈ S4,2 and Dφ ∈ D2,4 one has Aφ,Dφ [Ĥ] /∈
ERH, completing the proof.

In the above proof we established the existence of a pair
of equivalent HMM’s Ĥ and H of different order for which
aggregation is guaranteed not to recover an error free low
dimensional model. Next we establish the generic nature of
such instances by providing a randomized algorithmic process
that produces further such examples with probability 1. For
a given n ∈ Z+, n ≥ 2 and m ∈ Z+, 2 ≤ m ≤ n, let
n̂ = n×m.

Step 1: Construct H ∈ HR,Pn,Y .
In other words create an HMM that fulfills the assumptions
of lemma 4.1. Set Π̄ = rand[ [0, 1]n×n ]. With ps = 1′nΠ̄,
let Π = Π̄ diag[ 1

ps1
, . . . , 1

psn
]. The matrix Π is a column

stochastic matrix, thus it is valid state transition matrix, and
further Pr[Π is full rank] = 1. Set Ō = rand[ [0, 1]n×m ].
With qs = Ō1n, let O = diag[ 1

qs1
, . . . , 1

qsm
]Ō. The matrix O

is row stochastic, thus it is a valid emission matrix, and further
with probability 1 one of its columns consists of distinct
entries. Compute the unique steady state probability π ∈ Rn×1

by solving π = Ππ. Set H = (1n, O,Π, π), one has that
H ∈ HR,Pn,Y with probability 1. LetMH = {v ∈ Rn×1 | ∃P ∈
Pn : v = Pπ}. Note that if H̃ = (1n, Õ, Π̃, π̃) ∈ ERH then
π̃ ∈MH. Let

ε1 = min
π1,π2∈MH,π1 6=π2

||π1 − π2||1.

This is the minimum distance in terms of the 1 norm between
two distinct elements inMH. By construction Pr[ε1 > 0] = 1.

Step 2: Construct Ĥ ∈ HRn̂,Y : ∃φ0 ∈ Sn̂,n with Lφ0 π̂ = π.
This can be achieved by setting Ĥ = Cn,n̂[H]. The re-
quired aggregation operator Lφ0

∈ Ln,n̂ is given by Lφ0
=

[In, . . . , In]. Let L0
n,n̂ = {L ∈ Ln,n̂ | L = PLφ0

, P ∈ Pn}.

With probability 1, it holds that ∀L ∈ Ln,n̂ if Lπ̂ ∈MH then
L ∈ L0

n,n̂. Define Lcn,n̂ = Ln,n̂ − L0
n,n̂. Let

ε2 = min
π1∈MH,L∈Lcn,n̂

||Lπ̂ − π1||1.

By construction Pr[ε2 > 0] = 1.
Step 3: Construct ĤT in the vicinity of Ĥ such that

∀L ∈ Ln,n̂ it holds that Lπ̂T /∈MH with probability 1.
Let ∆ = rand[ [− 1

2 ,
1
2 ]n×n ]. For k ∈ Z+ define

T̄k = In + 2−k∆, and with rs(k) = 1′nT̄k let Tk =
T̄kdiag[ 1

rs1 (k) , . . . ,
1

rsn (k) ]. Note that the entries in each col-
umn of Tk sum up to 1. Let Bk[y] = Tkdiag[oy]ΠT−1

k , y ∈
Y. Find the smallest k ∈ Z+ such that Bk[y] >> 0, ∀y ∈ Y,
and call it k0. Note that k0 is guaranteed to exist with
probability 1 since as k increases Tk, T−1

k converge towards
In and Pr[Π >> 0] = Pr[O >> 0] = 1. Let Mk[y] =
Bk[y], y ∈ Y, k ≥ k0 and πk = Tkπ, k ≥ k0. Let
Hk = (1n, {Mk[v], v ∈ Y}, πk) and Ĥk = Cn,n̂[Hk].
Consider the following conditions:

Pr[Lφ0(π̂k − π̂)) 6= 0] = 1, (11)
maxL∈L0

n,n̂
||L(π̂k − π̂)||1 < ε1, (12)

maxL∈Lcn,n̂ ||L(π̂k − π̂)||1 < ε2. (13)

Condition (11) holds by virtue of the random perturbation
induced by Tk. Let Find the smallest k ≥ k0 such that (12)
holds and call it k1. Similarly find the smallest k ≥ k0 such
that (13) holds and call it k2. Note that k1, k2 are guaranteed
to exist by continuity arguments. As k increases π̂k converges
to π̂. Set k∗ = max{k1, k2}. Let MT [y] = Mk∗ [y], y ∈ Y,
πT = Tk∗π and HT = (1n, {MT [v], v ∈ Y}, πT ). The model
ĤT = Cn,n̂[HT ] is equivalent to H. By virtue of (11) and (12)
it holds with probability 1 that ∀L ∈ L0

n,n̂, Lπ̂T /∈ MH.
By virtue of (13) it holds with probability 1 that ∀L ∈
Lcn,n̂, Lπ̂T /∈ MH. Thus with probability 1 ∀φ ∈ Sn̂,n
and Dφ ∈ Dn,n̂ one has Aφ,Dφ [Ĥ] /∈ ERH..

B. Applying the balanced truncation type reduction algorithm
of [8] to the example of theorem 4.1

The balanced truncation type of model reduction method
for HMM’s developed in [8] will be now applied to the
example of theorem 4.1. The algorithm starts out with Ĥ =
(1n̂, {M̂ [y], y ∈ Y}, π̂) ∈ Hn̂,Y and produces G =
(c, {A[v], v ∈ Y}, b) ∈ Gn,Y, where n < n̂. The individual
steps as well as the guarantee of fidelity are summarized below.
Step 1: Compute the gramian like matrices.
Let Wo ∈ Rn̂×n̂,Wo ≥ 0 and Wc ∈ Rn̂×n̂,Wc ≥ 0 be the
unique solutions to the respective Lyapunov like linear alge-
braic equations Wo =

∑
y∈Y M̂ ′[y]WoM̂ [y] + 1n1′n,Wc =∑

y∈Y M̂ [y]WcM̂
′[y] +ππ′. Let Wo = L′oLo,Wc = LcL

′
c be

the corresponding Cholesky decompositions.
Step 2 : Compute the singular numbers that control the

bound to the approximation error.
First perform an eigenvalue decomposition to Wco =
L′cWoLc. Let ρ1 ≥ ρ2 ≥ . . . ≥ ρn > ρn+1 ≥ . . . ρn̂ ≥ 0
be the ordered, possibly repeated, eigenvalues of Wco. Let
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{ψ1, . . . , ψn} be the corresponding first n normalized eigen-
vectors of Wco, i.e. Wcoψi = ρiψi, |ψi|2 = 1, ψ′iψk =
0, i 6= k The relevant singular numbers are given by
σi =

√
ρi, i ∈ Zn̂. Let {χ1, . . . , χn} be the corresponding

first n normalized row eigenvectors of L′oWcLo, defined by
χi = 1

σi
ψ′iL

′
cL
′
o, i ∈ Zn.

Step 3 : Extract the reduced order model.
In order to extract the low order model, one needs to com-

pute a projection operator U ∈ Rn×n̂ and dilation operator
V ∈ Rn̂×n, where UV = In. These operators are given by

V = Lc[ψ1
1
√
σ1
, . . . , ψn

1
√
σn

],

U =


1√
σ1
χ1

...
1√
σn
χn

Lo
The parameters of the reduced order GA G = (c, {A[v], v ∈
Y}, b) ∈ Gn,Y are given by

A[y] = UM̂ [y]V, y ∈ Y,

b = Uπ̂,

c = 1′n̂V.

In [8] it was proven that the following a priori computable
bound to the approximation error holds.√∑

v∈Y∗

(qG[v]− pĤ[v])2 ≤ 2(σn+1 + . . .+ σn̂)

The above algorithm will applied to the example of the-
orem 4.1. The algorithm is guaranteed to produce a low
order GA of size 2 equivalent to H, i.e. G ∈ EGH. Given
Ĥ = (14, Ô, Π̂, π̂) ∈ HR4,Y one needs first transform it to
an equivalent model H̃ ∈ EĤ. To this end let M̃ [y] =

diag[ôy]Π̂, y ∈ Y, and π̃ = π̂. The singular numbers
that control the error bound between H̃ and G are σ1 =
4.6299, σ2 = 0.0117, σ3 = σ4 = 0. The fact that
the last 2 singular numbers are zero indicates that exact
reduction is possible. The reduced order GA of order 2
G = (c, {A[v], v ∈ Y}, b) has the parameters

A[1] =

[
0.1219 0.0343
0.0343 0.1081

]
,

A[2] =

[
0.8773 −0.0160
−0.0160 0.4927

]
,

b =

[
−0.9990
−0.0458

]
,

c =
[
−0.9990 −0.0458

]
and it holds that√∑

v∈Y∗

(qG[v]− pĤ[v])2 ≤ 2(σ3 + σ4) = 0.

Thus by construction qG ≡ pH ≡ pĤ.

V. CONCLUSION

In this paper we constructed a counterexample to aggre-
gation based model reduction of HMM’s. We established the
existence of a pair of equivalent HMM’s Ĥ and H of different
order for which aggregation is guaranteed not to recover an
error free low dimensional model. We also established the
generic nature of such instances by providing a randomized
algorithmic process that produces further such examples with
probability 1. Further more we showed how the balanced
truncation type algorithm of [8] can be employed to these
examples and produce an exact low dimensional model within
the class of quasi-realizations.
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