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Abstract— This paper proposes a finite horizon model pre-
dictive control (MPC) method for online voltage collapse pre-
vention. With a hybrid differential-algebraic equations (DAE)
model, a bulk electric power system is studied including both
continuous dynamics and certain switching behavior critical
to voltage instability. Two major contributing factors for long
term instability are then discussed to show how such switching
mechanisms could lead to unstable dynamic behavior. Based on
this model, a safety set concept constructed from a projection of
algebraic variables is proposed. Terminal inequality constraints
defined by this safety set are adopted to establish convergence
properties for the proposed finite horizon MPC algorithm.
Constructing this safety set, which is described only by algebraic
variables, does not require detailed dynamic state estimation
which is not yet available for large-scale power systems. A 10-
bus benchmark case for studying voltage collapse is used to
illustrate the performance of the control method.

I. INTRODUCTION

To meet the expectation of being “Smart”, electric power

grid is developing to maintain a sustainable way of life,

while at the same time to face both critical economic and

security challenges. Advanced control strategies addressing

disturbances through automated prevention, containment and

restoration [1] become the key for such a future.

Voltage instability/collapse is a major security concern for

power system operation. This phenomenon is often preceded

by a slow process of load restoration and generation reactive

power saturation, after some initial disturbances. Such a slow

dynamic process potentially provides time for implementa-

tion of operational decisions aimed at preventing the collapse.

Even with the recent rapid development of communication,

metering and data management techniques, the inherent com-

plexity of this interconnected network is constantly posing

challenging issues for the adoption of advanced control

ideas. Several facts lead to such difficulty: an electric power

system is by nature a hybrid nonlinear system with numerous

physical (or saturation) limits, constraints and switching

devices. Theoretically computing a closed-form system-wide

optimal control strategy is impossible. Different types of

dynamics with time scales ranging from milliseconds to

hours are present in this large-scale network. Some normally

well-controlled local dynamic behaviors can significantly

contribute to cascading failures propagating system-wide

in emergencies. Online metering systems have been well

established in electric power systems to measure algebraic
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states, however dynamic state estimation is still a challenging

topic. Lack of dynamic state information prevents some well

developed control methods from being practically applied.

Model predictive control (MPC) has attracted the attention

of many researchers in recent years. This is partially due

to the fact that MPC can handle a constrained nonlinear

optimal control problem without requiring a closed-form

solution. Since the first introduction of the MPC concept to

power system stability control problems in 2002 [2], many

publications [3], [4], [5], [6] have appeared to address long-

term voltage stability problems, where state estimation and

a computation delay are relatively trivial issues. In partic-

ular, many researchers [3], [4], [5] have adopted trajectory

sensitivities to build the MPC optimization algorithms. This

perturbation information can be efficiently extracted from

simulation of nonlinear differential-algebraic systems such

as power systems.

This paper is an extension to earlier work that adopted

trajectory sensitivities in MPC, and discusses several issues

in establishing controller stability. Switching mechanisms

that lead to unstable voltage behavior are first reviewed based

on a hybrid differential-algebraic equation (DAE) model. A

safety set concept constructed from a projection of algebraic

variables is proposed to represent stability conditions when

dynamic state estimation is not available. Terminal inequality

constraints defined by this safety set are adopted to establish

the proof of the stability for the proposed finite horizon MPC

algorithm. A 10-bus benchmark case for voltage collapse

study is used to illustrate the performance of the control

method.

The paper is organized as follows. Section II discusses

a power system dynamic model that captures the hybrid

switchings of voltage collapse, and reviews trajectory sensi-

tivity concepts. Section III introduces a finite-horizon MPC

algorithm and related controller stability analysis. A example

of MPC control for voltage collapse prevention is provided

in Section IV and conclusions are presented in Section V.

II. POWER SYSTEM DYNAMIC MODELING

In this section, several issues on power system dynamic

modeling and trajectory sensitivities are discussed and re-

viewed. Based on a hybrid DAE model, two major hybrid

switching mechanisms that lead to unstable voltage behavior

are described.
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A. Hybrid DAE model

Following disturbances, power systems typically exhibit

periods of smooth dynamic behavior, interspersed with dis-

crete events. Accordingly, it is common for dynamic models

to consist of nonlinear DAEs coupled with mechanisms

for capturing the switching and impulsive effects that are

introduced by discrete events, shown as follows:

ẋ =f(x, y, z;λ) (1)

0 =g(0)(x, y, z;λ) (2)

0 =

{

g(i−)(x, y, z;λ) yd,i < 0
g(i+)(x, y, z;λ) yd,i > 0

i = 1, . . . , d (3)

z+ = hj(x
−, y−, z−;λ) ye,i = 0, j ∈ {1, . . . , e} (4)

ż = 0 ye,i 6= 0, ∀j ∈ {1, . . . , e} (5)

In this model, x are dynamic state variables with initial

values x0, y are algebraic variables, z are discrete variables

and λ are parameters. In the power system context, x would

describe quantities such as generator fluxes, and y would

include bus voltage magnitudes. Switching of functions from

g(i−) to g(i+) can be used to represent saturation or failures

and switching of discrete variables z can represent tap

changes of transformers and other switching devices. Details

of this hybrid DAE models are discussed in [7]. The dynamic

behavior described by the model can be represented by the

flow functions x(t) = φ(x0, t) and y(t) = ψ(x0, t), ob-

tained by numerically integrating (1)-(5), considering discrete

events.

B. Trajectory sensitivity

Trajectory sensitivities are derived by forming the Taylor

series expansion of the flow. In terms of the dynamic states

x(t), this gives

∆x(t) = φx(x0 +∆x0, t)− φx(x0, t)

=
∂x(t)

∂x0
∆x0 + higher order terms

≈ Φ(x0, t)∆x0. (6)

Likewise, the sensitivity of the y(t) trajectory is given by

∆y(t) ≈ Ψ(x0, t)∆x0. (7)

Trajectory sensitivities Φ,Ψ can be mapped through discrete

events, and so are well defined for non-smooth systems [8].

C. Switching mechanisms leading to voltage collapse

The major cause of voltage instability is a lack of reactive

power supply throughout the network. Long-term voltage

instability often involves an initial disturbance and some

relatively slow power transfers caused by load restoration,

and subsequently by generator reactive power limitation. The

load may gradually build up as a consequence of load tap

changer (LTC) or thermostat adjustments. Generator reactive

power limitation may further exaggerate this load restoration

and lead to voltage collapse. Such slow changing processes

can last for up to several hours until the point of collapse is

reached.

Load restoration and generator reactive power limitation

are two major contributing factors to long-term voltage

instability. Load restoration, driven by local control devices,

is by nature hybrid behavior if the deadband, delay and

step change of taps are taken into account. The objective of

local control is to restore load bus voltages into deadbands

of normal range through discrete tapping or continuous

adjustments. Generator reactive power limitation in a voltage

collapse process is primarily caused by the thermal limits

of the field windings associated with generator exciters. As

the major sources of reactive power, generators are locally

controlled to quickly ramp up/down their reactive power

output within a range determined by thermal limits that

prevent field windings from over-heating. The modeling of

these two forms of dynamic behavior is briefly discussed as

follows.

1) Load restoration: In electricity distribution , a voltage

range from 0.95 p.u. to 1.05 p.u. is widely adopted for

acceptable steady-state voltages. Voltages tend to vary with

changing network conditions. Loads that are dynamically

dependent upon discrete tap changing or continuous ther-

mostat adjustments are assumed in steady-state when their

bus voltages enter the deadband of the devices. A load

model that captures the basic properties of the deadband,

saturation, delay and discrete tap change process is described

in details can be found in [9], as a hybrid DAE model of the

form presented in Section II-A. Under normal conditions, a

voltage adjustment is a demand-side response that helps to

maintain power quality for users. Under extreme conditions

such as voltage collapse, however, load restoration due to

the switching of taps could keep stressing and weakening

the power network, finally leading to a collapse.

Fig. 1. Over excitation limiter model.

2) Generator reactive power limitation: An IEEE AC4A

over-excitation limiter (OXL) model [10] is used in this paper

to illustrate the dynamic performance of OXL during the

voltage collapse process. Fig. 1 shows the block diagram of

this model. The main objective of an OXL control loop is to

regulate field current to avoid overheated field windings. This

is achieved by changing the field voltage set-point. When

a generator is energized, its OXL operates in one of the

following three states:

1) If the field current stays below a long-term thermal

limit Imax1
fd , output of the OXL is 0. It has no effect

on the generator reactive support.

2) If the field current exceeds the long-term thermal limit

Imax1
fd , but is below a short-term thermal limit Imax2

fd ,

OXL does nothing but waits until the heating effects

accumulate to a certain amount. Then it will send
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a signal to the automatic voltage regulator (AVR) to

reduce the field current to a safe range.

3) If the field current exceeds the short-term thermal limit

Imax2
fd , it immediately sends a signal to lower the field

current by reducing the field voltage.

During a voltage collapse process, step 3) could significantly

reduce the generator reactive power output in a very short

time by reducing the excitation voltage, leading to a voltage

collapse. To prevent activation of step 3), the field current

must stay below the long-term limit Imax1
fd in steady-state,

or at least through long-term dynamic processes. From Fig. 1

it can be observed that when this condition is satisfied, the

output of the OXL stays at 0.

The generator reactive power limits discussed here have

a saturation form of nonlinearity. However, discrete changes

may also occur for brushless exciters, due to their rectifier

circuit [10].

D. Safety set for voltage stability

State estimation in electric power systems normally has

a different meaning to state estimation in control theory.

Using the terms defined in the hybrid DAE model discussed

in Section II-A, power system state estimation provides an

estimate of the algebraic variables y instead of dynamic

states x. Metering devices installed on-site at substations

and towers measure algebraic variables such as voltages and

phasors in real-time. Energy management systems (EMS)

are capable of filtering the data and providing system-wide

estimation. This system snapshot is used by operators for

real-time analysis. Unfortunately, techniques that are suitable

for estimating the dynamic states x are still far from maturity,

with industry applications unlikely in the near future. This

is largely due to the difficulties imposed by the large-scale

nonlinear nature of interconnected power systems.

In this paper, a safety set concept defined by the projection

of algebraic variables is used as a pseudo-stability condition

for the proposed control strategy. Such a methodology for

power system dynamic analysis is not new. For example,

a quasi-steady-state simulation method [11], [12] has been

widely adopted to establish long-term dynamic behavior for

voltage stability investigations. At each simulation step, the

fast transient dynamic equations ẋf = f(xf , y, z, λ, t) are

assumed to be in equilibrium e∗ ≡ ((x∗f (t), y
∗(t), z∗(t), t)

where f(e∗) = 0, and the system status is determined by

algebraic equations g(e∗, t) = 0. Algebraic states y∗ can

be obtained directly from system measurements and EMS

estimation procedures.

A safety set is an approximation of stable equilibria which

neglects fast transients, but maintains the nonlinearity and

hybrid nature of the system. For example, a bus voltage

staying within the deadband of an LTC will prevent future

adjustments of tap ratios. From the voltage stability point of

view, the safety set can be defined as the region of algebraic

state-space bounded by switching limits associated with

the slower processes that drive voltage collapse. While the

algebraic states remain within this set, no switching events,

such as LTC tapping or line tripping, can occur, ensuring

long-term voltage collapse is prevented. Even though fast

transient dynamics may temporarily perturb system states, it

is assumed such transients are quickly damped out, and the

system settles back to equilibrium conditions. As an example,

a safety set could be defined by,

1) Generator field current Ifd. Maintaining field currents

Ifd below their long-term limits Imax1
fd prevents over-

heating of the field windings, and therefore ensures that

OXL outputs remain at 0. This is a critical stability

condition that can prevent generator tripping.

2) Load bus voltage. A safety set of load-bus voltage

deadbands is necessary to prevent tap-changer action

and load shedding. Notice that since some loads can

be designed to be shed as an emergency remedy

for voltage collapse, a subset of load buses (mostly

the critical loads or pilot nodes) should be carefully

chosen.

3) Transmission line loading. Transmission line loadings

are also critical and need to be monitored by the safety

set. Consecutive tripping of transmission lines could

soon lead to a weak network prone to voltage collapse.

Besides these algebraic variables, angle and frequency may

also be monitored. All these algebraic variables with a safety

range form a pseudo-stability condition for long-term voltage

stability.

Mathematically, the safety set is a time-invariant polyhe-

dral set Y∗

s = [yLs , y
H
s ]. An operating point ys staying inside

the set

yLs ≤ ys ≤ yHs (8)

is assumed to be secure from a voltage collapse perspective.

In practice, such a set is selected to maintain certain safety

margins to increase the robustness of the stability controls.

Let the term ρ(b, A) be a Hausdorff distance [13] between

a point b and a set A,

ρ(b, A) = min
a∈A

‖a− b‖. (9)

For b ∈ A, ρ(b, A) = 0. In this paper, we only consider

polyhedral sets A = [aL, aH ], where aL and aH are vectors

describing the set boundary, with 1-norm ‖ · ‖ adopted,

ρ(b, A) =
1

2
(‖b− aH‖1 + ‖b− aL‖1 − ‖aH − aL‖1) .

(10)

Using the Hausdorff distance, this safety set requirement

can be translated into a penalty term Cyρ(y,Y∗

s) in an

optimization objective function for MPC, where Cy is the

penalty constant. To solve the problem, the constant term

‖aH −aL‖1 and scaling 1
2 can be removed without affecting

the final optimization results.

III. MPC FOR VOLTAGE STABILITY ENHANCEMENT

A. Model predictive control

Model predictive control (MPC) is a discrete-time optimal

control strategy. Fig. 2 provides an illustration of the MPC

process. Normally, open-loop optimal controls are calculated

7107



Predicted
response Controlled

response

Response with no
further control action

Response with no
control action

Disturbance

Time

Bus
Voltage

MPC control
action

Fig. 2. MPC response.

by solving an optimization problem based on the time-

domain prediction of system behavior, after estimating the

current system states. The first control in the calculated

control sequence will be issued to the system and this process

will be repeated when the next system state is available.

B. MPC algorithm

Security requirements are always the first priority for a

power system stability control problem. A well-designed

MPC strategy should be able to find a control sequence that

successfully steers system states from a potential collapse

situation to a stable operating point (normally with a certain

stability margin). At the same time, disruption to consumers

should be minimized. As an example, load control (shedding)

is an effective countermeasure for voltage collapse but quite

disruptive to consumers, and is therefore less desirable than

generation rescheduling. The ultimate goal of the preventive

voltage stability control problem is to restore the system to a

secure state while minimizing the disruption caused by load

shedding.

To take into account the security and optimality require-

ments, the objective function V(y, u, k) for MPC includes

the penalty terms,

k+N
∑

i=k+1

C
y
i ρ(yi,Y

∗

s) + Cλ
i λ

k
i (11)

as stage costs, where λki is the vector of participating load

shedding percentage at the ith prediction step. An entry-wise

inequality constraint

0 ≤ λi(j) ≤ λ̄i(j), j = 1 . . . n (12)

is enforced with 0 for no load shedding and λ̄i(j) for all

available load being shed. All the other controls such as

generation rescheduling are considered to have negligible

costs compared to load shedding.

Let the control at time k − 1 be uk−1, which is a known

value at time k. Define the control changes as,

∆uki = uki − uk−1, i = k, . . . , k +N − 1 (13)

where uki refers to the control at time i proposed by MPC

at time k.

Let xkk be the initial value of state trajectory x at time k.

Let the value of x at time i along that trajectory be denoted

xkk+i. With T as the sampling step, we can write,

xkk+N = xk(tk +NT ) =φ(xkk+N−1, u
k
k, T )

=φ(xkk+N−2, u
k
k, 2T )

...

=φ(xkk, u
k
k, NT )

with the corresponding y given by g(xkk+i, y
k
k+i, u

k
k) =

0. In other words, the nominal discrete-time trajectory

(xkk+1, y
k
k+1),. . .,(x

k
k+N , y

k
k+N ) can be obtained by sampling

the simulation that begins at the initial value xkk, and

that runs for time NT . This trajectory is nominal in the

sense that the control is held constant at its initial value

ukk. The aim of MPC is to determine control adjustments

∆ukk+1, . . . ,∆u
k
k+N−1 that bring y into the safety set with

minimal load shedding.

According to the definition of trajectory sensitivities (6)

and (7), the perturbations from the nominal trajectory are

given approximately by a linear time-varying discrete-time

model,

∆xkk+i+1 = Φx(x
k
k+i, u

k
k, T )∆x

k
k+i+

Φu(x
k
k+i, u

k
k, T )∆u

k
k+i (14)

∆ykk+i = −g−1
y (gx∆x

k
k+i + gu∆u

k
k+i−1) (15)

where gx, gy and gu are all evaluated at tk+i. (It is assumed

that ∆ukk+N ≡ 0.)

For a multiple step open-loop MPC algorithm, without loss

of generality, assuming the initial time k = 0, by (14) and

(15) we have,

∆x = ΓN
XΓN

U ∆u (16)

∆y = −
(

GN
Y

)−1 (
GN

XΓN
XΓN

U +GN
U

)

∆u (17)

where ∆x, ∆y and ∆u are the N -step change vectors of x,

y and u, ΓN
U is a block diagonal matrix with diagonal blocks

Φu(i) (i is the step size, omit other arguments), GN
X , GN

Y

and GN
U are block diagonal matrixes with diagonal blocks

gx(i), gy(i) and gu(i), respectively, and

ΓN
X =

















I 0 . . . . . . 0
...

. . .
...

...
...

∏k
s=2 Φx(s) . . . I 0 . . .

...
...

...
. . .

...
∏N

s=2 Φx(s) . . .
∏N

s=k+1 Φx(s) . . . I

















.

(18)

For N > 1, let the algebraic variables sampled along the

nominal trajectory be ykk+i and the post-control trajectory be

ȳkk+i, then the post-control perturbation can be approximated

by,

∆ykk+i = ȳkk+i − ykk+i = Ψu(x
k
k, u

k
k, i)∆u

k (19)

where Ψu(x
k
k, u

k
k, i) is an N -step trajectory sensitivity

matrix constructed from the appropriate rows of G =
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−
(

GN
Y

)−1 (
GN

XΓN
XΓN

U +GN
U

)

. The deviations of algebraic

states from their nominal trajectory are described (approxi-

mately) by a linear function of decision variables ∆uk.

To ensure that the safety set is reached by the closed-loop

MPC strategy, a terminal inequality constraint is added to

the optimization problem,

min
k+N−1
∑

i=k

C
y
i ρ(yi,Y

∗

s) + Cλ
i λ

k
i (20)

s.t. yLs ≤ ykk+N−1 +Ψu(x
k
k, u

k
k, k +N − 1)∆uk ≤ yHs

(21)

∆uki ∈ ∆Uk. (22)

In this linear programming (LP) problem, reaching the

safety set is achieved through penalizing the distance terms

in the objective function. Optimal social cost is achieved by

minimizing the cost terms of load shedding. The LP form of

the MPC algorithm can be solved efficiently for large-scale

power system applications.

C. Control Stability

Section II-B showed that trajectory sensitivities Φ(x0, t)
and Ψ(x0, t) are first-order approximations of nonlinear

sensitivities defined by1,

Φ̄(x0,∆x0, t) =
φx(x0 +∆x0, t)− φx(x0, t)

∆x0
(23)

Ψ̄(x0,∆x0, t) =
φy(x0 +∆x0, t)− φy(x0, t)

∆x0
. (24)

Even though these nonlinear sensitivities are more accurate,

they require iterative time-domain simulation for computa-

tion. Trajectory sensitivities, on the other hand, can be com-

puted much more efficiently and generally provide a good

approximation of the true nonlinear, non-smooth perturbed

trajectory [8].

To establish stability properties of the proposed MPC

control strategy, it is assumed that the first priority for MPC is

to bring algebraic states y into the safety set. Minimizing the

cost related to load shedding λ is of secondary importance.

After the safety set has been reached, the penalty term for

the λ cost can be added to the objective function. In practice,

both objectives can be implemented jointly by using a very

small penalty constant Cλ
i . After reaching the safety set, the

distance penalty will vanish, leaving only the objective of

minimizing the λ cost.

Using the nonlinear sensitivity, controller behavior can be

established as follows:

Theorem: Assume Cλ
i = 0. If the initial algebraic states

y00 lie outside the safety set Y∗

s and the LP problem (20)-(22)

using Φ̄ and Ψ̄ has feasible solutions, the closed-loop control

will drive the algebraic states y into the safety set.

Proof: Let the LP problem at time k have feasible solu-

tions [ukk, . . . , u
k
k+N−1], and the objective function evaluated

1Notice that the nonlinear sensitivity Φ̄ and Ψ̄ are dependent on ∆x0,
while their first-order approximations Φ and Ψ are not.

at time k be

V ∗(k) =

k+N−1
∑

i=k

C
y
i ρ(y

∗

i ,Y
∗

s). (25)

With the terminal inequality constraint and nonlinear sensi-

tivities, the terminal algebraic state will be steered into the

safety set with this control sequence with a terminal cost,

ρ(y∗k+N−1,Y
∗

s) = 0. (26)

Since reaching the safety set means the system is stable,

accordingly, we may assume that after applying the control

[ukk+1, . . . , u
k
k+N−1, u

k
k+N−1], the final states yk+N remain

in the safety set. At the next time step, the objective function

becomes,

V (k + 1) =

k+N−1
∑

i=k+1

C
y
i ρ(y

∗

i ,Y
∗

s) + C
y
k+Nρ(yk+N ,Y

∗

s)

=

k+N−1
∑

i=k+1

C
y
i ρ(y

∗

i ,Y
∗

s)

= V ∗(k)− C
y
kρ(y

∗

k,Y
∗

s). (27)

Notice that the above control sequence is only a feasible

solution but may not be optimal. For the optimal solution

sequence, the cost function V ∗(k + 1) should be no greater

than V (k + 1), that is V ∗(k + 1) ≤ V (k + 1). Therefore

V ∗(k + 1) ≤ V ∗(k). Using the fact that V ∗(k) ≥ 0, the

monotonically decreasing objective function values V ∗(k)
will converge for k → ∞. Therefore, ∀δ > 0, ∃M > 0,M ∈
N, ∀m > M ,

|V ∗(m)− V ∗(m+ 1)| ≤ δ (28)

which means the sequence {V ∗(m)− V ∗(m+ 1)} will con-

verge to 0.

Notice from (27) that

0 ≤ C
y
kρ(y

∗

k,Y
∗

s) = V ∗(k)− V (k + 1)

≤ V ∗(k)− V ∗(k + 1). (29)

Therefore, because C
y
k > 0, it may be concluded that

ρ(y∗k,Y
∗

s) converges to 0, and hence that the safety set will

be reached. �

IV. EXAMPLE

The simple 10-bus system shown in Fig. 3 is well estab-

lished as a benchmark for exploring voltage stability issues

[14], [15]. The system includes 3 generators and 2 loads.

Load tap changer LTC3 automatically adjusts its tap ratio to

regulate the voltage magnitude at load bus 9.

A. Voltage collapse

As illustrated in Fig. 4, an outage of a feeder between

buses 5 and 7 will lead to voltage collapse, shown by the

steady decline in the voltages at buses 3, 6 and 9. Bus 9 is

regulated by the LTC. Initially the voltage at bus 9 starts to

recover due to LTC tap ratio adjustments. As a consequence,
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Fig. 3. Benchmark 10-bus voltage collapse test system.
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voltages at the other buses decrease, except generator termi-

nal buses that are regulated by automatic voltage regulators

(AVRs). However, at 35 seconds, the increasing field current

triggers the over-excitation limiter (OXL) at generator 3,

reducing the internal field voltage, which is turn causes a

sudden drop in bus voltages. Subsequently, further LTC tap

ratio adjustments cause voltages across the system to fall.

B. MPC

Fig. 5 shows the bus voltages that are restored to their

safety range after iterative MPC control actions. In addition

to load shedding, rescheduling generator active power and

terminal voltage set-points help to reduce the required load

shedding amount, by providing additional amount of steady

state reactive power capability. Table I lists the final control

decisions for various combinations of controls. It can be

observed that when more controls are available, the required

load shedding amount will be reduced.

V. CONCLUSION

The paper proposes a finite horizon MPC strategy for alle-

viating voltage collapse. The MPC algorithm is formulated as

a linear programming problem that can be efficiently solved

for large-scale systems. A terminal safety set is defined

to ensure network quantities, including bus voltages and

generator field currents,recover to acceptable values. Such

a safety set concept is enforced through stage costs and

terminal inequality constraints for the finite horizon MPC

algorithm. The proposed controller has been tested on a

benchmark 10-bus system. Results suggest that the proposed

MPC strategy can effectively and efficiently prevent voltage

collapse.
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Fig. 5. Bus voltages with MPC control

TABLE I

MPC RESULTS FOR DIFFERENT CONTROLS

Case Number λ8 T 2

mech
T 3

mech
V 2
set

V 3
set

1 10.08% - - - -
2 7.54% 9 14 - -
3 8.59% - - 0.985 0.983

4 6.17% 9 14 0.985 0.983
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