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Abstract— In this article, we introduce the new approach flu-
orescence grid based aggregation (FGBA) to justify a dynamical
model of protein expression using experimental fluorescence
histograms. First, we describe the dynamics of the gene-
protein system by a chemical master equation (CME), while the
protein production rates are unknown. Second, we aggregate
the states of the CME into unknown group sizes. Then, we
show that these unknown values can be replaced by the data
from the experimental fluorescence histograms. Consequently,
final probability distributions correspond to the experimental
fluorescence histograms.

I. INTRODUCTION

In the study of protein expression, flow cytometry is a
promising technique for the analysis of protein regulatory
systems [11], [9], [13]. In a cell colony, flow cytometery
measures single cell’s fluorescent intensity, which repre-
sents the protein concentration, and draws a fluorescence
histogram. A fluorescence histogram of a cell colony is a
plot of the cell count versus measured fluorescent intensity
[17]. In theory, the process of protein expression has been
stochastically analyzed to generate a probability distribution
of protein concentration. However, there are two deficiencies
to this analysis. First, generated probability distributions
do not represent the experimental fluorescence histograms,
since the relation between fluorescent intensity and protein
concentration is unknown. Second, the protein production
rate, a key parameter in stochastic analysis of expression, is
not known for different expression states of a gene.

In this paper, we study the expression of a protein called
Ag43 by a gene named agn43. This protein is not involved
in feedback regulation, and instead the encoding gene uses a
mechanism of generating multiple phases in order to regulate
the protein production. Phase variation describes changes in
the expression state of the gene that results in mixed cell
cultures in a colony [16]. A gene is called to have an On,
Fartial, or Off expression state, if it produces protein with
a high, low, approximately zero rate, respectively. In the
mechanism of agn43 regulation, between phases with On and
Off expression states, the gene enters intermediate phases
that act as buffers and prevent back and forth switching.
Recently, Lim et al. (2007) proposed a dynamical model
for the phase variation of agn43 and identified a third
expression state, Partial, for the gene. They verified the
model deterministically, and computed the phase variation
rates of the gene. However, the protein production rates in
those three expression states are unknown, and the dynamics
of the protein production is not analyzed.

As our main contribution, we introduce a new approach to
justify the dynamical model of gene-protein system by the
experimental fluorescence histograms. We call this approach
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the fluorescence grid based aggregation (FGBA). First, we
compute the rate of increase in fluorescent intensity of each
cell by the steady state histograms. This rate has a linear
relation with the protein production rate. Second, assuming
that the stochastic dynamics of the gene-protein system is
a Markov process, we describe this system by a chemical
master equation (CME), while the protein production rates,
for different expression states, are unknown. Third, we
aggregate the states of the CME into groups with unknown
sizes, and compute the dynamics of the aggregated system. In
previous studies, aggregation of Markov chains, also known
as sparse grid approximation [5] and projection through
interpolation [12], has been employed to the gene regulatory
networks to reduce the computation time. However, in those
studies, the number of states being aggregated and the
protein production rates were known, as opposed to our
method. In FGBA method, we aggregate the CME based on
the fluorescence grid sizes of the experimental fluorescence
histograms. By employing this method on the CME, we
achieve the following goals: (1) we eliminate the dependence
of the CME on protein number and thus on unknown
protein production rates; (2) we define CME as a function
of fluorescent intensity, whose final probability distribution
corresponds to the experimental fluorescence histogram; and
(3) we reduce the size of the differential CME to reduce the
computation time. Finally, we find an upper bound for the
evolution of the error caused by employing FGBA method.

The paper develops as follows. The remainder of this sec-
tion reviews the studied gene and protein. The deterministic
and stochastic analysis of the gene-protein system is dis-
cussed in Sections II and III, respectively. The FGBA method
and its error are presented in Subsection III-A. Numerical
results are provided in Section IV. Finally, conclusions are
drawn in Section V.

A. Gene-Protein System

Antigen 43 (Ag43) is an outer membrane protein in the
bacteria Escherichia coli and is described as its “most
abundant phase varying outer membrane protein” [7]. This
protein is encoded by a single gene called agn43 or flu.
Flu is an abbreviation of fluffing due to the fact that the
production of Ag43 causes interspecies cell aggregation
by Ag43-Ag43 interaction. Hence, the expression of this
protein enhances biofilm formation. The phase variation of
agn43, performed by an epigenetic switch, regulates the
production of Ag43. An epigenetic switch can be defined
as a heritable yet reversible switch in gene expression state,
which is not mediated by a change in DNA sequence [16].
Therefore, agn43 is a controllable toggle switch and forms
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a synthetic, addressable cellular memory unit, a practical
device in biotechnology, biocomputing and gene therapy [4].
The dynamics of phase variation in agn43 is studied sepa-
rately by [11] and [16]. A schematic of the model proposed
by [11] is illustrated in Figure 1. The methylation state
of three GATC sequences along the gene decides whether
the expression is On (methylated) or Off (unmethylated).
The methylation state of the GATC sites is determined
by competitive binding between OxyR, a global oxidative
stress protein, and DNA adenine methylase (Dam). Since
there is no DNA demethylation reaction, gene replication
is essential to the phase variation. After each replication:
fully methylated agn43 (Mp), whose expression state is
On, becomes hemimethylated (Mp); each My generates
one hemimethylated and one unmethylated and naked agn43
(Un); and the gene in the rest of phases keeps its initial
phase. In Lim’s model, the expression state of My is said to
be either On or Partial, while we assume this expression to
be On, according to the heritable expression state of agn43
[15]. Moreover, OxyR can bind to Uy and generate an
unmethylated agn43 with OxyR (Up). Then, the DNA in
Uo phase can undergo a conformational change, giving rise
to an Off phase (O) with Off expression state. Lim assumed
that agn43 in Uy and Up phases has partial expression, as
opposed to the model proposed by Marjan et al. (2008).

II. DETERMINISTIC ANALYSIS
The deterministic dynamics of the agn43-Ag43 system can
be divided into three parts: gene’s phase variation, protein
production, and the gene replication during cell division.
A. Dynamics of Phase Variation

We briefly review the dynamics of agn43 phase variation
in Lim’s model. According to Section I-A, five phases and
three expression states are assigned to agn43: Mg, My, Uy,
Uo, and O phases with On, On, Partial, Partial, and Off
expression states, respectively. As illustrated in Figure 1, the
dynamics of these five phases can be written as:

Mp(t) = ky My (t), Mpg(t) = kgUn(t) — kp My (t),
Un(t) = k_oUo(t) — (ko + k) Un (1),
Uo(t) = k_rO(t) + koUn(t) — (k-0 + kr)Uo (t),
O(t) = —k_rO(t) + krUo (t).
According to the supplementary methods of [11], ky; = 4.3,

kk_—oo = 3.7, and k’“_—’; = 15.8. Based on our sensitivity
analysis, we used kz = 0.4. Here, we need two more

equalities to compute all the phase varying rates. Owing
to rare On-Off switching of the agn43 (7 x 1073 cells per
generation), kg < ko, hence we assume that ko = 1000k .
Finally, considering the steady state of the system, it can be
computed that kr = 0.118k¢.

B. The Dynamics of the Protein Production

A useful function that describes protein production rate
in many real genes is Hill function [2]. According to this
function, in the absence of activator and repressor, the protein
production rate is constant. As discussed in Section I-A, there
is no feedback regulation in the production of Ag43 and the
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Fig. 1. Lim’s dynamical model of agn43-Ag43. The gene has five
phases Mg, Mgy, Un, Up, and O, with On, On, Partial, Partial, and
Off expression states, respectively. Depending on the expression state, the
protein 4 is produced with three different rates Bon, Bpartial, and Bogr, but
degrades with fixed rate . The arrows on the left represent the effect of
replication on the phase of the gene.

concentration of external factors, OxyR and Dam, during cell
growth is constant by over expression. Thus, the dynamics
of protein production can be described by

g (t) = B — yg(t), (D

where x4(t), 3, and y represent the concentration, production
rate, and degradation rate of the reporter protein, respectively.
In the experiments by [11], green fluorescent protein (GFP)
is used as a reporter, and its production is regulated by agn43.
GFP exhibits fluorescence in the cell, that can be measured
by flow cytometry. Based on the method of generating and
amplifying the expression of GFP in [11], we assume that
there is a linear relation between the rates of Ag43 production
and GFP production in the cell. However, their degradation
is independent of each other, and the latter is measurable by
flow cytometer. Therefore, we consider the dynamics of GFP
production to verify the model by experimental results.

The rate «y is the sum of dilution and degradation rates.
Dilution is the reduction of protein density due to increase
in cell volume. Since a flow cytometer measures the total
fluorescence of a cell rather than the density of fluorescence,
the dilution rate is zero. Degradation rate is computed by
protein’s half life 7 while its production rate is zero. That is,
2g(T) = 24(0)/2 = 24(0)e™ 7", and thus v = In2/7. Half
life of wild type GFP is 26 hr [3], and one generation takes
85 min [11], hence, v is 0.0378 proteins per generation.

The protein production rate 5 depends on the expression
state of the gene, On, Partial, or Off. Consider a gene that
remains in one expression state as time goes to infinity.
Then, the protein concentration of the cell reaches a steady
state g0, and thus lim_,o @4(t) = 0. It follows from
equation (1) that 3 = ~yx,4 . proteins per generation.
Our tool to compute z4 o is the experimental fluorescence
histogram, e.g., Figure 2. However, such histogram gives us
the fluorescent intensity of a cell in steady state in arbitrary
units (a.u.) rather than protein concentration.

The fluorescent intensity xy depends linearly on protein
(GFP) concentration, see [1] and [14]. That is, z;(¢) =
pag(t), where we call p the fluorescence-GFP ratio, and its
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Fig. 2. Three fluorescence histograms of cell colonies in three different
expression states after 20 hours. This plot tells us that the steady state
fluorescent intensity of a cell whose agn43 has On, Partial, or Off expres-
sion state is 1035, 1018, or 10 a.u., respectively. Reprinted figure with
permission from [11]. (©2007, by Nature Publishing Group.

value is unknown. Taking the derivative of both sides gives

Ep(t) = p(B—ryag(t)) = pB—as(t) = By —yas(t), (2)

where 3 denotes the rate of increase in fluorescent intensity
of the cell. According to Figure 2, the steady state fluorescent
intensity T r o, of a cell whose agn43 has On, Partial, or Off
expression state is 1035, 10*8, or 10 a.u., respectively. It
follows from 35 = Y&y that Bfon = 238, Bf parial = 3,
and B¢ = 0.37 a.u. per generation.

C. Replication Rates

Replication of the cell has two effects in our model. First,
we assume that the protein concentration of the cell becomes
half of its initial value. This assumption is based on two
reasons: “in immunofluorescence studies of Ag43-producing
E. coli, the protein is seen evenly distributed over the surface
of the entire cell” [6]; and, in our stochastic analysis we have
observed that employing binomial distribution for protein
concentration after replication has a negligible effect on the
final probability distribution. Second, after replication the
gene’s phase vary: any My gene becomes My ; half of My
genes become Uy, and the other half remain M;; and genes
in the rest of phases keep their initial phase, see Figure 1.

III. STOCHASTIC ANALYSIS

We aim to describe the dynamics of the protein expression
by the phase varying gene agn43 by a Markovian process. We
compute the probability of a cell being in any configuration,
which is here determined by its gene’s phase plus its pro-
tein concentration. Therefore, a cell’s configuration changes
based on: (1) phase variation rates, (2) protein production and
degradation rates, and (3) replication rates, see Figure 3. For
each cell, the probability of having any such configuration is
a function of time, and the union of those probabilities makes
up the probability distribution vector P(t). More specifically,
the first five entries of P(¢) represent the probability of a
cell having no protein and a gene with Mg, My, Uy, Up,
and O phases, respectively; the second five entries represent
the probability of the cell having one protein and a gene in
mentioned phases; and so on. This probability vector evolves
according to a continuous-time Markov process, which is
called the chemical master equation (CME):

P(t) = AP(t) + RP(t). 3)
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Fig. 3. Each circle represents one possible configuration for a cell that
contains agn43, based on the cell’s protein concentration (horizontal axis)
and its gene’s phase (vertical axis). The transitions between configurations,
shown by arrows, is possible through phase variation (red arrows) or change
in protein concentration (black arrows). For brevity, the effect of cell
replication on protein concentration is not illustrated.

The transition matrix A contains phase varying and protein
production/degradation rates, and R is the replication matrix.
According to the system’s deterministic dynamics, we com-
pute the building blocks of the transition matrix, i.e., phase
variation matrix K and protein production matrix B:

0 kym 0 0 0
0 —ku kg 0 0
K=10 0 —kg — ko k_o 0 ,
0 0 ko ~k-o—kr k-r
0 0 0 kr —k_gr
Bon O 0 0 0
0 B O 0 0
B = 0 0 ﬁpartial 0 0
0 0 0 Bpartial 0
0 0 0 0 Bor
If we denote the identity matrix of size five by I5, then
K-B ~vI5 0 .
B K — B —~I; 2715 0
A= 0 B K —B—2vyI; 3vI;
4)
Let us denote each five-by-five block of the replication
matrix by R; ;. Then, R;; = —I5 which represents a con-

tinuous reduction in the probability of all configurations due
to the reduction in protein concentration. When the protein
concentration of the ith five configurations is approximately
half of that of the jth five configurations, then

0 0 0 00

1 05 00 0

Rij=|0 0510 0 (5)
0 0 01 0
0 0 00 1

The blocks (5) contain the information on phase change due
to replication as discussed in Subsection II-C. Note that in
computing the rates, one unit time is equal to one generation
or the time between two replications.
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A. Fluorescence Grid Based Aggregation

Aggregation or lumping of Markov chains has been known
for a long time [10]. Here, we aggregate the states of Markov
chain P(t) = AP(t) into groups of mq,mg,... states by a
linear aggregation operator E:

miy

Hence, the aggregated probability vector at time ¢, is equal
to P,gy(t) = EP(t). Taking the derivative of both sides
P,y4(t) = EP(t) = EAP(t). To find the dynamics of
P,44(t) independent of P(t), we define P(t) as an approx-
imate function of P,4,(t). We assume that the probability
of being in state ¢ is equal to the aggregated probability
of being in the group containing ¢ divided by the number
of states in that group, that is, P(t) ~ FP,44(t), where
F' is the disaggregation operator, and is the MoorePenrose
pseudoinverse of matrix E. Now, we write the approximated
aggregated Markov chain:

Po(0) = Pagq(0) = EP(0),

P,(t) = EAFP,(t).
Therefore, the evolution of P,(t) can approximate the evo-
lution of the aggregated probability vector P,,,(t). Before
proceeding, let us define fluorescence rate matrix B to be
equal to a protein production matrix B whose entries (e.g.,
Bon) are replaced by the corresponding fluorescence based
production rates (e.g., Bf,0n), see Section II-B.

Theorem IIL.1 (FGBA algorithm). Consider a gene-protein
system that can be described by the CME P(t) = (A +
R)P(t), where A and R are explained in Section IIl. From
the experimental fluorescence histograms, extract the fluo-
rescence grids Ay, Ds, ... and the fluorescence rate matrix
By. Then the solution to the following fluorescence based
CME simulates the experimental fluorescence histogram:

Py(t) = (Ay + Ryp) Py (1), 6)
1
K — By 0
A%Bf K- A%Bf 0
Ap = 0 ABy  K-4B
0 WA—A;IS 0
0 _’YTA;IS W(AlA-ls-Az)Ig)
+ 0 0 _’Y(AlAtA2)I5 ’Y(A1+ﬁ12+A3) I

The Ry is equivalent to R, in the sense that their (i,1)
blocks are equal and the (i,j)’th block in Ry is equal
to submatrix (5) if the fluorescent intensity of the ith five
configurations is approximately half of that of the jth five
configurations. The initial condition Py(0) is computed
based on the experimental initial state of the system, and

the phase variation matrix K can be any arbitrary matrix
with zero column sum.

Proof: [Proof of Theorem III.1] First, we aggregate the
states of the original CME by lumping the configurations
with different protein numbers but same phase, that is, the
configurations along the x-axis of Figure 3. Therefore, in
above mentioned aggregation (disaggregation) operator, each
entry E;; (F;;) is replaced by a five-by-five block Fj;I5
(F;;15), and we denote the new aggregation (disaggregation)
operator by E (F). Employing these operators, the dynamics
of the approximated aggregated CME will be:

P,(t) = (Aq + Ro)P,(t), with P,(0) = EP(0), (7)

A, = EAF

K- L 0

my
milB K — migB 0
= 0 1B K—-—-LB 0
mo ms3

0 m 0 ..

0 —mur, ’Y(m1+m2)I 0
+ 0 7%2 'y(mmlerz) 'y(m1+m2+m3)15 0

ms my

and it can be shown that R, = ERF is equivalent to R,
in a similar sense as described for Ry in the theorem. In
essence, the (5i)th entry of P, (¢) represents the probability
of having a protein concentration between m; + - - +m;_;
and mq + - - - + m; proteins at time t. Notice that the group
sizes m; and the protein production rates in B are unknown.
Let us define each group size m,; such that

(®)

where x4 is the protein number and p is the fluorescence-
GFP ratio, defined in Section II-B. Roughly speaking, m; is
the number of proteins in one cell that increases the fluores-
cent intensity by A;. Since for the experimental fluorescence
grids in histograms of [11], m;’s tend to be large, one can
see that um; ~ A,;. Then, according to equation (2),

mi  Afp A

m; = max{z, € N| pr, < A;},

Moreover, for any ,j,k € {1,2,...},
(Ai+Aj)/n _ Dt A
A/ Ay

Therefore, the fluorescence based CME (6) is equivalent
to the approximated aggregated CME (7) under assumption
wm; = A;, while the unknown values p and m;’s are elimi-
nated. Note that the sth entry of Py(t) is now the probability
of cell having fluorescent intensity between Ay +---+A; 4
and Ay + -+ A, [ ]

m; +m;

mg

Proposition IIL.2 (Evolution of error in FGBA method).
Consider the dynamics of a gene-protein system with only

one gene phase, hence one protein production rate (3, which
is described by the CME P(t) = (A+ R)P(t). By employing
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the FGBA method, this CME can be approximated by the
fluorescence based CME P;(t) = Ay Py(t). Assume that:
1) there exists r € Rsg such that the fluorescence grids
satisfy A; < rA;_1; and
2) there exists € € R~ such that the group sizes satisfy
|/1m1 — Al| S €.
Let e(t) denote the error in the expected value of the final
probability distribution, that is,
e(t) = nE[P(t)] — E[Pr(t)],
then e(t) can be upper bounded by a well defined function
of E[P¢(t)], € r, and the minimum and maximum of A;’s.

Proof: The error in FGBA method is caused by two
factors: aggregating the states of CME—e;; and approximat-
ing the group sizes by the fluorescence grids multiplied by
u, instead of employing equation (8)—es. Therefore,

e(t) = pE[P(t)] — E[P;(t)] = (nE[P(t)] — pE[Pa(t)])
+ (LE[Pu(t)] = E[Pr()]) = per(t) + ea(t).
We first compute the first term’s upper bound:
e1(t) = E[P(t)] — E[Fa(t)]
= [0 12 ]P(t)—[O mi1 mip+msg ..

Taking the derivative of both sides gives

JPu(t).

e1(t)=101...][(A+ R)P(t)
- [0 mp mp+mg .. .](Aa + Ra)Pa(t),
where A, = EAF, R, = ERF, and E and F are
the aggregation and disaggregation operators introduced in

Section III-A. If e,(t) denotes the error caused by the
replication factors, then

() =)+ (8 B—7 B2 .. JP()
B p- Ty gty
mo ms

=pB1TP(t) —~[0 1 2 ...]P(t)

2 mg(ml + mg)

— 1T P, (t) + [0 % R JPu(t).

Clearly 17P,(t) = 17 P(t) = 1, and it can be shown that
er(t) ~ —%ei(t). Adding and subtracting vey (¢) gives

él(t) = el (t) — 0.561 (t)

2
+
ol Ly PRI ) R),
ma2 ms3
Integrating from O to ¢ gives
t
e (t) = e(v—0.5)t61(0) _/ 6(7—0-5)(t—T)7
0
o malme Zm) (mitma)(ms Zma)  p g

ma
According to the initial value P,(0) = EP(0) we have
= PQ(O) + -+ (ml - 1)Pm1(0)
+Pp,41(0) 4+ -+ -+ (m2 — 1) Py (0) + .. ...

ms3

Clearly, e1(0) is a convex combination of {1,2,...,Mmaz}.
where M4, 1S the maximum group size. Hence, denoting
the maximum fluorescence grid by A, 4z,

61(0) S Mmax S (Amaz + 6)//14
Therefore,

Az + 66(770.5)t
m

¢
X / 6(7_0'5)“_7)7[0 my my+ma ... |Py(T)dT|.
0

i Myi—1

er(t) < + |max{ ™
3

}

(2

and 2, the
bounded by

According to the assumptions 1
value max;{™—"=1} can be upper
1 — Apin/(rApin + 1€ + €), denoted 7

Amaw —_ A — —

%e(v 05)t 4 4|1 — e~ (V0D |y B[R, (1)].
Owing to negativity of v — 0.5, as time goes to infinity the
effect of initial error in e; goes to zero, and the effect of
E[P,(t)] increases. Second, we compute the upper bound
on error es(t):

el(t) S

ea(t) = p[0 my my+mo ... |P,(t)
—[0 Ay Ar+ Ay L] Pr(2)
<0 Ar Ar+ Ay L P() +€1P(t)
[0 Ay Ay + Ay P,

The value €1P,(t) is equal to ¢, and using assumption 2,
one can compute the scalar function g(e,t) such that matrix
eAa? is entrywise smaller than g(e,t)es?, then for all i

[Pa(®)]i = [e?" Pa(0)]; < g(e, )" P, (0)];
= gle.t)[eM Py (0)); = (e, )[Pr(t)]s-
Consequently,
ea(t) < lg(e, t) = 1[E[Pr(t)] +e.

Finally, for total error e(t) = ue;i(t) + e2(t) we have

e(t) < (Amaz +€)e0 709 ¢

(w1l = =00 g (e, ) + [gle,t) = 11 ) EIP;(1)].

|

I'V. NUMERICAL RESULTS

In the experiments done by Lim et al., they let six
separate colonies of E. coli grow for 20 hours. Each colony
started from a cell that contains a mutant of agn43 with Off
expression state. The gene was mutated by deleting different
parts of the upstream sequences of agn43. They claimed
that the only difference in the dynamics of gene-protein
system in these mutants is the ratio kr/k_pg, see Figure 1.
According to the steady state of phase varying dynamics,
the ratio kr/k_g is equal to the fraction of unmethylated
cells with Off expression, and is experimentally found to
be 15.8,8.9,5.5,4.3,1, and 0.1 for the six mutants. Finally,
they measured the fluorescence of the cells in each colony
with flow cytometer and drew fluorescence histograms, see
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Fig. 4. (a) The experimental fluorescence histograms by (Lim et al.

2007) for six separate colonies, each starting from a mutant of agn43 with
different upstream length and Off expression state. Lim claims that the only

difference in the dynamics of these mutants is the ratio kk—"’;, which is

equal to 15.8,8.9,5.5,4.3,1, and 0.1 from top to bottom. Reprinted figure
with permission from [11]. (©2007, by Nature Publishing Group. (b) The
probability distribution of fluorescent intensity resulting from employing
FGBA methd to the CME (3). Each plot is obtained by solving the
fluorescence based CME with one of the six mentioned values for k]‘i, and

_R
the rest of parameters remains constant. These plots validates applicability
of the FGBA method.

Figure 4.(a). In these histograms, the fluorescence grids A;
are equal to 109957 — 10°95G=1) where i € {1,2,...,40}.

Now, to generate analytical fluorescence histograms, we
employ the FGBA method stated in Theorem III.1 to the
gene-protein systems of the mutants of agn43, that is, each
system has one of the six mentioned values for kr/k_ g, and
the rest of parameters remains constant. Knowing the phase
variation rates, Section II-A; degradation and fluorescence
increase rates, Section II-B; and fluorescence grids, the
fluorescence based transition matrix Ay of equation (6) can
be computed. The resulting fluorescence based CME is an
infinite dimensional ODE, hence we truncate this equation
into a finite dimensional equation [12]. The resulting CME
should contain configurations whose protein concentration
is between zero and the maximum number of proteins in
one cell, or equivalently, configurations whose fluorescence
is less than the maximum value observed (10* a.u.). The
solutions to the final CME’s for the six mentioned mutants
are plotted in Figure 4.(b).

V. CONCLUSION AND FUTURE WORK

As our main result, we introduced a new approach to
justify a proposed dynamical model of protein expression by
the experimental fluorescence histograms. We described the
dynamics of a gene-protein system, whose protein production
rates are unknown, with a chemical master equation (CME).
Based on the resolution of the experimental histograms, we
aggregated the states of the CME, however, the number of
states in each aggregated group is also unknown. We proved
that the unknown protein production rates and number of
states in one group can be replaced by the fluorescence

increase rate and the fluorescence grids from the histograms,
respectively. Therefore, the final probability distribution is
the theoretical fluorescent histogram of the gene-protein
model, and can be verified by the experimental fluorescence
histograms. One future challenge is to compute the parame-
ters of a gene-protein system via its fluorescence histograms.
The solution to the CME, which is a probability distribution,
has been numerically approximated from the parameters of
the CME, see [18]. A reverse analysis of this method can
help us find the parameters of a gene-protein system by
experimental fluorescence histograms.
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