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Abstract— In this paper, we consider a consensus seeking
process based on local averaging of opinions in a dynamic
model of social network formation. At each time step, individual
agents randomly choose another agent to interact with. The
interaction is one-sided and results in the agent averaging her
opinion with that of her randomly chosen neighbor. Once an
agent chooses a neighbor, the probabilities of interactions are
updated in such a way that prior interactions are reinforced and
future interactions become more likely, resulting in a random
consensus process in which networks are highly correlated with
each other. Using results of Skyrm and Pemantle and utilizing
the de Finetti representation theorem as well as properties of
Polya urn processes, we show that this highly correlated process
is equivalent to a mixture of i.i.d. processes whose parameters
are drawn from a random limit distribution. Therefore, prior
results on consensus on i.i.d. processes can be used to show
consensus and to compute the statistics of the consensus value
in terms of the initial conditions. We provide simple expressions
for the mean and the variance of the asymptotic random
consensus value in terms of the number of nodes. We also
show that the variance converges to a factor of the empirical
variance of the initial values that depends only on the size of
the network and goes to zero as the size of the network grows.

I. INTRODUCTION

Consensus algorithms based on local averaging have at-
tracted a significant amount of attention in a diverse set of
applications and contexts. These applications range from par-
allel and distributed computation [1], distributed control and
coordination [2]–[4], and robotics [5] to opinion dynamics
and belief formation in social networks [6], [7]. Recently,
however, there has been a growing interest in studying con-
sensus algorithms in a probabilistic setting [8]–[14], where
network changes can be independent, identically distributed
over time [11], ergodic-stationary [15], or Markovian [16].
In [11] the authors show that consensus is reached almost
surely if and only if the network contains a directed spanning
tree in expectation. The consensus value of course, will be
random. In [17] the authors studied asymptotic statistics of
the consensus value for a special case when the network
change is governed by a randomly switching Erdos-Renyi
graph process.

In many social and engineered networks, however, the
interactions at any moment depend on interactions in the
past, and the network change is endogenous [18], [19].
Among the studied random models of network formation,
preferential attachment and strategic network formation mod-
els [20]–[23] allow for correlation in time. However, most of
these models are generated according to exogenous processes
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where agents do not take part in the evolution of the social
network. Recently, a simple but elegant model of social
network formation was proposed by Skyrm and Pemantle
in [24]. In this dynamic model of social network formation,
the social network structure emerges as a consequence of
the dynamic interactions of the agents. The premise of the
model is that people in a new social network usually start
out with no predetermined preferences for others. However,
as time progresses, prior interactions reinforce relationships.
The Skyrm-Pemantle’s model is in some ways similar to
randomized gossip algorithms [25] in which a node commu-
nicates with a randomly chosen neighbor. The key difference
is that the model proposed in [24] is asymmetric, while
in randomized gossip symmetric communication links are
assumed. Other results on gossip algorithms include those
of [26] in which the authors study three different randomized
consensus algorithms; the symmetric gossip model, the in-
gossip model and the broadcasting model. The first model
has symmetric communication links, while the other two
models are asymmetric networks. It is shown that while
the first model preserves the global average, the other two
do not. A mean square analysis for the various algorithms
is proposed as well. The in-gossip model is similar to the
Skyrm-Pemantle’s model with the difference that the Skyrm-
Pemantle’s model is generated by an endogenous process
compared to an i.i.d. exogenous process for the in-gossip
model.

In this paper, we consider consensus algorithms over a
dynamic social network inspired by the Skyrm-Pemantle’s
model [24]. We begin with a social network with n in-
dividuals and no edges. Individuals in the society select
whom to visit at random and then modify their choices
depending on how their choice is reinforced. Intuitively this
means, people who have been visited are more likely to be
visited in the future. This model seems to be a realistic
model since studies have shown that in the absence of
other environmental attributes, familiarity results in positive
change of people’s attitudes [27]. We denote this model as
the “friendship model”, since visiting people randomly and
reinforcing those who have been visited can be thought of
as making new friends in a society and developing stronger
friendship with people who have been visited more often.

While considering network structural dynamics, we as-
sume each individual in the society has a belief about some
state in the world. While visiting other people, each person
updates her belief according to the average of her belief and
the belief of her new friend she just visited. With this simple
belief dynamics, we will study whether people’s beliefs will
converge to the same value and if so, what the characteristic
of this value is. Though at each time step the network seems
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to depend on the previous steps, we show that it can be
modeled as a mixture of i.i.d. random networks; hence, we
can exploit the results of consensus over i.i.d. networks.
We show that agents reach consensus over this dynamic
model of social network formation. Due to the potential
asymmetry in pairwise communications between different
agents, the asymptotic value of consensus is not guaranteed
to be the average of the initial conditions. Instead, agents will
asymptotically agree on a random value in the convex hull
of the initial conditions. We derive closed-form expressions
for the mean and the variance of the asymptotic consensus
value when the underlying network evolves according to this
random process.

The paper is organized as follows: In section II, we
consider a dynamic model of social network formation. The
interaction between any pair of agents always produces a
constant reward, and so this model can be thought of as
a model of uniform reinforcement. The network structural
dynamics are endogenous in the sense that the interaction
between any pair of agents determines the network structure.
In section III, we define consensus and prove that consensus
is reached in this model almost surely. In section IV, we
derive an explicit expression for the mean and the variance
of the limiting consensus value, and show that as the network
size grows, the consensus value is concentrated around
the average of the initial conditions. Section V contains
simulations of our results and section VI concludes the paper.

II. THE MODEL

In this section we discuss a dynamic model of social
network formation. The idea behind this model is that in
social networks, links formed at each time step are more
likely to be formed in the future. Intuitively this means
that social networks formed at each time depend on social
interactions in the past and will influence the future formation
of the network.

We consider directed graphs Gt = (V,Et) with a fixed
set of vertices V = {1, ..., n} and directed edges which
are formed at each time according to random dynamics. In
order to model the dynamics of link formation, we consider
a sequence of likelihood matrices {W (t)}∞t=0 defined as
follows: Let wi(t) = (wi1(t), . . . , win(t)) be the likelihood
weight vector that agent i assigns to other agents j 6= i
at time t (wii(t) = 0). The weight wij(t) can be thought
of as each agent’s preference for visiting other agents in
the network. Initially all likelihood weights are the same
and are equal to one, i.e. W (0) = 1n1

T
n − In, meaning

that all agents visit other agents with equal probability. In
other words, people in a new social network do not have
predetermined preferences.

At each time step, every agent visits another agent with
a probability proportional to her assigned likelihood weight,
and then forms a link with the agent she visited. We assume
each agent can form only one link at each time step.
Therefore, the probability of agent i forming a link with
agent j 6= i is

prob(agent i visits j at time t) = pij(t) =
wij(t)∑
k wik(t)

.

(1)

We assume the visit made by each agent is independent of
visits made by any other agent (rows of P (t) are indepen-
dent). Define A(t) = [aij(t)] as the adjacency matrix for
the graph Gt = (V,Et) at time t which is a random matrix
with zero diagonal elements (aii(t) = 0). For off-diagonal
elements we have aij(t) = 1 if agent i forms a link with
agent j at time step t (which has the probability defined in
(1)), and aij(t) = 0 otherwise. Since at each time step each
agent can visit only one agent and forms a link with her,
rows of A(t) consist of only one element with the value of
one and the other elements are zero. Therefore, they have a
categorical distribution (see Appendix for definition) with a
parameter of the vector pi(t).

After link formations at each round, each agent increases
the likelihood weight associated with the agent she visited
by one. This can be thought of as the payoff of the game
played by these two agents. In other words, agents who have
been visited are reinforced and are more likely to be visited
in the future. Therefore, the update of the likelihood matrix
W (t) is

W (t+ 1) = W (t) +A(t). (2)

Afterwards, probabilities of visits for the next round, i.e.
P (t+ 1), are modified according to the new W (t+ 1):

pij(t+ 1) =
wij(t+ 1)∑
k wik(t+ 1)

.

III. CONSENSUS DYNAMICS

We now study the consensus problem on the dynamic
model of social network formation discussed in section II.
Define a sequence of stochastic matrices {Z(t)}∞t=0 corre-
sponding to a sequence of random realizations of {A(t)}∞t=0.
For the realization of the directed graph at time t, we define

Z(t) =
In +A(t)

2
, (3)

where A(t) is the adjacency matrix of the graph realization.
Z(t) is divided by a factor of two to ensure that it is a
stochastic matrix. Adding the identity matrix to the adjacency
matrix in (3) is equivalent to introducing self-loops over
vertices. Consider the discrete-time linear dynamical system

x(t+ 1) = Z(t)x(t), (4)

where t ∈ {0, 1, 2, ...} is the discrete time index, xi(t) ∈ R
is the belief of agent i at time t, and {Z(t)}∞t=0 was defined
in (3). At each time, each agent takes an average of her
belief and the belief of the agent she visited at random. This
probability of visits comes from (1). If agent i visits agent
j, we have

xi(t+ 1) =
1

2
(xi(t) + xj(t)).

1

Definition 1: Dynamical system (4) reaches consensus
almost surely, if for any initial state value x(0)

|xi(t)− xj(t)| → 0 P-almost surely

as t→∞ for all i, j ∈ {1, . . . , n} .

1Weighted average can be used as well.
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The following theorem shows almost sure consensus for the
model.

Theorem 1: Dynamical system (4) with the dynamics
defined in (2) reaches consensus almost surely.

Proof: The update of the weights in (2) is the same
as a Polya urn process. The weight vector for each agent
can be modeled as an urn with n− 1 colors of balls where
each agent is assigned to a color. There is one ball of each
color in each urn at first. Then at each visit, each agent
picks a ball at random, corresponding to the agent she visits,
and then adds a ball of the same color to its urn. Urns
belonging to different agents are independent. In [28] it is
shown that for this urn process the random sequence of
visits for each agent (Ai = {Ai(t)}∞t=0) is exchangeable, i.e.
permuting the sequence does not change its joint probability
distribution. In other words, for any finite set {k1, ..., kj} of
distinct indices, (Ai(k1), ..., Ai(kj)) and (Ai(1), ..., Ai(j))
both have the same joint probability distribution.

The de Finetti representation theorem states that the proba-
bility distribution of any infinite exchangeable sequence (not
necessarily i.i.d.) is a “mixture” of probability distributions
of i.i.d. sequences. Mixture here means a process whose
generating parameter is random. It can be thought of as
if the sequence was actually generated by first drawing a
random p from some probability distribution, which is the
limit distribution of the original non i.i.d. sequence, and
then sampling an i.i.d. sequence with the probability of p.
Formally, the de Finetti representation theorem states that
if a sequence of A = {A(t)}∞t=0 is exchangeable, then
there exists a distribution function F (p) such that for any
realization of the process

P(A(0) = a(0), A(1) = a(1), ...) =∫
Qiid(A(0) = a(0), A(1) = a(1), ...|p)dF (p),

(5)

where P is the joint probability distribution for the sequence
A = {A(t)}∞t=0 and Qiid is the joint probability distribution
with the parameter p generating i.i.d. samples. For instance,
if A is a sequence of Bernoulli random variables (see
Appendix for definition), then there exists a distribution
function F (p) on interval [0, 1] such that for any n ≥ 1

P(A(0) = a(0), ..., A(n−1) = a(n−1)) =

∫ 1

0

pSn(1−p)n−SndF,

where Sn =
∑n−1
i=0 a(i). The distribution function F is a

function of the limiting frequency:

Y = Ā(∞) = lim
n→∞

1

n

n−1∑
t=0

A(t),

P(Y ≤ p) = F (p),

and conditioning on Y = p results in i.i.d. draws:

P(A(0) = a(0), A(1) = a(1), ...|p) =

Qiid(A(0) = a(0), A(1) = a(1), ...|p).

Since the sequence of visits for each agent in the model has
a categorical distribution, the random sequence of visits is a
mixture of i.i.d. sequences of categorical processes.

In [28] the limit distribution (mixing measure) of the urn
process has been shown to be a Dirichlet distribution (see
Appendix for definition). In other words, if we consider the
limit distribution of the random sequence of visits, i.e. the
normalized sum of random matrices A(t):

Ā(∞) = lim
n→∞

1

n

n−1∑
t=0

A(t),

then each row of the random limit matrix Ā(∞) has a
Dirichlet distribution with a parameter 1n.

To summarize, the random sequence of visits is equivalent
to a mixture of i.i.d. categorical processes with the parameter
vector ~p drawn from the limit Dirichlet distribution. The
process Z(t) = In+A(t)

2 is also a mixture of i.i.d. processes.
This is true since adding a deterministic identity matrix to
A(t) is equivalent to having another urn with one ball in
it from which never a ball is picked. Therefore, it doesn’t
have any effect on our probabilistic analysis. Also note that
Z̄(∞) = In+Ā(∞)

2 , thus, the off diagonal elements in each
row of the random limit matrix Z̄(∞) have a Dirichlet
distribution as well.

In [11] it has been shown that for i.i.d. random processes,
if the graph of the network is connected in expectation and
has positive diagonals (self-loops), then dynamical system
(4) reaches consensus on almost all paths. To show that
we reach consensus for any i.i.d. process generated by the
random vector ~p in the model, we take the expectation of
the i.i.d. process conditioned on ~p as its parameter. For the
diagonal elements of E(Z(t)) we have E(zii(t)) = 1

2 for all
i ∈ {1, . . . , n} and t because of the self loop at each vertex
and the normalizing factor. For all off-diagonal elements of
E(Z(t)) we have

E(zij(t)|~p) =
1

2
pij(t),

where we used the fact that the expectation of the ij-th
element of a categorical distribution with the parameter ~p is
pij . Therefore, for any i.i.d. process generated by the random
vector ~p, the graph of E(Z(t)) is a complete graph and as a
result connected. Hence, the i.i.d. process reaches consensus.
Now, for a sample path Z = {Z(t)}∞t=0, define an event A
as:

A = {Z :

∞∏
t=0

Z(t) = 1nd
T for some d}.

Since equation (5) holds for all sample paths, it also holds
for an infinite length sample path whose product is a rank
one matrix. Therefore, we have

P(Z :

∞∏
t=0

Z(t) = 1nd
T ) =

∫
Qiid(Z :

∞∏
t=0

Z(t) = 1nd
T |p)dF (p).

However, we know we reach consensus for any i.i.d. process,
so Qiid(Z :

∏∞
t=0 Z(t) = 1nd

T |p) = 1. Therefore, P(A) =
1 and the dynamical system (4) reaches consensus with
probability one.

The above argument demonstrates that consensus is
reached with probability one, even though the network
change is highly correlated. This is in fact due to the initial
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possibility of all interactions among agents that results in the
spread of all people’s ideas in the social network. The inter-
esting question of course is, what the initial opinions tells
us about the consensus value and whether the information is
correctly aggregated.

IV. STATISTICAL ANALYSIS OF THE CONSENSUS VALUE

In this section we derive an explicit expression for the
mean and the variance of the consensus value for the
dynamic model we described in section II. The authors in
[11] have found closed form formulas for the mean and the
variance of the consensus value in terms of the first two
moments of the i.i.d. weight matrix. The mean of the random
consensus value is given by

E(x∗) = x(0)T v1(E(Z(t))), (6)

and its variance is given by

var(x∗) = [x(0)⊗ x(0)]T vec(cov(d)) =

[x(0)⊗ x(0)]T v1(E(Z(t)⊗ Z(t)))− [x(0)T v1(E(Z(t)))]2,
(7)

where v1(.) denotes the normalized left eigenvector corre-
sponding to the unit eigenvalue, and ⊗ denotes the Kronecker
product.

We use these two formulas to derive an explicit expression
for the mean and the variance of the limiting consensus
value for our model. For this purpose, we need to compute
vT1 (E(Z(t))) and vT1 (E(Z(t) ⊗ Z(t))) in (6) and (7). In
order to compute vT1 (E(Z(t))), we first need to compute
the expectation of each entry of Z(t).

The parameter ~p generating the process Z(t) is a random
vector, and conditioning on ~p this process is equivalent to an
i.i.d. process. Therefore, in order to compute the expectation
of Z(t), we should use conditional expectation. For the
diagonal elements of E(Z(t)) we have E(zii(t)) = 1

2 for
all i ∈ {1, . . . , n} and t. Off-diagonal elements of E(Z(t))
in each row have a conditional categorical distribution; hence
we have

E(zij(t)) = Ed(Ec(zij(t)|Z̄(∞))) =
1

2
Ed(āij(∞))

=
αj

2(
∑n
i=1 αi)

=
1

2(n− 1)
,

where the inner expectation, i.e. Ec, is with respect to the
categorical distribution and the outer expectation, i.e. Ed,
is with respect to the limit Dirichlet distribution with the
parameter vector α = (α1, α2, . . . , αn) = 1n. Using this
fact, it is straightforward to see that the vector 1n satisfies
the eigenvalue equation 1TnE(Z(t)) = 1Tn , thus,

v1(E(Z(t))) =
1

n
1n. (8)

Therefore, as expected, the mean of the random consen-
sus value is equal to the average of x(0), i.e. E(x∗) =
1
n

∑n
i=1 xi(0) , x̄(0). The other term in the expression of

the variance that we need to compute is v1(E(Z(t)⊗Z(t))).
In order to compute this vector, we first compute the entries
of the matrix E(Z(t) ⊗ Z(t)). For this purpose, we divide

the matrix Z(t)⊗Z(t) into n×n blocks where each of them
has n× n entries. Define block B(t)ij as follows:

B(t)ij , [(Z(t)⊗ Z(t))kl],

k ∈ {n(i− 1) + 1, . . . , ni},
l ∈ {n(j − 1) + 1, . . . , nj},

where (Z(t)⊗ Z(t))kl is the kl-th element of Z(t)⊗ Z(t).
Now, we compute E(Z(t) ⊗ Z(t))kl for an arbitrary block
B(t)ij . From the definition of the Kronecker product we have
B(t)ij = zij(t)Z(t), where zij(t) is the ij-th element of
Z(t). For the kl-th entry of blocks B(t)ii we have zii(t) = 1

2 ;
therefore, E(Bkl(t)

ii) = 1
4(n−1) . For the jj-th entry of

blocks B(t)ii we have zii(t) = 1
2 and zjj(t) = 1

2 , so
obviously E(Bjj(t)

ii) = 1
4 . Note that the rows of Z(t) are

independent; therefore, for all off-diagonal entries of all rows
of B(t)ij , except the i−th row, we have

E(Bkl(t)
ij) = E(zij(t))E(zkl(t)) =

1

4(n− 1)2
.

For all off-diagonal entries of the i−th row of B(t)ij we
should exploit the concept of variance and covariance since
there is an inherent dependence. For the ik-th entry of B(t)ij

we have

E(Bik(t)ij) = Ed[Ec(zij(t)zik(t)|Z̄(∞))] =

Ed[cov(z̄ij(t), z̄ik(t)) + Ed(z̄ij(t))Ed(z̄ik(t))] =

1

4
Ed[−āij(∞)āik(∞) + āij(∞)āik(∞)] = 0.

For the ij-th entry of B(t)ij we have

E(Bij(t)
ij) = Ed[Ec(zij(t)2|Z̄(∞))] = Ed[var(z̄ij(t)+

(Ed(z̄ij(t)))
2] =

1

4
Ed[āij(∞)(1− āij(∞)) + āij(∞)2] =

1

4
Ed(āij(∞)) =

1

4(n− 1)
.

Finally, for all diagonal entries kk of B(t)ij we have
zkk(t) = 1

2 ; therefore, E(Bkk(t)ij) = 1
4(n−1) .

We now exploit the identified pattern to explicitly compute
the normalized left eigenvector v1(E(Z(t)⊗Z(t))) using the
same approach that is used in [29].

Lemma 1: The normalized left eigenvector of E(Z(t) ⊗
Z(t)) corresponding to its unit eigenvalue is given by

v1(E(Z(t)⊗Z(t))) =
1

nδ
[ρ(1n⊗1n)+(1−ρ)

n∑
i=1

(ei⊗ei)],

(9)
where ρ and δ depend on n as follows:

ρ ,
2n− 2

3n− 4
, δ , 1 + (n− 1)ρ. (10)

Proof: First, notice that E(Z(t) ⊗ Z(t)) is a stochas-
tic matrix. Therefore, it has a unique left eigenvector
corresponding to its unit eigenvalue, which means that
v1(E(Z(t) ⊗ Z(t))) is well defined. We now show that the
pattern of this left eigenvector is of the form

v1(E(Z(t)⊗Z(t))) =
1

δ
[α(1n⊗1n)+(β−α)

n∑
i=1

(ei⊗ei)],
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for some positive numbers α and β. Notice that all entries
of this vector are equal to α, except for the ones indexed
1 + r(n+ 1) for r ∈ {0, . . . , n− 1}, which are equal to β.
To show that the eigenvector we are looking for is indeed
of the given pattern, we pre-multiply E(Z(t) ⊗ Z(t)) by
v1(E(Z(t) ⊗ Z(t))). We notice that we have two types of
linear equations: The first type is a set of n linear equations
for the k−th column of the matrix E(Z(t) ⊗ Z(t)) where
k = 1 + r(n + 1) and r ∈ {0, . . . , n − 1}. In this case, we
have

v1(E(Z(t)⊗ Z(t)))T (E(Z(t)⊗ Z(t)))k = β, (11)

the second type is a set of n2 − n linear equations for all
other (n2 − n) columns of E(Z(t)⊗ Z(t)), where

v1(E(Z(t)⊗ Z(t)))T (E(Z(t)⊗ Z(t)))k = α. (12)

Exploiting the identified pattern for E(Z(t) ⊗ Z(t)) and
solving equations (11) and (12), we get the closed form
solution α = 2n− 2 and β = 3n− 4. Hence,

v1(E(Z(t)⊗Z(t))) =
1

nδ
[ρ(1n⊗1n)+(1−ρ)

n∑
i=1

(ei⊗ei)],

where ρ = α
β = 2n−2

3n−4 and δ(n) defined in (10) is a
normalizing factor guaranteeing that the elements of the
vector v1 sum up to one.

Now that we have derived explicit expressions for the
eigenvectors (8) and (9), we can compute a closed-form
expression for the variance of the limiting consensus value
in terms of n.

Theorem 2: The variance of the asymptotic consensus
value x∗ of the dynamical system defined in (4) is given
by

var(x∗) =
1− ρ
nδ

n∑
i=1

[xi(0)− x̄(0)]2, (13)

where ρ and δ are defined in (10).
Proof: First, from (8), we have

[x(0)T v1(E(Z(t)))]2 = (
1

n

n∑
i=1

xi(0))2 = (x̄(0))2.

On the other hand, from (9), we have

[x(0)⊗ x(0)]T v1(E(Z(t)⊗ Z(t))) =

1

nδ
[x(0)⊗ x(0)]T [ρ(1n ⊗ 1n) + (1− ρ)

n∑
i=1

(ei ⊗ ei)] =

ρ

nδ
[x(0)T1n]⊗ [x(0)T1n] +

1− ρ
nδ

n∑
i=1

[x(0)T ei]⊗ [x(0)T ei],

where we have used the fact that (A⊗B)(C ⊗D) = AC ⊗
BD. Since the Kronecker terms in the last expression are
scalars, we have

[x(0)⊗x(0)]T v1(E(Z(t)⊗Z(t))) =
ρ

δ
nx̄(0)2+

1− ρ
nδ

n∑
i=1

xi(0)2,

and therefore from (7)

var(x∗) = (
ρ

δ
n− 1)x̄(0)2 +

1− ρ
nδ

n∑
i=1

xi(0)2.

Fig. 1. Comparison between the empirical variance and the analytical
variance for n in the interval [10:30]

By adding and subtracting ( 1−ρ
δ )x̄(0)2, the expression for

the variance can be rewritten as

var(x∗) = (
(n− 1)ρ+ 1− δ

δ
)x̄(0)2+

1− ρ
nδ

n∑
i=1

(xi(0)−x̄(0))2.

Since δ = 1 + (n− 1)ρ, as defined in (10), the first term on
the right-hand-side of the above expression is equal to zero.
This proves the theorem.

Remark 1: Equation (13) shows that, given the size of
the random graph n, the variance of the limiting consensus
value x∗ is equal to the empirical variance of the initial
conditions multiplied by the factor 1−ρ

δ , which only depends
on the size of the network. More importantly, as the network
becomes larger, the variance of the consensus value goes
to zero, demonstrating that (at least for linear models), the
information is correctly aggregated and naive learning in
the sense of Golub and Jackson [7] occurs, even though
the update is rather simple and myopic and the neighbors’
opinions are not aggregated in a rational way.

V. NUMERICAL SIMULATIONS

We now present a simulation that illustrates the decay in
variance as a function of the size of the network. In Fig.1,
we compare the analytical expression for the variance in (13)
with the empirical variance obtained from 100 realizations
of the random consensus algorithm for n in a specific range
of network sizes. In this figure, we plot both the analytical
and empirical variances when the network size n goes from
10 to 30 nodes. The initial conditions for each network size
are given by xi(0) = i

n , for i ∈ {1, . . . , n}. For this specific
choice of the initial states the empirical variance does not
scale with n; therefore, the comparison of the analytical and
the empirical variance is more meaningful. We can see that
for larger n the variance decreases with the network size n.
It is easy to see from (13) that this variance tends to zero
asymptotically as n→∞ at a rate of 1

n .

VI. CONCLUSIONS

We studied the mean and the variance of the consensus
value in a gossip-like opinion aggregation process in which
the network is formed randomly, and interactions taking
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place within the network determine the network structure.
Individuals in the society select whom to visit at random and
then modify their choices depending on how their choice is
reinforced. The visit made by each agent is independent of
visits made by any other agent. At each time, each agent
takes an average of her belief and the belief of the agent she
visited at random. Although the realizations of the network
are not i.i.d., we showed that the sequence of visits for each
agent is exchangeable. Therefore, the random sequence of
visits is equivalent to a mixture of i.i.d. categorical processes.
Using recent results on consensus for i.i.d. processes, we
showed that the consensus algorithm results in asymptotic
agreement almost surely. The asymptotic value of consensus
was shown to be a random value in the convex hull of the
initial conditions. We exploited results for the mean and the
variance of the consensus value in terms of the first two
moments of the i.i.d. weight matrix in order to drive closed-
form expressions for the expectation and the variance as
functions of the number of nodes. While the expectation of
the distribution of the consensus value is simply the mean
of the initial conditions, the variance of the consensus value
is the empirical variance of the initial conditions multiplied
by a factor that depends only on n. This factor goes to zero
as n goes to infinity.

APPENDIX

In this section, we define the probability distributions used
throughout the paper.

Definition 2: Bernoulli distribution:
A random variable X has a Bernoulli distribution with the
parameter p, if X = 1 with probability p and X = 0 with
probability 1− p.

Definition 3: Categorical distribution:
A categorical distribution is a generalization of the Bernoulli
distribution where a trial results in exactly one of some
fixed finite number n of possible outcomes, with prob-
abilities p1, ..., pn for each outcome respectively, so that∑n
i=1 pi = 1. Let the random variables Xi = 1 if outcome

number i is observed, and Xi = 0 otherwise. The vector
X = (X1, ..., Xn) follows a categorical distribution with
parameters p where p = (p1, ..., pn).

Definition 4: Dirichlet distribution:
A Dirichlet distribution of order k ≥ 2 with parameters
α1, ..., αk > 0 has a probability density function with respect
to the Lebesgue measure on the Euclidean space Rk−1 given
by

f(x1, ..., xk;α1, ..., αk) =
1

B(α)

k∏
i=1

xαi−1
i ,

for all x1, ..., xk−1 > 0 satisfying x1 + ...+xk−1 < 1, where
xk is an abbreviation for 1 − x1 − ... − xk−1. The density
is zero outside this open (k − 1)-dimensional simplex. The
normalizing constant is the multinomial beta function, which
can be expressed in terms of the gamma function:

B(α) =

∏k
i=1 Γ(αi)

Γ(
∑k
i=1 αi)

, α = (α1, ..., αk).
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