
Request-Based Gossiping

J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and C. Yu

Abstract— By the distributed averaging problem is meant the
problem of computing the average value of a set of numbers
possessed by the agents in a distributed network using only
communication between neighboring agents. Gossiping is a
well-known approach to the problem which seeks to iteratively
arrive at a solution by allowing each agent to interchange
information with at most one neighbor at each iterative step.
Crafting a gossiping protocol which accomplishes this is chal-
lenging because gossiping is an inherently collaborative process
which can lead to deadlock unless careful precautions are
taken to ensure that it does not. In this paper we present
three gossiping protocols. We show by example that the first
can deadlock. While the second cannot, it requires a degree
of network-wide coordination which may not be possible to
secure in some applications. The third protocol uses only local
information, is guaranteed to avoid deadlock, and requires
fewer transmissions per iteration than standard broadcast-
based distributed averaging protocols.

I. INTRODUCTION

There has been considerable interest recently in developing

algorithms for distributing information among the members

of a group of sensors or mobile autonomous agents via

local interactions. Notable among these are those algorithms

intended to cause such a group to reach a consensus in a

distributed manner [1]–[6]. One particular type of consensus

processes which has received much attention lately is called

distributed averaging [7]. In its simplest form, distributed

averaging deals with a network of n > 1 agents and the

constraint that each agent i is able to communicate only

with certain other agents called agent i’s neighbors. Neighbor

relations are described by a simple, connected graph A

in which vertices correspond to agents and edges indicate

neighbor relations. Initially, each agent has or acquires a

real number yi which might be a measured temperature or

something similar. The distributed averaging problem is to

devise a protocol which will enable each agent to compute

The authors thank Alex Olshevsky for useful discussions which have
contributed to this work. The research of the first three authors is supported
by the US Army Research Office, the US Air Force Office of Scien-
tific Research, and the National Science Foundation. B. D. O. Anderson
is supported by Australian Research Council’s Discovery Project DP-
110100538 and National ICT Australia-NICTA. NICTA is funded by the
Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program. C. Yu is supported
by the Australian Research Council through a Queen Elizabeth II Fellowship
and DP-110100538 and Overseas Expert Program of Shandong Province. B.
D. O. Anderson and C. Yu are also supported by the US Air Force Research
laboratory grant number FA2386-10-1-4102.

J. Liu, S. Mou, and A. S. Morse are with Yale University,
USA ({ji.liu, shaoshuai.mou, as.morse}@yale.edu). B. D.
O. Anderson and C. Yu are with the Australian National Univer-
sity and National ICT Australia Ltd., Australia ({brian.anderson,
brad.yu}@anu.edu.au). C. Yu is also with Shandong Computer Sci-
ence Center, Jinan, China.

the average yavg = 1
n

∑n

i=1 yi using only information

acquired from its neighbors. There are many variants of this

problem. For example, instead of real numbers, the yi may be

integer-valued [8]. Another variant assumes that the edges of

A change over time [9]. This paper considers the case when

the yi are real and A does not depend on time.

As noted in [7], the distributed averaging problem can be

solved, in principle, by “flooding”; that is, by propagating

across the network over time the values of all of the yi.

Armed with knowledge of all of these values, each agent is

thus able to compute yavg. A more sophisticated approach to

the problem is for each agent to use a linear iterative update

rule of the general form

xi(t + 1) = wiixi(t) +
∑

j∈Ni

wijxj(t), xi(0) = yi

where t is a discrete time index, xi(t) is agent i’s current

estimate of yavg, the wij are real-valued weights, and Ni

is the set of labels of the neighbors of agent i. In [7]

several methods are proposed for choosing the wij . One

particular choice, which defines what has come to be known

as the Metropolis algorithm, requires only local information

to define the wij . Algorithms of this type, which require

each agent to communicate with all of its neighbors on each

iteration, are sometimes called broadcast algorithms.

An alternative approach to distributed averaging, which

typically does not involve broadcasting, exploits a form

of “gossiping” [10] specifically tailored to the distributed

averaging problem. The idea of gossiping is very simple. A

pair of neighbors with labels i and j are said to gossip at

time t if both xi(t + 1) and xj(t + 1) are set equal to the

average of xi(t) and xj(t). Each agent is allowed to gossip

with at most one neighbor at one time. Under appropriate

assumptions, algorithms which possess this simple property

can be shown to solve the distributed averaging problem.

Gossiping algorithms do not necessarily involve broadcasting

and thus have the potential to require less transmissions per

iteration than broadcast algorithms. Of course one would not

expect gossip algorithms to converge as fast as broadcast

algorithms.

The actual sequence of gossip pairs which occurs during

a specific gossip process might be determined either proba-

bilistically [10] or deterministically [11], [12], depending on

the problem of interest. Deterministic gossiping protocols

are intended to guarantee that under all conditions, a con-

sensus will be achieved asymptotically whereas probabilistic

protocols aim at achieving consensus asymptotically with

probability one. Both approaches have merit. The proba-

bilistic approach is typically somewhat easier both in terms

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1968

of algorithm development and convergence analysis. On the

other hand, the deterministic approach forces one to con-

sider worst case scenarios and has the potential of yielding

algorithms which may outperform those obtained using the

probabilistic approach. The aim of this paper is to present

deterministic gossiping which do not utilize broadcasting

and which generate sequences x(0), x(1), x(2), . . . which are

guaranteed to converge exponentially fast to the limit vector

which solves the distributed averaging problem.

II. GOSSIPING

The type of gossiping we want to consider involves a

group of n > 1 agents labeled 1 to n. Each agent i has

control over a real-valued scalar quantity xi called a gossip

variable which the agent is able to update. A gossip between

agents i and j, written (i, j), occurs at time t if the values

of both agents’ variables at time t + 1 equal the average

of their values at time t. In other words xi(t + 1) =
xj(t + 1) = 1

2 (xi(t) + xj(t)). If agent i does not gossip

at time t, its gossip variable does not change; thus in this

case xi(t + 1) = xi(t). Generally not every pair of agents

is allowed to gossip. The edges of A specify which gossip

pairs are allowable. In other words a gossip between agents

i and j is allowable if (i, j) is an edge in A. We sometimes

call A an allowable gossip graph. Although in this paper we

shall be interested primarily in gossiping protocols which

stipulate that each agent is allowed to gossip with at most

one of its neighbors at one time, as we shall see later,

there is value in taking the time here to generalize the idea.

Let us agree to call a subset L of m > 1 agent labels, a

neighborhood if each pair of distinct labels in L are the

labels of vertices in A which are connected. We say that the

agents with labels in L perform a gossip of order m at time

t if each updates its gossip variable to the average of all;

that is, if xi(t + 1) = 1
m

∑

j∈L xj(t), i ∈ L. A generalized

gossip is a gossip of any order. A gossip without the modifier

“generalized”, will continue to mean a gossip of order 2.

One rule which sharply distinguishes a gossiping process

from a more distributed averaging process is that in the case

of gossiping, each agent is allowed to gossip with at most

one of its neighbors at one time. This rule does not preclude

the possibility of two or more pairs of agents gossiping

at the same time, provided each of the two pairs have no

agent in common. More precisely, two gossip pairs (i, j)
and (k, m) are noninteracting if neither i nor j equals either

k or m. When multiple noninteracting pairs of allowable

gossips occur simultaneously, the simultaneous occurrence

of all such gossips is called a multi-gossip. In other words a

multi-gossip at time t is the set of all gossips which occur at

time t with the understanding that each such pair is allowable

and that any two such pairs are noninteracting. A generalized

multi-gossip at time t is a finite set of generalized gossips

with disjoint neighborhoods which occur simultaneously at

time t.
A gossiping process can often be modeled by a discrete

time linear system of the form x(t + 1) = M(t)x(t), t =
0, 1, 2, . . . where x ∈ IRn is a state vector of gossiping

variables and M(t) is a matrix characterizing how x changes

as the result of the gossips which take place at time t; some-

times M(t) depends on x although the notational dependence

is often suppressed. If a single pair of distinct agents i and

j gossip at time t ≥ 0, then M(t) = Pij where Pij is

the n × n matrix for which pii = pij = pji = pjj = 1
2 ,

pkk = 1, k 6∈ {i, j}, and all remaining entries equal zero.

We call such Pij single gossip primitive gossip matrices. If

at time t a multi-gossip occurs, then as a consequence of non-

interaction, M(t) is simply the product of the single gossip

primitive gossip matrices corresponding to the individual

gossips comprising the multi-gossip; moreover because of

non-interaction, the primitive gossip matrices in the product

commute with each other and so any given permutation of the

primitive matrices in the product determines the same matrix

P . We refer to P as the primitive gossip matrix determined

by the multi-gossip under consideration.

The idea of a primitive gossip matrix extends naturally to

generalized gossips. In particular, we associate with a neigh-

borhood L the n×n matrix PL where pjk = 1
m+1 , j, k ∈ L,

pjj = 1, j 6∈ L, and 0s elsewhere. We call PL the primitive

gossip matrix determined by L. By the graph induced by

PL, written GL, we mean the spanning subgraph of A whose

edge set is all edges in A which are incident on vertices with

labels which are both in L. More generally, if L1,L2, . . . ,Lk

are k disjoint neighborhoods, the matrix PL1
PL2

· · ·PLk
is

the primitive gossip matrix determined by L1,L2, . . . ,Lk

and the graph induced by PL1
PL2

· · ·PLk
is the union of

the induced graphs GLi
, i ∈ {1, 2, . . . , k}. Note that the

matrices in the product PL1
PL2

· · ·PLk
commute because

the Li are disjoint so the order of the matrices in the product

is not important for the definition to make sense. Note also

that there are only finitely many primitive gossip matrices

associated with A.

A. Gossiping Sequences

Let γ1, γ2, . . . be an infinite sequence of multi-gossips cor-

responding to some or all of the edges in A. Corresponding

to such a sequence is a sequence of primitive gossip matrices

Q1, Q2, . . . where Qi is the primitive gossip matrices of the

ith multi-gossip in the sequence. For given x(0), such a

gossiping matrix sequence generates the sequence of vectors

x(t) = QtQt−1 · · ·Q1x(0), t > 0 (1)

which we call a gossiping sequence. We have purposely

restricted this definition of a gossiping sequence to multi-

gossip sequences, as opposed to generalized multi-gossip

sequences, since we will only be dealing with algorithms

involving multi-gossips. Our reason for considering general-

ized multi-gossips will become clear in a moment.

As will soon be obvious, the matrices Qi in (1) are not

necessarily the only primitive gossip matrices for which

(1) holds. This non-uniqueness can play a crucial rule in

understanding certain gossip protocols which are not linear

iterations. To understand why this is so, let us agree to say

that the transition x(τ) 7−→ x(τ+1) contains a virtual gossip

if there is a neighborhood L for which xi(τ) = xj(τ), i, j ∈

1969

L. We say that agent i has gossiped virtually with agent j at

time t if i and j are both labels in L. Thus while we are only

interested in algorithms in which an agent may gossip with

at most one neighbor at any one time, for such algorithms

there may be times at which virtual gossips occur between

an agent and one or more of its neighbors. Suppose that for

some time τ < t, the transition x(τ) 7−→ x(τ + 1) contains

such a virtual gossip and let PL denote the primitive gossip

matrix determined by L. Then clearly PLx(τ) = x(τ) which

means that the matrix Qτ+1 in the product QtQt−1 · · ·Q1

can be replaced by the matrix Qτ+1PL without changing the

validity of (1). Moreover Qτ+1PL will be a primitive gossip

matrix if the neighborhoods which define Qτ+1 are disjoint

with L. The importance of this elementary observation is

simply this. Without taking into account virtual gossips in

equations such as (1), it may in some cases to be impossible

to conclude that the matrix product QtQt−1 · · ·Q1 converges

as t → ∞ even though the gossip sequence x(1), x(2), . . .
does. Later in this paper we will describe a gossip protocol

for which this is true.

Prompted by the preceding, let us agree to say that

a gossiping sequence satisfying (1) is consistent with a

sequence of primitive gossip matrices P1, P2, . . . if

x(t) = PtPt−1 · · ·P1x(0), t > 0

It is obvious that if the sequence x(t), t ≥ 0 is consistent

with the sequence P1, P2, . . . and the latter converges, then

so does the former. Given a gossip vector sequence, our

task then is to find, if possible, a consistent, primitive gossip

matrix sequence which is also convergent.

As we have already noted, A has associated with it a finite

family of primitive gossip matrices and each primitive gossip

matrix induces a spanning subgraph of A. It follows that

any finite sequence of primitive gossip matrix P1, P2, . . . , Pk

induces a spanning subgraph of A whose edge set is the

union of the edge sets of the graphs induced by all of

the Pi. We say that the primitive gossip matrix sequence

P1, P2, . . . , Pk is complete if the graph the sequence induces

is a connected spanning subgraph of A. An infinite se-

quence of primitive gossip matrices P1, P2, . . . is repetitively

complete with period T , if each successive subsequence of

length T in the sequence is complete. A gossiping sequence

x(t), t > 0 is repetitively complete with period T , if there

is a consistent sequence of primitive gossip matrices which

is repetitively complete with period T . The importance of

repetitive completeness is as follows.

Theorem 1: Suppose P1, P2, . . . is an infinite sequence of

primitive gossip matrices which is repetitively complete with

period T . There exists a real nonnegative number λ < 1,

depending only on T and the Pt, for which

lim
t→∞

PtPt−1 · · ·P1x(0) = yavg1

as fast as λt converges to zero.

There are several different ways to prove this theorem

using ideas from [2], [5], [6], [13], [14]. A proof of this

theorem will be given in the full length version of this paper.

III. REQUEST-BASED GOSSIPING

Request-based gossiping is a gossiping process in which a

gossip occurs between two agents whenever one of the two

accepts a request to gossip placed by the other. The aim of

this section is to discuss this process.

In a request-based gossiping process, a given agent i may

gossip with one of its neighbors at time t only if t is either

an “event time” of agent i or an “event time” of the neighbor

which has made a request to gossip with agent i. By an event

time of agent i is meant a time at which agent i may place a

request to gossip with one of its neighbors. By an event time

interval of agent i is meant the interval of time between two

successive event times of agent i. For obvious reasons, we

assume that the lengths of agent i’s event time intervals are

all bounded above by a finite positive number Ti. We write

Ti for the set of event times of agent i and T for the union

of the event time sequences of all n agents.

Conflicts leading to deadlocks can arise if an agent who

has placed a request to gossip, at the same time receives

a request to gossip from another agent. It is challenging

to devise rules which resolve such conflicts while at the

same time ensuring exponential convergence of the gossiping

process. One way to avoid such conflicts is to assign event

times off line so that no agent can receive a request to gossip

at any of its own event times. There are several ways to do

this which will be discussed below.

From time to time, agent i may have more than one

neighbor to which it might be able to make a request to

gossip with. Also from time to time, agent i may receive

more than one request to gossip. While in such situations

decisions about who to place requests with or whose request

to accept can be randomized, in this paper we will examine

only completely deterministic strategies. To do this we will

assume that each agent i has ordered its neighbors in Ni

according to some priorities so when a choice occurs between

neighbors, agent i will always choose the one with highest

priority.

Consider first the situation when the event times of each

agent and each agent’s neighbor priorities are chosen off line

and are fixed throughout the gossiping process. Assume that

the event times are chosen so that no agent can receive a

request to gossip at any of its own event times. Our aim

is to show that this arrangement can be problematic. The

following protocol illustrates this.

Protocol I: At each event time t ∈ T the following rules

apply for each i ∈ {1, 2, . . . , n}:

1) If t ∈ Ti, agent i places a request to gossip with that

neighbor whose priority is the highest.

2) If t 6∈ Ti, agent i does not place a request to gossip.

3) Each agent i receiving one or more requests to gos-

sip must gossip with that requesting neighbor whose

priority is the highest.

4) If t 6∈ Ti and agent i does not receive a request to

gossip, it does not gossip.

The following example shows that this simple strategy will

not necessarily lead to a consensus. Suppose that A is a path

1970

graph with edges (a, b), (b, c), (c, d). Assume that agents a
and b have distinct event times and that agents a and c have

the same event times as do agents b and d; note that this

guarantees that no agent can receive a request to gossip at

any of its own event times. To avoid ambiguities in decision

making, suppose that agent b assigns a higher priority to a
than to c and agent c assigns a higher priority to d than

to b. Let t be an event time of agents a and c. Then at

this time a places a request to gossip with b and c places

a request to gossip with d. Since b and d receive no other

requests, gossips take place between a and b and between c
and d. Alternatively, if t is an event time of agents b and d,

then at this time, b places a request to gossip with a and d
places a request to gossip with c. Since a and c receive no

other requests, gossips again take place between a and b and

between c and d. Thus under no conditions is there ever a

gossip between b and c, so the gossiping process will never

reach a consensus. The reader may wish to verify that simply

changing the priorities will not rectify this situation: For any

choice of priorities, there will always be at least one gossip

needed to reach a consensus, which will not take place.

The preceding example illustrates that fixed priorities can

present problems. The global ordering proposed in [11] is

one way to overcome them. In what follows we take an

alternative approach.

In the light of Theorem 1 it is of interest to consider

gossiping protocols which generate repetitively complete

gossip sequences. Towards this end, let us agree to say that

an agent i has completed a round of gossiping after it has

gossiped with each neighbor in Ni at least once. Thus the

finite sequence of primitive gossiping matrices corresponding

to a finite sequence of multi-gossips for the entire group

which has occurred over an interval of length T , will be

complete if over the same period each agent in the group

completes a round.

For the protocols which follow it will be necessary for

each agent i to keep track of where it is in a particular

round. To do this, agent i makes use of a recursively updated

neighbor queue qi(t) where qi(·) is a function from T
to the set of all possible lists of the ni labels in Ni, the

neighbor set of agent i. Roughly speaking, qi(t) is a list of

the labels of the neighbors of agent i which defines the queue

of neighbors at time t which are in line to gossip with agent

i. The updating of qi(t) is straightforward: If neighbor j
gossips with agent i at time t, the updated queue qi(t+1) is

obtained by moving agent j’s label from its current position

in qi(t), to the end of the queue. If on the other hand, agent

i does not gossip at time t, qi(t + 1) = qi(t).

A. Protocols

As noted earlier, it is helpful to have event time assign-

ments which guarantee that no agent can receive a request to

gossip at any of its own event times. One way to accomplish

this is to use event time assignments which satisfy the

following assumption.

Distinct neighbor event times assumption: For each i ∈
{1, 2, . . . , n} and each j ∈ Ni, Ti and Tj are disjoint sets.

Thus if this assumption holds, the event times of each

agent are distinct from the event times of all of its neigh-

bors. In all cases the largest number of distinct event time

sequences which would need to be assigned to A to satisfy

the distinct neighbor event times assumption is no greater

than one plus the maximum vertex degree of A [15].

Under the distinct neighbor event times assumption, it is

possible to ensure exponential convergence with the follow-

ing protocol.

Protocol II: Suppose that the distinct neighbor event times

assumption holds. At each event time t ∈ T the following

rules apply for each i ∈ {1, 2, . . . , n}:

1) If t ∈ Ti, agent i places a request to gossip with that

neighbor whose label is at the front of the queue qi(t).
2) If t 6∈ Ti, agent i does not place a request to gossip.

3) Each agent i receiving one or more requests to gossip

must gossip with that requesting neighbor whose label

is closest to the front of the queue qi(t).
4) If t 6∈ Ti and agent i does not receive a request to

gossip, it does not gossip.

Proposition 1: Let E denote the set of all edges (i, j) in

A. Suppose that the distinct neighbor event times assumption

holds and that all agents in the group adhere to Protocol

II. Then the infinite gossiping sequence generated will be

repetitively complete with period

T = max
(i,k)∈E

min







Ti

∑

j∈Ni

nj , Tk

∑

j∈Nk

nj







The proof of Proposition 1 can be found in [15].

A disadvantage of Protocol II is that it requires the distinct

neighbor event times assumption. This assumption can only

be satisfied by off-line assignment of event times for each

agent, and in some applications such an off-line assignment

may be undesirable. In a recent doctoral thesis [16], a

clever gossiping protocol is proposed which does not require

the distinct neighbor event times assumption. The protocol

avoids deadlocks and achieves consensus exponentially fast.

A disadvantage of the protocol in [16] is that it requires each

agent to obtain the values of all of its neighbors’ gossip

variables at each clock time. By exploiting one of the key

ideas in [16] together with the notion of an agent’s neighbor

queue qi(t) defined earlier, it is possible to obtain a gossiping

protocol which also avoids deadlocks and achieves consensus

exponentially fast but without requiring each agent to obtain

the values of all of its neighbors’ gossip variables at each

iteration.

In the sequel we will outline a gossiping algorithm in

which at time t, each agent i has a single preferred neighbor

whose label i∗(t) is in the front of queue qi(t). At time

t each agent i transmits to its preferred neighbor its label

i and the current value of its gossip variable xi(t). Agent

i then transmits the current value of its gossip variable to

those agents which have agent i as their preferred neighbor;

these neighbors plus neighbor i∗(t) are agent i’s receivers

at time t. They are the neighbors of agent i who know

1971

the current gossip value of agent i. Agent i is presumed to

have placed a request to gossip with its preferred neighbor

i∗(t) if xi(t) > xi∗(t)(t); agent i is a requester of agent

i∗(t) whenever this is so. Note that while an agent has

exactly one preferred neighbor, it may at the same time have

anywhere from zero to ni requesters, where ni is the number

of neighbors of agent i.
Protocol III: Between clock times t and t + 1 each

agent i performs the steps enumerated below in the order

indicated. Although the agents’ actions need not be precisely

synchronized, it is understood that for each k ∈ {1, 2, 3} all

agents complete step k before any embark on step k + 1.

1) 1st Transmission: Agent i sends its label i and its

gossip value xi(t) to its current preferred neighbor.

At the same time agent i receives the labels and cor-

responding gossip values from all of those neighbors

which have agent i as their current preferred neighbor.

2) 2nd Transmission: Agent i sends its current gossip

value xi(t) to those neighbors which have agent i as

their current preferred neighbor.

3) Acceptances:

a) If agent i has not placed a request to gossip but

has received at least one request to gossip, then

agent i sends an acceptance to that particular

requesting neighbor whose label is closest to the

front of the queue qi(t).
b) If agent i either has placed a request to gossip or

has not received any request to gossip, then agent

i does not send out an acceptance.

4) Gossip variable and queue updates:

a) If agent i either sends an acceptance to or receives

an acceptance from neighbor j, then agent i
gossips with neighbor j by setting

xi(t + 1) =
xi(t) + xj(t)

2

Agent i updates its queue by moving j and the

labels of all of its current receivers k, if any, for

which xk(t) = xi(t) from their current positions

in qi(t) to the end of the queue while maintaining

their relative order.

b) If agent i has not sent out an acceptance nor

received one, then agent i does not update the

value of xi(t). In addition, qi(t) is not updated

except when agent i’s gossip value equals that

of at least one of its current receivers. In this

special case agent i moves the labels of all of its

current receivers k for which xk(t) = xi(t) from

their current positions in qi(t) to the end of the

queue, while maintaining their relative order.

In summary,

• For agent i to place a request to gossip, the current

value of its gossip variable must be larger than that of

its current preferred neighbor.

• For a gossip to occur between two agents i and j at time

t, one – say i – must be the current preferred neighbor

of the other {i.e., i = j∗(t)}, xj(t) must be larger than

xi(t), and j must be the label of the neighbor of agent

i with highest priority which is placing a request to

gossip with agent i.
• For agent i to update its queue, it must either gossip

with a neighbor j or, if not, it’s current gossip value

must equal that of at least one of its receivers.

Transmissions required: During step 1, each agent sends a

transmission to its preferred neighbor so the total number of

transmissions required for all n agents to complete step 1 is

n. During step 2, each neighbor of agent i which has agent i
as its current preferred neighbor sends a transmission to agent

i so the total of transmissions required for all n agents to

complete step 2 is also n. The total number of transmissions

of all agents required to complete step 3a is clearly no

greater than n
2 . Thus the total number of transmissions per

iteration to carry out the protocol just described is no greater

than 5
2n. With a broadcasting protocol such as the one

considered in [16] the total number of transmissions per

iteration is ndavg where davg is the average vertex degree

of the underlying graph A. Thus for allowable gossip graphs

with average vertex degree exceeding 5
2 , fewer transmissions

are required per iteration to do averaging with the protocol

under consideration than are required per iteration to do

averaging via broadcasting.

Theorem 2: Every sequence of gossip vectors x(t), t > 0
generated by protocol III is repetitively complete with period

no greater than the number of edges of A.

Theorems 1 and 2 thus imply that every sequence of gossip

vectors generated by protocol III converges to the desired

limit point exponentially fast at a rate no worse that some

finite number λ < 1 which depends only A. Calculation of

this worst case bound is a subject for future research.

To prove Theorem 2, we need a few ideas. First note that

step 4 of the protocol stipulates that agent i must update

its queue whenever its current gossip value equals that of

one of its neighbors. We say that agent i gossips virtually

with neighbor j at time t if the current gossip values of both

agents are the same. Note that while an agent can gossip

with at most one agent at time t, it can gossip virtually

with as many as ni at the same time. To proceed, we need

to generalize slightly the idea of a round. We say that an

agent i has completed a round of gossiping after it has

gossiped or virtually gossiped with each neighbor in Ni at

least once. Thus the finite sequence of primitive gossiping

matrices corresponding to a finite sequence of multi-gossips

and virtual multi-gossips for the entire group which has

occurred over an interval of length T , will be complete if

over the same period each agent in the group completes a

round. Thus Theorem 2 will be true if every agent completes

a round in a number of iterations no larger than the number

of edges of A. The following proposition asserts that this is

in fact the case.

Proposition 2: Let m be the number of edges in A.

Then within m iterations every agent will have gossiped or

virtually gossiped at least once with each of its neighbors.

To prove this proposition we will make use of the follow-

1972

ing two lemmas.

Lemma 1: Suppose that all n agents follow protocol III.

Then at each time t, at least one gossip or virtual gossip

must occur.

Lemma 2: Let t be fixed and suppose that G is a spanning

subgraph of A with at least one edge. For each i ∈
{1, 2, . . . , n} write Ni for the set of labels of the vertices

adjacent to vertex i in A and Mi for the set of labels

of the vertices adjacent to vertex i in G. Let Ni − Mi

denote the complement of Mi in Ni. Suppose that for each

i ∈ {1, 2, . . . , n}, each label in Mi, if any, is closer to the

front of qi(t) than all the labels in Ni−Mi. Then there must

be an edge (i, j) within G such that at time t, neighboring

agents i and j either gossip or gossip virtually.

The proofs of Lemma 1 and Lemma 2 are omitted due to

space limitations; they will be given in a full length version

of this paper.

Proof of Proposition 2: If m = 1, there can be only two

agents so n = 2. In view of Lemma 1, Proposition 2 must

clearly be true for this case.

Suppose m > 1. Fix t and let E0 be the edge set of A. For

k ∈ {1, 2, . . . ,m} let Ek denote the set of all edges (i, j)
in E0 for which agents i and j have gossiped or virtually

gossiped at least once within k iterations starting at time t.
Fix k. If Ek = E0, then each agent will have gossiped or

virtually gossiped at least once with each of its neighbors

within k iterations. Since k ≤ m, each agent will have

gossiped or virtually gossiped at least once with each of its

neighbors within m iterations starting at time t.
Now suppose that Ek 6= E0 in which case the complement

of Ek in E0, namely E0 − Ek, is nonempty. Let Gk denote

the spanning subgraph of A with edge set E0 −Ek. For each

i ∈ {1, 2, . . . , n} write Ni for the set of labels of the vertices

adjacent to vertex i in A and Mi for the set of labels of the

vertices adjacent to vertex i in Gk. Let Ni −Mi denote the

complement of Mi in Ni. For each label j ∈ Ni − Mi,

if any, (i, j) ∈ Ek which means that agents i and j have

gossiped or virtually gossiped at least once within k iterations

starting at time t. On the other hand, if there is vertex j ∈
Mi, then this vertex labels an agent which has not gossiped

or virtually gossiped with agent i within k iterations. Protocol

III stipulates that each label in Mi is closer to the front of

qi(t+k) than all the labels in Ni−Mi. Since i is arbitrary,

this is true for all i ∈ {1, 2, . . . , n}. It follows from Lemma

2 that there is an edge (a, b) in E0 − Ek such that at time

t + k, neighboring agents a and b either gossip or virtually

gossip.

By hypothesis Ek 6= E0. Since Ek ⊃ Ej for j ∈
{1, 2, . . . , k − 1}, it must be true that Ej 6= E0 for j ∈
{1, 2, . . . , k}. Thus the preceding argument applies for all

j ∈ {1, 2, . . . , k}, so for each such j there must be an edge

(aj , bj) in E0 − Ej such that at time t + j, neighboring

agents aj and bj either gossip or virtually gossip. Clearly

(aj , bj) /∈ {(a1, b1), (a2, b2), . . . , (aj−1, bj−1)} for j ∈
{2, 3, . . . , k} because {(a1, b1), (a2, b2), . . . , (aj−1, bj−1)}
⊂ Ej and (aj , bj) ∈ E0 − Ej . It follows that

(a1, b1), (a2, b2), . . . , (ak, bk) are distinct edges in A.

The preceding argument implies that at the end of k
iterations, either Ek = E0 or k distinct gossips/virtual gossips

have taken place. If the former is true, then each agent

will have gossiped or virtually gossiped at least once with

each of its neighbors within k and therefore m iterations.

If the later is true, then k must be less than m and k
distinct gossips/virtual gossips will have taken place within

k iterations. Clearly this process can be continued until for

some integer k ≤ m, Ek = E0 in which case each agent will

have gossiped or virtually gossiped at least once with each

of its neighbors within k and therefore m iterations.

IV. CONCLUDING REMARKS

One of the problems with the idea of gossiping, which

apparently is not widely appreciated, is that it is difficult

to devise provably correct gossiping protocols which are

guaranteed to avoid deadlocks without making restrictive

assumptions. The research in this paper and in [11] and [16]

contributes to our understanding of this issue and how to

deal with it.

REFERENCES

[1] J. N. Tsitsiklis. Problems in decentralized decision making and

computation. PhD thesis, Department of Electrical Engineering and
Computer Science, MIT, 1984.

[2] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE

Transactions on Automatic Control, 48(6):988–1001, 2003.
[3] R. Olfati-Saber and R. M. Murray. Consensus seeking in networks of

agents with switching topology and time-delays. IEEE Transactions

on Automatic Control, 49(9):1520–1533, 2004.
[4] V. D. Blondel, J. M. Hendrichkx, A. Olshevsky, and J. N. Tsitsiklis.

Convergence in multiagent coordination, consensus, and flocking. In
Proceedings of the 44th IEEE Conference on Decision and Control,
pages 2996–3000, 2005.

[5] L. Moreau. Stability of multi-agent systems with time-dependent
communication links. IEEE Transactions on Automatic Control,
50(2):169–182, 2005.

[6] W. Ren and R. Beard. Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transactions on

Automatic Control, 50(5):655–661, 2005.
[7] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.

Systems and Control Letters, 53(1):65–78, 2004.
[8] A. Kashyap, T. Basar, and R. Srikant. Quantized consensus. Automat-

ica, 43(7):1192–1203, 2007.
[9] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed

sensor fusion based on average consensus. In Proceedings of the

4th International Conference on Information Processing in Sensor

Networks, pages 63–70, 2005.
[10] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip

algorithms. IEEE Transactions on Information Theory, 52(6):2508–
2530, 2006.

[11] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Mur-
ray. Asynchronous distributed averaging on communication networks.
IEEE/ACM Transactions on Networking, 15(3):512–520, 2007.

[12] B. D. O. Anderson, C. Yu, and A. S. Morse. Convergence of periodic
gossiping algorithms. In Perspectives in Mathematical System Theory,

Control, and Signal Processing, pages 127–138. Springer, 2010.
[13] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. On

distributed averaging algorithms and quantization effects. IEEE

Transactions on Automatic Control, 54(11):2506–2517, 2009.
[14] J. Liu, A. S. Morse, B. D. O. Anderson, and C. Yu. Contractions for

consensus processes. In Proceedings of the 50th IEEE Conference on

Decision and Control, 2011. to appear.
[15] J. Liu, S. Mou, A. S. Morse, B. D. O. Anderson, and C. Yu.

Deterministic gossiping. Proceedings of the IEEE, 2011. to appear.
[16] A. Olshevsky. Efficient Information Aggregation Strategies for Dis-

tributed Control and Signal Processing. PhD thesis, Department of
Electrical Engineering and Computer Science, MIT, 2010.

1973

