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Abstract— Constructing a model of thermal dynamics of a
multi-zone building requires modeling heat conduction through
walls as well as convection due to air-flows among the zones.
Reduced order models of conduction in terms of RC-networks
are well established, while currently the only way to model
convection is through CFD (Computational Fluid Dynamics).
This limits convection models to a single zone or a small number
of zones in a building. In this paper we present a novel method
of identifying a reduced order thermal model of a multi-zone
building from measured space temperature data. The method
consists of first identifying the underlying network structure,
in particular, the paths of convective interaction among zones,
which corresponds to edges of a building graph. Convective
interaction among a pair of zones is modeled as a RC network,
in a manner analogous to conduction models. The second step
of the proposed method involves estimating the parameters of
the RC network model for the convection edges. The identified
convection edges, along with the associated R and C values, are
used to augment a thermal dynamics model of a building that
is originally constructed to model only conduction. Predictions
by the augmented model and the conduction-only model are
compared with space temperatures measured in a multi-zone
building in the University of Florida campus. The identified
model is seen to predict the temperatures more accurately than
a conduction-only model.

I. INTRODUCTION

Buildings are one of the primary consumers of energy

worldwide. Inefficiencies in building technologies, particu-

larly in operating the HVAC (heating, ventilation and air

conditioning) systems cause a significant fraction of the

energy consumed by buildings to be wasted. As a result, there

is a growing interest in developing techniques that can com-

pute optimal building control signals to minimize building-

wide energy consumption, such as MPC (model predictive

control) [1], [2]. These control techniques require a model

that adequately captures the relevant dynamics of a building,

especially of the thermal dynamics that relate the control

signals to the space temperatures, i.e., average temperatures

of the zones of the building. In addition, the models should

have a small state space dimension. Otherwise, computing

the control signals becomes computationally expensive and

in some cases, infeasible. Quite a few building energy

simulation programs are available, such as EnergyPlus [3],

TRNSYS [4], and DOE-2 [5]. Although these programs are

useful for load calculations, equipment sizing, and predicting

energy use of a building over long time intervals, their utility
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is limited as tools to model or simulate the dynamics of the

thermal processes inside a building that can be used by a

control system [6].

Constructing building thermal dynamics is a challenging

task since it requires modeling heat exchange through con-

vection, conduction and radiation among all the rooms. The

thermal dynamics in a multi-zone building can be thought

of as an interconnected system of many subsystems. Each

subsystem corresponds to a zone, and the interconnections

correspond to dynamic interactions between pairs of zones,

which may occur due to conduction or convection. A first-

principles based model constructed from energy and mass

balance equations will lead to a highly complex model.

Currently, modeling convection requires CFD simulations,

which limits its application to one zone or a small number

of zones [7]. In contrast, modeling heat exchange between

zones due to conduction is quite feasible; substantial lit-

erature exists on modeling conduction using RC (resistor

capacitor) networks. However, little work has been done

on constructing reduced order models of convection. The

key challenge is therefore to construct a reduced order

model of convective interactions among the zones of a

building. Due to the complexity of the underlying physics,

a data-driven approach that identifies these interactions from

observed behavior is more likely to succeed than a physics-

based one. Even with a data driven approach, there are two

main challenges. The first is to determine which pairs of

zones have significant convective interaction in a multi-zone

building. The second is to develop a reduced order model for

convective heat transfer between a pair of rooms. If these two

challenges are overcome, a model of the whole building can

be constructed as a network of elements, each element being

a reduced order model of either convection or conduction

between a pair of zones.

A network model of thermal dynamics of a multi-zone

building will have nodes corresponding to the temperatures

in zones and edges corresponding to reduced order models

of dynamic interaction between the variables connected by

the edge. In this paper, we address the problem of identifying

the network model of thermal dynamics from measured zone

temperatures and input signals. The edges in the network

that correspond to the conduction are straightforward to

determine from the building’s geometry. The edges that

correspond to convection are far more challenging to iden-

tify. We borrow ideas from machine learning, in particular,

concentration graph models, to determine these edges, which

are based on computing conditional dependencies among

zone temperatures. Reduced order models of conduction
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in terms of RC-circuits are well-established [8], [9], [10].

Motivated by RC-circuit models of conduction, we model

convection between two zones as a RC circuit as well. The

resistance and capacitance values of convection edges are

obtained minimizing a prediction error. The proposed method

is applied to a section of a building in the University of

Florida campus. Comparison of the model’s prediction with

measured data shows that the identified model predicts the

temperatures more accurately than a model that only takes

conduction into account.

The rest of the paper is organized as follows. Section II

formulates the problem precisely. Section III describes the

proposed method. Performance of the method when applied

to a section of a building in the University of Florida campus

is discussed in Section IV. The paper ends with a discussion

on future research directions in Section V.

II. THERMAL NETWORK MODEL AND PROBLEM

FORMULATION

A commercial building is usually divided into a number

of “zones”; where a zone is either a number of rooms

or a single large room. Conditioned air is supplied to the

“terminal boxes” of respective zones. The flow rate and

temperature of this air are varied at the terminal boxes

through dampers and reheat coils, before being supplied to

the zone, to maintain the zone temperature at a desired value.

For modeling purposes, we assume that the air in the zone is

well mixed. The zone temperature Ti and humidity ratio Wi

of ith zone are state variables of a thermal dynamics model.

The network nature of the thermal dynamics model comes

from the fact the states (temperature and humidity) of a zone

are affected by the states of nearby zones due to conduction,

convection, and radiation. In this paper, heat exchange among

zones due to radiation is neglected; which is also a common

practice [11]. We use the commonly used 3R2C reduced

order model of conduction between two spaces separated by

a solid surface [10], [8]. However, modeling convection is

quite challenging. Typically, convection is analyzed through

CFD simulations, since the governing equations are a set of

coupled partial differential equations [7], [12], [13]. How-

ever, this approach is limited to a single zone or a very

small number of zones due to computational complexity.

To the best of our knowledge, no work has been done on

constructing reduced-order dynamic models of convection

in multi-zone buildings. As we are interested in lumped

parameter, or reduced-order models, in this paper, we model

convective interaction between two zones by a RC circuit as

well.

Thermal interaction among multiple zones in a building

can now be described in terms of a undirected graph G =
(V,E) with node set V = {1, . . . ,n} and edge set E ⊂ V×V.

Each node in the set V corresponds to a variable, e.g. temper-

ature in a room. If the variables corresponding to nodes u and

v directly affect each other, then we say that there is an edge

between u and v: (u,v)∈E. In general, a node can correspond

to variables such as temperature, humidity ratio, etc. In this

study, all the nodes will correspond to temperatures at certain

Zone 1

Zone 2 Zone 3

Zone 4

Outside

Fig. 1. A schematic illustration of a thermal network model, with edges
representing either convective or conductive interaction by solid and dashed
lines respectively. Each square solid box is a RC-circuit.

locations inside or outside the building. Hence, the number

of nodes, n, in the network model is equal to the number

of zones in the building in this paper. An edge is essentially

a path for dynamic interaction between two variables that

are relevant to the thermal dynamics. For example, if a

pair of nodes u and v correspond to two adjacent rooms

separated by a wall so that there is conductive heat transfer

between them, or if there is air flow between u and v, then

this is represented by an edge between the nodes u and

v. The edges that arise due to conductive heat exchange

are called conduction edges, while those that arise out of

convective heat exchange between two zones (or between

a zone and the outside, though rare) are called convection

edges. A schematic illustration of a thermal network model

of a four-zone building is shown in Figure 1, where solid

and dashed line represent the conduction and convection

edges respectively. Each edge has a RC-circuit associated

with it, which models the dynamic interactions between the

variables that are associated with the corresponding pair of

nodes. Since we model both conduction and convection using

a 3R2C model, each edge has a LTI dynamic system of

state-space dimension 2 associated with it. Each node also

has a state associated with it: the temperature of the zone

that corresponds to the node. We call the zone temperatures

the node variables. In summary, a thermal network model

of a multi-zone building is a graph along with weights

on the edges, where each “weight” is an LTI system that

corresponds to the differential equations of a RC network.

We refer the reader to [14] that describes the model in detail,

and to [15], [16] for model reduction techniques developed

for such network models.

A. The identification problem

Identification of a thermal network model consists of (i)

identifying a minimal set of edges between node pairs, and

(ii) estimating the parameters for each edge (i.e., the R and C

values for the RC-circuits associated with the edges) required

to explain the observed behavior of the node variables. We

call the first the structure identification problem and the

second the parameter estimation problem. Identifying the

conduction edges and the R and C values associated with it

is straightforward [10]. However, identifying the convection

edges and determining their R and C values is far more

challenging, and forms the crux of the problem we address

in this paper.
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III. PROPOSED IDENTIFICATION METHOD

As described in the previous section, identification of a

thermal network model from measured input-output data can

be thought of in terms of two sub-problems: (i) structure

identification and (ii) parameter estimation. We now describe

our approach to solve these two sub-problems.

A. Network structure identification

The proposed method for structure identification relies

on identifying conditional independence between random

variables. Recall that two random variables (r.v.) X and Y are

called conditionally independent given a r.v. Z, if they are in-

dependent given the σ -algebra generated by Z. For instance,

the temperatures in two buildings that are physically separate

but are located in the same neighborhood are conditionally

independent given the outside air temperature, assuming that

apart from the outside temperature there is no common input

that affects both the buildings. Similar arguments can be

made for temperatures of zones in a multi-zone building. If

Ti and Tj are node variables (i.e., zone temperatures) that

are conditionally independent given the rest of the node

variables, that would mean that there is no direct thermal

interaction between these two zones. So determination of

conditional independence between pairs of node variables

(given all the rest) provides us a way to determine which

pairs of node variables should not have edges between them

in the thermal network, and vice versa.

To determine pairwise conditional independence, we use

the idea of the so-called concentration graph (Gc) model

from machine learning [17]. Given n random variables

X1, . . . ,Xn that are jointly Gaussian, the inverse-covariance

matrix P := Σ−1, where Σ =Cov(X,X) and X = [X1, . . . ,Xn]
T ,

provides information on conditional dependencies. In partic-

ular, two variables Xi and X j are conditionally independent

given the rest if Pi, j = 0. For minimum model complexity, it

is also desired that the estimated concentration graph have

as few edges as possible, i.e., the estimated P should be

as sparse as possible. The need of sparsity becomes more

important as the number of variables becomes large.

From the maximum likelihood estimator (S) of the covari-

ance Σ, the estimated concentration matrix can be obtained

as P̂ = S−1, which is not sparse in general. The method

in [17], which we will utilize, leads to an estimated graph

model Ĝc. We first identify the concentration graph model

of the node variables Ti, i = 1, . . . ,n from time-series data

using the method of [17]. In fact, if measurements are

collected at m-minute intervals so that we have K = 24×60
m

discrete time indices for 24 hours, then we identify K distinct

concentration graph models, Ĝc(k), where k = 1, . . . ,K is

the time index. We treat each day’s data as an independent

realization of the underlying stochastic processes. Therefore,

given N days of temperature data, the estimate of P(k) for

each k is based on N samples. If Pi j(k) 6= 0 where Ti and

Tj are node variables of i and j in the thermal network,

then we conclude that these two node variables directly

affect each other at time k, and therefore (i, j) is a potential

edge. Among these potential edges, the edges that correspond

to the conduction, which are already known from building

geometry, are first chosen. The convection edges are chosen

next, as follows. Let Ḡ(k) = (V, Ē(k)), where Ē(k) is E(k)
with all the conduction edges removed. For a fixed node i,

we determine the score of all other nodes j ( j = 1, . . . ,n) as:

s
(i)
j :=

# of times (i, j) appear in ∪k Ē(k)

K
.

If node ℓ has the highest score: ℓ = argmax j s
(i)
j , then (i, j) is

chosen as the convection edge for i. This process is repeated

for each i. Note that only one convection edge is chosen for

each node at each stage, though at the end of the process a

node may have multiple convection edges incident on it. This

is done in order to restrict the number of convection edges,

and thereby obtain a model that is of minimal complexity.

B. Parameter estimation

Once the edges of the network model are identified, the

parameters corresponding to each edge (3 R values and 2 C

values) have to be estimated. We choose the zone capacitance

to be of the same order of magnitude of internal wall

capacitance, and proportional to the volume of corresponding

zone. Since we model each convection edge as a 3R2C

circuit as well, three R values and two C values need to

be estimated for each such edge. For the sake of simplicity,

we first restrict all the 3 resistors to have the same resistance

and both the capacitors to have the same capacitance. From

now on, we use subscripts d and v to refer to conduction and

convection, respectively. Thus, we only need to estimate only

two parameters, Rv and Cv, for each the convection edge.

The time constant τ of a 3R2C circuit with all three

resistances equal to R and both the capacitances equal to C

is proportional to RC, so that τ = αRC. So, if such a circuit

is used to model heat transfer (conduction or convection),

we have

τd = αRdCd, τv = αRvCv (1)

where τ(·) refers to time constant, α is the constant of

proportionality, and the subscripts d and v refer to con-

duction and convection, respectively. The time constant of

a model of convective heat transfer between two zones

should increase with the physical distance between them.

The larger the distance, the longer it will take to transfer

heat, since convection requires physical mass exchange. We

incorporate this effect by making the resistance of the RC-

circuit model for convection proportional to d, the physical

distance between the two zones along the most likely path

of air exchange (which is usually a hallway): Rv = R̄vd,

where the proportionality constant R̄v can be thought of as

resistance per unit distance. We assume that the capacitance

Cv is not affected by the distance between the zones. Now,

(1) can be rewritten as

τv = αdR̄vCv (2)

To fully specify a RC network model of a convective edge in

the network model, the parameters α , R̄v, and Cv are needed;

d is known from building geometry. The value of α can
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be computed from (1) since the parameters Rd and Cd are

known for a surface of specific material and geometry, and

τd can be determined as the absolute value of the inverse of

the least stable eigenvalue of the LTI system corresponding

to a 3R2C network model for that surface. The remaining

parameters R̄v, Cv are chosen by searching for values that

minimize the prediction cost J:

J :=
KT

∑
k=1

∑
i∈Z

(T̂i(k)−Ti(k))
2 (3)

where Ti(k) and T̂i(k) are the measured and predicted tem-

peratures respectively of ith room at time index k, KT is the

total number of time steps over which measurements and

model predictions are obtained, and Z ⊂ V is a subset of the

zones in the building. Temperature predictions are obtained

from simulating the model described in [14].

Since nothing is known about the structure of this opti-

mization problem, in this study we obtain the parameters

R̄v, Cv by an exhaustive search. Knowledge of approximate

values of the time constant of convective heat exchange

is used to constrain the search space. The change in a

zone’s temperature due to convection is much faster than

that due to conduction. In a CFD-based study of convection

in multi-zone buildings reported in [7], the time constant

due to convection across two locations 2.5 m apart is seen

to be between 10 seconds and 50 seconds depending on the

locations. We call 1
d

τv as the time constant per unit distance,

and from the results reported in [7], we impose the condition

that tmin ≤ 1
d

τv ≤ tmax, where tmin and tmax are the lower

and upper bounds on the time constant per unit distance, for

convection. It follows from (2) that 1
α

tmin ≤ R̄vCv ≤
1
α

tmax.

For the choice of values tmin = 4, tmax = 20 (which follow

from the results in [7]), we obtain 0.4≤ R̄vCv ≤ 2. The value

of α used in this calculation is 9.86, which is computed as

described earlier. Hence, in searching for the values of R̄v,Cv

that minimize the prediction cost J, the search was limited

to the range R̄vCv ∈ [0.4 2].

IV. RESULTS

The method described above is applied to identify the

thermal network mode of a section of a building (Pugh Hall)

located at the University of Florida campus, Gainesville, FL.

The section of the building chosen is a part of the second

floor of Pugh Hall; its layout is shown in Figure 2. The node

variables are the temperatures of the 7 zones that are denoted

as 200, 210, 230, 245, 248, 249 and “Hallway” in Figure 2.

The reason for choosing this section of the building as a test-

case is the availability of the time-series data for the bound-

ary nodes, i.e., of the zones 200, 210, 230, 248 and corridor

as well as outside. Measurements of zone temperatures,

supply air temperatures and flow rates are obtained from

the Siemens Insight c© BAS (Building Automation System),

at 5 minutes intervals for 26 days starting from January 21,

2011. The outdoor temperature data is obtained from [18] at

60 minute intervals for the same period.
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Corridor

Fig. 2. A detailed schematic of the 7-zone section on the 2nd floor of Pugh
Hall, 40000 sq. ft. building located in the University of Florida campus.
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Fig. 3. Results of network structure identification method applied to find
the convection edges for a block shown in Figure 2. The conduction and
convection edges are shown as solid and dashed lines, respectively.

A. Model simulation details

To simulate the network model in MATLAB c©, after it

is identified, inputs and initial conditions are required. Each

zone has sensors that measure supply air temperature, supply

air flow rate, and temperature of the zone, but there are

no sensors to measure humidity ratios. Thus, among the

inputs to the model, the supply air temperature and flow rate,

and temperatures of the boundary nodes are known, while

the supply air humidity ratios are not. Hence we simulate

the model assuming that humidity ratio of conditioned air

supplied into each zone is the same and is constant over

time. This is a reasonable assumption since air handling

units deliver air at an approximately constant humidity ratio,

and reheating at the terminal boxes does not affect humidity.

The constant value of humidity ratio was chosen after on-

site measurements as 0.0074. The initial zone temperatures

in the model are chosen to be the same as the measured

initial temperatures. The initial values of the internal states of

each conduction edge are chosen as the average of the initial

temperatures of the zones connecting them [14]. The section

of the building used in the current study has only three rooms

that share walls with the outside, and furthermore these walls

are north facing, with no direct sunlight incident on them.

Therefore, we assume that the solar load in all the zones are

0 at all times. Furthermore, all the rooms in the section are

offices with a designed average occupancy of 2. Simulations

of the identified model (which will be described next)
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indicated that the difference in the temperature prediction

with two occupants per room and no occupants is less than

0.3◦F . Hence, loads from occupants are set to 0 in all the

simulations. Since there is no sensor to measure the hallway

temperature, we assume that the initial hallway temperature

as the average of the initial temperatures of the zones next to

the hallway. It is assumed that the thermal resistance of the

floor and the roof of 2nd floor of the building is much larger

than that of internal walls. The latter means that temperatures

of 1st and 3rd floors of the building have little impact on the

temperatures of the zones in the 2nd floor.

B. Identification and verification

The available data for the building section shown in

Figure 2 is separated into a calibration data set (data for

January 21, 2011 through February 9, 2011) and a validation

data set (rest of the data). Network structure is identified

using the whole calibration data set and parameters are

estimated using only the first 12 hours of the calibration

data set. The resulting identified graph is shown in Figure 3,

where the nodes lying outside the box shown in dashed

line correspond to boundary nodes. In Figure 3, a solid line

represents the conduction edge and a dashed line represents

a convection edge. To estimate the values of R̄v and Cv for

the convection edges, the value of the prediction cost J is

computed for various values of these parameters, by varying

R̄v between 10(−6) and 0.01 and varying τ0 := R̄vCv between

its allowable values (see Section III-B). The length of the

time interval used in computing J is kT = 144, which cor-

responds to first 12 hours of the calibration data set. Model

predictions for a given set of parameter values are obtained

from MATLAB c©simulations of the model, as described in

Section IV-A. Figure 4 shows the variation of cost functional

J defined in (3) as a function of the resistance R̄v. The cost

functional achieves a minimum at R̄v = 3.36× 10−4, and

the corresponding capacitance is Cv = 1.19×103, which are

therefore chosen as the estimated parameters. If we introduce

the convection edges manually with with R and C values

estimated above, the same convection edges are recovered

back when the same method is applied.
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Fig. 4. Value of objective function J defined in (3) as a function of the
convection edge resistance R, for a few values of the time constant.

C. Validation

Once the network model (structure and parameters) are

determined as described above, the model is simulated in

MATLAB c©for a given set of inputs and the predicted outputs

are compared with measured values. The inputs used for

these simulations are obtained from measured data during

midnight of February 10, 2011 to midnight of February 12,

2011, which is part of the validation data set. Figures 5 and 6

show the measured temperatures, the temperatures predicted

by the identified network model, and those by a conduction-

only model, of room 243 and 244. All time traces shown are

for the 48 hour time period mentioned above. It is clear that

the temperature predictions by the identified network model

that includes convection effects are substantially closer to the

measured values than those by the conduction-only model.

The maximum error between measured values and prediction

of the identified network model is about 30F , while the

maximum error is about 60F if only conduction is taken

into account. The predictions by the identified model for the

other rooms (not shown due to space limitations) are also

closer to the measured values than the predictions by the

conduction-only model.
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Fig. 5. Actual and predicted temperatures of room 243 with the identified
model and with conduction-only model.
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Fig. 6. Actual and predicted temperatures of room 244 with the identified
model and with conduction-only model.
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Fig. 7. Correlation coefficients between pairs for rooms (240, i), where
i = 241, 242, 243, 247 over a 24 hour period (01/20/2011-02/15/2011).
The estimates are computed from data collected over 26 days. This plot
shows that marginal dependencies between zone temperatures do not help
in unearthing thermal interactions among zones.

V. DISCUSSION AND FUTURE WORK

We proposed a method to identify the interconnection

structure of the thermal dynamic model of a multi-zone

building. The proposed method relies on estimating condi-

tional independence between pairs of zone temperatures to

estimate the convection edges. An additional contribution is a

RC network based reduced order model of convection. The R

and C values of the convection edges are estimated through

an exhaustive search to minimize a prediction error cost.

The identified model predicts the zone temperatures more

accurately compared to a conduction-only model.

It should be noted that it is important to examine con-

ditional dependencies rather than marginal dependencies.

Pairwise correlation coefficients among the node tempera-

tures reveal little about cause and effect. Figure 7 shows

the estimated correlation coefficients among pairs of zones

in the building in Figure 2, which indicates that all the

node variables are highly correlated during the nighttime and

have little correlation during daytime. This is an artifact of

the way the building’s HVAC system is operated. The zone

temperatures are allowed to “float” at night when the building

is unoccupied. As a result, all the room temperatures tend

to either increase or decrease together depending the outside

temperature, which makes them all highly correlated. During

the daytime, on the other hand, all the room temperatures

are maintained close to 72oF, with small random fluctuations

that arise due to occupants and other loads. As a result the

correlations among the zone temperatures during daytime are

close to 0. Hence, little information on the interconnection

structure of the thermal network can be obtained from

examining correlation coefficients.

Numerous avenues for improvement exist, we list a few.

In general, it is quite possible that two rooms have both

conductive and convective interaction between them, but the

proposed method does not produce parallel edges. A strength

of the method is that it does not require any forced-response

experiments to reveal the interconnections. However, since

the zones of a building are usually maintained at a constant

temperature, there is little “persistency of excitation” in the

measured signals. There might be a limit on how much of the

interconnection structure can be unearthed with such closed-

loop data. This needs to be explored in the future.
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