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Abstract— In this paper we consider the problem of distur-
bance response for a simple system of coupled harmonic oscil-
lators. We suppose that the oscillators are connected in a string
in which each oscillator tries to track its predecessor. Motivated
by terminology from the problem of vehicle platooning, we say
that the system is string unstable if the effect of a disturbance
to the lead oscillator is amplified as it propagates along the
string. By using a new Bode-like integral relation that must be
satisfied by the complementary sensitivity function, we provide
sufficient conditions for string instability.

I. INTRODUCTION

Many researchers have studied the problem of synchro-
nization in systems of coupled oscillators. As noted in
[1], [2], this problem may be viewed as a special case of
consensus control in multi-agent systems, in which each
oscillator communicates with a subset of its neighbors for
the purpose of achieving synchronization. Depending on the
communication topology, the oscillators may or may not
be able to do so. The ability to achieve synchronization
also depends on the presence of communication time delays
and changes in the communication topology. In the present
paper, we study the effect of a disturbance on a system of
coupled oscillators. Specifically, we wish to know whether
the effect of a disturbance to one oscillator will be amplified
or diminished as it propagates through the system.

Our approach to the problem of disturbance propagation
for a system of oscillators is inspired by the literature on
the problem of string instability that may arise in vehicle
platooning (e.g. [3]–[7]). Specifically, we consider a string
of oscillators, in which one is the leader, and with which the
remainder try to synchronize their oscillations by tracking
only their immediate predecessor in the string. It is known
that this predecessor following strategy may exhibit string
instability for vehicle platoons. More complex communica-
tion schemes, on the other hand, may allow the design of
control laws that are string stable.

For example, each vehicle may communicate with both its
immediate predecessor and successor. Early studies of string
instability were done in the context of specific control laws,
such as PID [3]. This made comparison between different
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communication schemes problematic, in that the observed
string instability may have been due to a poor choice of con-
troller gains rather than the communication scheme adopted.
The authors of [5], on the other hand, show that, under
appropriate hypotheses, certain communication topologies
will lead to string instability for any linear controller. To
show this, they applied the theory of fundamental design
limitations [8], which enables such general statements to be
made assuming only that the controller is stabilizing. In [5], it
is assumed that all the vehicles have the same model and use
the same control law, and it is shown that the predecessor
following control law will necessarily lead to problems of
string instability for constant spacing between vehicles. The
authors of [7] greatly extend the results in [5] by considering
heterogenous platoons, and more general spacing policies
and communication topologies.

Many papers on oscillator synchronization use the first or-
der, nonlinear Kuramoto model, or an appropriate extension
thereof [1], [2]. In order to apply the theory of fundamental
design limitations, we instead use the second order, linear
oscillator model described in [9]. This will enable us to use
the fact that such oscillators have poles on the imaginary axis,
and to generalize the results from the theory of fundamental
limitations that were used in [5]. We also use a very simple
communication topology, corresponding to the predecessor-
following strategy used in vehicle platooning studies. (We
shall consider more general topologies in subsequent work.)

The remainder of this paper is outlined as follows. In
Section II, we provide an explicit problem statement and re-
view the integral constraint on the complementary sensitivity
function that was used in [5]. This integral constraint is not
applicable to our problem, and thus in Section III we propose
a more general integral relation that may be applied to
oscillator systems. We use this result to derive two sufficient
conditions for string instability. In Section IV we derive a
third sufficient condition for string instability. Specifically,
we assume that a controller has been designed that satisfies
certain time and frequency domain design specifications, and
show that this assumption implies a lower bound on the
peak in the complementary sensitivity function; if this lower
bound exceeds one, then string instability is present. The
results of the paper are illustrated with numerical examples
in Section V. Conclusions and future research directions are
given in Section VI.

Notation: Denote by OLHP, CLHP, ORHP, and CRHP
respectively the open-left, closed-left, open-right and closed-
right halves of the complex plane. We use Re and Im to
represent the real and imaginary parts of a complex number,
respectively. We use log to denote the natural logarithm and
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arg to denote the principal branch of the argument of a
complex number. The relative degree r of a rational transfer
function is the degree of its denominator minus the degree
of its numerator polynomial.

II. PROBLEM FORMULATION

Consider the series connection, or string, of n single-loop
feedback systems depicted in Figure 1. We assume that these
systems are all identical, with each plant described by a
proper rational transfer function of the form

P (s) = P0(s)
1

s2 + α2
, (1)

where P0(s) has no zeros at s = ±jα, and with rational
and stabilizing controller C(s). Each plant thus contains the
dynamics of a harmonic oscillator with natural frequency α
radians/second.

Suppose that we desire each oscillator in the string to
track the position of its immediate predecessor. Following
the terminology used in vehicle platooning, we refer to
the system in Figure 1 as a predecessor-following control
architecture. Denote the commanded position to the lead
oscillator by r1(t), and the positions and tracking errors
of the ith oscillator as yi(t) and ei(t), respectively. Let
dout(t) denote a disturbance entering at the output of the
first oscillator. Each error signal can thus be expressed as

ei(t) =

{
r1(t)− y1(t), i = 1,

yi−1(t)− yi(t), i ≥ 2.
(2)

Define the open loop transfer function L(s) = P (s)C(s),
and the sensitivity and complementary sensitivity functions
by

S(s) =
1

1 + L(s)
, T (s) =

L(s)

1 + L(s)
, (3)

respectively. Then the Laplace transforms of the tracking
error signals satisfy

E1(s) = S(s)R1(s)− S(s)Dout(s), (4)
Ek(s) = T (s)Ek−1(s), k ≥ 2, (5)

and thus
Ek(s) = T k−1(s)E1(s). (6)

The presence of the plant poles at ±jα implies that
T (±jα) = 1 and S(±jα) = 0. Hence the steady state error
in response to an input of the form r1(t) = A sin(αt + φ)
will be equal to zero for each oscillator in the string. In
this way the motion of all the oscillators in the string will
synchronize to that of the lead oscillator. We see from (4) that
the command r1(t) and output disturbance dout(t) affect the
system symmetrically, and thus conclusions drawn about the
command response also apply to the disturbance response.

Suppose there exists a frequency for which |T (jω)| > 1.
Then (6) implies that any disturbance to the lead oscillator at
this frequency will be amplified as it propagates to successive
oscillators. As the number of oscillators increases, the error
will be amplified without bound, and the string in Figure 1

will be string unstable. In studies of string instability in
vehicle platooning, one may derive sufficient conditions for
string instability using the following integral relation, dual
to the Bode sensitivity integral, that must be satisfied by the
complementary sensitivity function [8, Theorem 3.1.5].

Theorem 1: (a) Consider a feedback system with plant
P (s) and stabilizing controller C(s). Assume that L(s) is
rational and proper, with Nz zeros in the ORHP, {zi : i =
1, . . . , Nz}. Assume further that L(s) may be factored as
L(s) = L0(s)/sk, where k ≥ 1 and L0(s) has neither poles
nor zeros at s = 0. Then∫ ∞

0

log |T (jω)|dω
ω2

=
π

2
T ′(0) + π

Nz∑
i=1

1

zi
, (7)

where T ′(0) = lims→0 dT (s)/ds.
(b) Suppose, in addition, that k ≥ 2. Then T ′(0) = 0, and∫ ∞

0

log |T (jω)|dω
ω2

= π

Nz∑
i=1

1

zi
. (8)

Since complex zeros must occur in conjugate pairs, it follows
that the right hand side of (8) is real and nonnegative. It
follows immediately from (8) that if L(s) has a double
integrator, then necessarily there must exist a frequency for
which |T (jω)| > 1. This fact was used in [5] to show that
a platoon of identical vehicles in the predecessor-following
control architecture must be string unstable. Recently, the
results of [5] were generalized in [7] to provide sufficient
conditions for string instability with heterogenous platoons
and more general control architectures. The assumption of a
double integrator is reasonable for study of vehicle platoons.
If only a single integrator is present, then an integral con-
straint still holds, but need not imply that |T (jω)| > 1 due to
the term T ′(0), which may be negative. As discussed in [8],
this term is inversely proportional to the velocity constant of
a Type 1 feedback system.

III. A GENERALIZED COMPLEMENTARY SENSITIVITY
INTEGRAL

The results of Theorem 1 are not applicable to our study
of oscillators. Instead, we propose a new integral relation
that the complementary sensitivity function must satisfy
whenever L(s) contains a pair of poles on the imaginary
axis.

Theorem 2: (a) Consider a feedback system with plant
P (s) given by (1), and stabilizing controller C(s). Assume
that L(s) is rational and proper, with Nz ORHP zeros
{zi : i = 1, . . . , Nz}. Assume further that L(s) may be
factored as

L(s) = L0(s)
1

(s2 + α2)k
, (9)

where k ≥ 1, and L0(s) has no zeros at s = ±jα. Then∫ ∞
0

log |T (jω)|W (ω, α)dω=
π

2
Re (Kα)+π

Nz∑
i=1

(
zi

z2i + α2

)
,

(10)
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Fig. 1. Block diagram depicting a string of stabilized oscillators with length n.

where

Kα , lim
s→jα

dT (s)

ds
, (11)

and the weighting function W (ω, α) is defined as

W (ω, α) =
ω2 + α2

(ω2 − α2)
2 . (12)

(b) Suppose, in addition, that k ≥ 2. Then Kα = 0, and∫ ∞
0

log |T (jω)|W (ω, α)dω = π

Nz∑
i=1

(
zi

z2i + α2

)
. (13)

Proof: See the longer version of this paper [10].

Note that the right hand side of (13) is nonnegative, and that
W (ω, α) > 0 for all frequencies except ω = α. It follows
that if L(s) has at least two pairs of poles at ±jα, then there
must exist a frequency for which |T (jω)| > 1, and thus that
the string of oscillators in Figure 1 is string unstable.

Suppose that L(s) contains only a single pair of poles at
±jα, namely, those due to the plant (1). Then Kα defined
in (11) may be negative and, as a consequence, |T (jω)| may
be less than one at all frequencies and string instability may
not be present. (On the other hand, unless the controller also
has poles at ±jα, the system will not be able to reject the
effect of a disturbance din(t) = sinαt entering at the plant
input [11].)

Recall that the term corresponding to Kα in Theorem 1 is
inversely proportional to the velocity constant that describes
the steady state error of a Type 1 feedback system in
response to a ramp input. The following result provides
a corresponding interpretation for Kα, and shows that it
describes the steady state error in response to an input of
the form r1(t) = t sinαt.

Theorem 3 (Interpretation of Kα): (a) Consider the se-
ries connection of feedback systems in Figure 1, with plant
(1) and stabilizing compensator C(s). Assume that r1(t) =
t sinαt, and define the steady state error for the first system
as the response that persists after the transient response
decays, denoted by ess1 (t). Then

ess1 (t) = |Kα| sin (αt+ arg (−Kα)) . (14)

(b) Suppose in addition that arg (−Kα) = 0. Then in
steady state y1(t) is in phase with r1(t), and the steady state
response yss1 (t) is given by

yss1 (t) = (t− |Kα|) sinαt. (15)

Proof: See the longer version of this paper [10].

Our next result uses Theorem 3, together with the fact that
all the subsystems in Figure 1 are identical, to show that the
steady state tracking errors for each subsystem are identical.

Corollary 1: (a) Let essk (t) denote the steady state track-
ing error of the k’th subsystem in Figure 1 in response to
the input r1(t) = t sinαt. Then

essk (t) = ess1 (t), k = 1, . . . , n. (16)

(b) Suppose in addition that arg(−Kα) = 0. Then in
steady state yk(t) is in phase with r1(t):

yssk (t) = (t− k|Kα|) sinαt, k = 1, . . . , n. (17)

Proof: See the longer version of this paper [10].

Motivated by (17), we say that if arg(−Kα) = 0, then the
steady state phase error for each oscillator is equal to zero.
We now show that if the steady state phase error is nonzero,
then the string of oscillators will be string unstable.

Theorem 4: Suppose that arg(−Kα) 6= 0. Then there
exists a frequency ω such that |T (jω)| > 1.

Proof: First consider the case arg(−Kα) = π. Then
Kα is real and positive and the result follows immediately
from (10). Suppose next that arg(−Kα) 6= 0, π. Then Kα

has a nonzero imaginary component. Using the fact that
T (jα) = 1, we have by definition (11) of Kα that

Kα = lim
s→jα

d log |T (s)|
ds

+ j lim
s→jα

d arg T (s)

ds
.

Letting s = σ + jω, it follows from the Cauchy-Riemann
equations [12, Section 21], [13, p. 41] that

Kα = lim
ω→α

∂ arg T (jω)

∂ω
− j lim

ω→α

∂ log |T (jω)|
∂ω

.

Together, the facts that |T (jα)| = 1 and that
limω→α ∂ log |T (jω)|/∂ω 6= 0 imply that there exists a
frequency ω near α such that |T (jω)| > 1.

We have now provided two sufficient conditions for string in-
stability. One is that the open loop transfer function contains
at least two pairs of complex poles at ±jα. The other is that
the phase error in response to an input t sinαt is nonzero:
arg(−Kα) 6= 0. The following example illustrates that string
stability is possible when neither of these conditions is
satisfied.

Example 1: Suppose that P (s) = 1/(s2+α2) and C(s) =
ks, k > 0. Then T (s) has stable poles, and Kα = −2/k,
so that arg(−Kα) = 0. It is easy to verify that |T (jω)| ≤
1, ∀ω.
In the next section we suppose that the system must satisfy
certain performance specifications, and show that these may
provide another sufficient condition for string instability.
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IV. A LOWER BOUND ON THE PEAK IN
COMPLEMENTARY SENSITIVITY

Our goal in the present section is to derive a lower bound
on supω |T (jω)| that holds whenever the system is assumed
to satisfy appropriate performance specifications. If this
lower bound exceeds unity, then we may conclude that the
system in Figure 1 is string unstable. We will be interested
in the case for which neither sufficient condition for string
instability derived in Section III is satisfied; however, our
methods will also yield a lower bound for the case in which
L(s) has at least two pairs of poles at ±jα.

We first assume that a specification on the steady state
error (SSE) in response to an input t sinαt must be satisfied.

Assumption 1 (Magnitude Bound on SSE): Assume that
the steady state error (14) is uniformly bounded by q > 0:

|ess1 (t)| ≤ q, ∀t ≥ 0. (18)

Recall from Corollary 1 that the steady state error for each
of the oscillators is identical. The transient error, defined by

etri (t) , ei(t)− essi (t), (19)

will in general be different for different oscillators. We
assume an IATE performance specification on the sum of
the integrals of the absolute values of the transient errors.

Assumption 2 (IATE Specification): Let etri (t) in (19) de-
note the transient error response of the ith oscillator in
response to the command r1(t) = t sin(αt). We assume that
the sum of the integrals of the absolute values of the transient
errors must satisfy the specification

n∑
i=1

∫ ∞
0

∣∣etri (t)
∣∣ dt ≤ u(n), (20)

for some positive function u(n).
We now show that Assumptions 1 and 2, combined with

one additional hypothesis, imply an upper bound on the gain
of T (jω).

Lemma 1: Suppose that Assumptions 1 and 2 are satisfied.
(a) Assume in addition that C(s)P (s) possesses one pair

of poles at ±jα, and that the phase error is zero:
arg(−Kα) = 0. Then

|T (jω)| ≤
(

1 + η(u(n), q, α, ω)
(
ω2 − α2

)2) 1
2n

,

(21)
where

η(u(n), q, α, ω) =
u(n)

αω
+
n2q2

4ω2

+
∣∣ω2 − α2

∣∣ nu(n)q

2αω2
+ (ω2 − α2)2

u(n)2

2α2ω2
. (22)

(b) Assume instead that C(s)P (s) possesses at least two
pairs of poles at ±jα. Then

|T (jω)| ≤
(

1 +

(
ω2 − α2

)2
2αω

u(n)

) 1
n

. (23)

Proof: See the longer version of this paper [10].

In either case, T (jα) = 1 due to the presence of the
oscillator poles. The bounds (21)-(23) constrain the rate at
which |T (jω)| converges to one as ω approaches α, and
are a consequence of the requirement (20) that the transient
response converges rapidly to zero.

The following assumption implies that the system in
Figure 1 has the ability to track low frequency commands
with a specified error. For example, we may wish to apply a
command that “steers” the entire string of coupled oscillators
to a new position while oscillating.

Assumption 3 (Steering Performance): We make the fol-
lowing assumption for the steering performance. Let 0 <
ωL < α. For ω ∈ (0, ωL), the following inequality holds

|T (jω)n − 1| < ε, (24)

where 0 ≤ ε < 1.
Finally, we assume that the system satisfies a bandwidth

limitation.
Assumption 4 (Bandwidth Limitation): The transfer func-

tion T (s) obeys the high frequency roll-off

|T (jω)| ≤
(ωH
ω

)r
, for all ω > ωH (25)

for some ωH > α and relative degree r ≥ 1.
The following theorem shows that Assumptions 1-4, to-

gether with one additional hypothesis, imply the existence
of a lower bound on the peak magnitude response of the
complementary sensitivity function (3).

Theorem 5: Suppose that Assumptions 1-4 are satisfied.

(a) Assume in addition that C(s)P (s) possesses one pair
of poles at ±jα, and that the phase error is zero:
arg(−Kα) = 0. Then for any ωM ∈ (α, ωH), we have
the following inequality:

max
ω∈[ωM ,ωH ]

log |T (jω)|

≥
ΩH − Ωα − ΩL − π

2 q + π
∑Nz

i=1

(
zi

z2i +α
2

)
∫ ωH

ωM
W (ω, α)dω

, (26)

where ΩL, Ωα, and ΩH are bounds on the integral of
log |T (jω)| over different frequency ranges:

ΩL ,
1

n

∫ ωL

0

log(1 + ε)W (ω, α)dω, (27)

Ωα ,
1

2n

∫ ωM

ωL

log
(

1 + η(u(n), q, α, ω)
(
ω2 − α2

)2)
×W (ω, α)dω, (28)

ΩH , r

∫ ∞
ωH

log
ω

ωH
W (ω, α)dω. (29)

(b) Assume instead that C(s)P (s) possesses at least two
pairs of poles at ±jα. Then T (s) must satisfy the lower
bound (26), where ΩH and ΩL are as defined in (27)
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and (29), and

Ωα ,
1

n

∫ ωM

ωL

log

(
1 +

(
ω2 − α2

)2
2αω

u(n)

)
W (ω, α)dω.

(30)

Proof: We establish this result by splitting the integra-
tion interval in (10). In particular,∫ ωH

ωM

log |T (jω)|W (ω, α)dω =

−
∫ ωL

0

log |T (jω)|W (ω, α)dω

−
∫ ωM

ωL

log |T (jω)|W (ω, α)dω

−
∫ ∞
ωH

log |T (jω)|W (ω, α)dω

+
π

2
Re (Kα) + π

Nz∑
i=1

(
zi

z2i + α2

)
. (31)

It follows from Assumption 3 and the triangle inequality that

−
∫ ωL

0

log |T (jω)|W (ω, α)dω ≥ −ΩL. (32)

Similarly, Lemma 1 implies that

−
∫ ωM

ωL

log |T (jω)|W (ω, α)dω ≥ −Ωα, (33)

where Ωα is defined either by (28) or (30). Together, As-
sumption 1 and (14) imply that Re (Kα) ≥ −q. Also note∫ ωH

ωM

log |T (jω)|W (ω, α)dω

≤ max
ω∈[ωM ,ωH ]

{log |T (jω)|}
∫ ωH

ωM

W (ω, α)dω.

The result follows by combining the preceding inequalities
and applying the high frequency bound (25).

It follows from Theorem 5 that time and frequency domain
specifications, such as those in Assumptions 1-4, impose a
lower bound on the peak value of |T (jω)|. For case (a),
should this lower bound prove to be greater than unity, then
it provides another sufficient condition for string instability.
For case (b), already known to be string unstable, the lower
bound provides an estimate of the severity of the instability.

In fact, the lower bound (26) is conservative for the
purpose of predicting string instability in case (a). To see
this, note that the first two terms on the right hand side of
(31) will be nonnegative if |T (jω)| ≤ 1 in the frequency
range (0, ωM ). (If |T (jω)| > 1 in this frequency range,
then the system is known to be string unstable without
considering behavior at other frequencies.) Hence we have
the following corollary to the proof of Theorem 5. For
purposes of simplicity, we also assume that L(s) has no
ORHP zeros.

Corollary 2: In addition to the hypotheses of Theorem 5,
assume that |T (jω)| ≤ 1, ∀ω ∈ (0, ωM ), and that Nz = 0.
Then, for any ωM ∈ (α, ωH), we have that

max
ω∈[ωM ,ωH ]

log |T (jω)| ≥ ΩH − π
2 q∫ ωH

ωM
W (ω, α)dω

. (34)

It follows immediately from (34) that a necessary condition
for string stability is that

q >
2

π
ΩH , (35)

where ΩH is defined by (29). If (35) is not satisfied, then the
limit as ωM → ωH of the right hand side of (34) is equal
to infinity, and thus the specifications are infeasible. Hence,
the desirability of string stability imposes a tradeoff between
bandwidth limitations of the form imposed in Assumption 4,
and steady state tracking error requirements as imposed in
Assumption 1.

V. NUMERICAL EXAMPLE

Consider a string of n identical oscillators with frequency
α = 1 and plant transfer function P (s) = (s + 0.5)/(s2 +
1). A controller that achieves zero steady state phase error,
arg(−Kα) = 0, is given by

C(s) =
40(s+ 10)(s+ 2)

s2 + 0.05s+ 1.5
. (36)

A plot of the lower bound (26) as a function of ωH ,
the frequency at which the bandwidth limitation becomes
effective, is given in Figure 2 for various values of the
parameter q that governs the size of the tracking error via
(18). As expected, smaller values of ωH increase the size of
the lower bound, and for a given value of ωH , the bound
increases as the constraint on the tracking error decreases.
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q = 0.010
q = 0.015
q = 0.020
q = 0.025

Fig. 2. The lower bound (26) vs. ωH , for parameters n = 10, r = 1,
ε = 0.1, u(10) = 1, and ωL = 0.6.

The corresponding complementary sensitivity function is

T (s) =
40s3 + 500s2 + 1040s+ 400

s4 + 40.05s3 + 502.5s2 + 1040s+ 401.5
. (37)
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As it happens, the DC gain of |T (jω)| is nearly unity,
and it is straightforward to verify that T (j1) = 1 and
Kα = −0.001. The Bode magnitude plot for (37), depicted
in Figure 3, shows a peak value of 1.70 dB, or 1.22 in
absolute terms. As a consequence, the string of oscillators
is string unstable. The tracking errors (2) in response to

10
−1

10
0

10
1

10
2

10
3

−20

−15

−10

−5

0

5

ω (rad/s)

|T
(j

ω
)|(

d
B
)

ωH = 40

1.70dB

Fig. 3. Magnitude response of T (s).

an input r1(t) = t sin t are plotted in Figure 4, and show
transient peaks that, as expected, increase in magnitude along
the string. In all cases, the steady state value of the tracking
error is given by essk (t) = 0.001 sin t, as predicted from
Theorem 3 and Corollary 1.
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e10(t)

Fig. 4. Tracking errors ei(t) defined in (2).

To illustrate the bound (26), we find that the various
parameters used to construct the bound have the values
depicted in Table I. With these parameter values, we predict
that |T (jω)| must have a peak greater than 1.0146 (0.126
dB), which is less than the observed peak value of 1.70 dB.
The difference is due in part to conservativeness in the lower
bound (26), and in part due to controller design. A different
controller might yield a smaller peak, but no smaller than the
guaranteed lower bound provided that the rest of the design
satisfied the parameter values from Table I.

TABLE I
PARAMETERS TO CALCULATE THE LOWER BOUND

n ε u(n) q r ωH ωL ωM

10 0.0367 0.072 0.001 1 40 0.536 1.95

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper we have introduced the problem of string
instability in a simple system of identical coupled harmonic
oscillators. By using a new integral relation that must be
satisfied by the complementary sensitivity function, we pro-
vided three sufficient conditions for string instability. In
future work, we shall consider more complex control and
communication strategies, and suppose that each oscillator
may communicate with more than one other oscillator in
the string. We will also consider heterogeneous strings, in
which the controllers for different oscillators may be tuned
differently. In doing so, we plan to develop results that par-
allel those for vehicle platoons in the recent comprehensive
study [7]. We also plan to study the effects of time delays
in communication, which will be important in practice.
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