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Abstract— Current and voltage mode control approaches in
feed-forward force control of variable reluctance actuators
are analyzed and compared. Two major error generators, the
unknown air gap variation and hysteresis, are investigated
together with the quantification of their influence on the final
force tracking error, and it is shown that voltage control has
fundamental advantages over current control. Furthermore,
linearization laws with hysteresis compensation based on the
parametric hysteresis operator are proposed and compared on a
high-fidelity actuator model which is derived from the behavior
of magnetic materials, the actuator structure, and first principle
physical models.

I. INTRODUCTION

Due to constant demand for faster production in industrial
mechatronical systems, e.g. semi-conductor industry, higher
accelerations and thus higher forces and less mass is required
from the force actuators. The actuator concept based on
permanent magnets and lorentz forces acting on a conducting
coil, i.e. a voice coil actuator, has reached its peak with
respect to performance criteria like maximum force and
power dissipation per unit volume [1], which means that the
further increase of the required force output comes at the
cost of increased mass and power dissipation, which requires
additional cooling and additional mass. For that reason, other
actuator architectures have to be explored. An interesting
concept in electromagnetism are so-called magnetic circuits
in which closed loops of magnetic field lines are analyzed
as circuits of magnetic flux flowing through ferromagnetic
materials. When such circuits include moving parts, a reluc-
tance force source controllable by the excitation coil current
is obtained [2]. The reluctance force is usually proportional
with the square of the excitation current. When compared
to the linear current to force relationship of the voice
coil actuators, it brings obvious advantages in the maximal
obtainable force to current ratios. Also, most reluctance
force based topologies eliminate the need for permanent
magnets, which has economical advantages, e.g. price, and
eliminates the effects of demagnetization. On the other
hand, the purely attractive nature of the reluctance force,
input to output non-linearity, high negative position stiffness
and parasitic magnetic effects like hysteresis, eddy currents,
leakage and fringing put limitations on the controllability
and the reproducibility of such actuators [3]. Regardless
of that, the variable reluctance concept has been, among
other, successfully applied in rotary machines [4] and active
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magnetic bearings [3]. There are many available control
solutions which deal with controllability issues [7], input
output non-linearity [5],[6],[15], [17], losses minimization
[8] and the lack of sensors [9].

In high-precision positioning applications, as discussed in
[10], feed-forward control plays an important role since it
doesn’t share the low-gain margin problem of the feedback
approach and can therefore give rise to substantial improve-
ments in the positioning precision at high frequencies, even
in presence of model uncertainties [11]. This paper deals
with modeling and feed-forward control, i.e. linearization
of variable reluctance force actuators for a new potential
application area in high-precision and high-bandwidth mo-
tion control. The main focus is put on the negative position
stiffness, i.e. high sensitivity of the actuator model to the
unknown air gap variation and hysteresis in the force, which
are usually neglected [5], [15], [17] because of their small
amplitude. However, they cause performance degradation in
nanometer positioning applications [13]. The effects of these
disturbances on the force error are quantified for current-
mode and voltage-mode feed-forward control of reluctance
actuators, and it is shown that voltage-mode control has fun-
damental advantages. A parametric hysteresis inverse [20],
which was used to invert hysteresis in current-mode operated
reluctance force actuators [21], is used for the analysis
and synthesis of the voltage-mode hysteresis compensation
law. Simulation results are demonstrated on a high-fidelity
actuator model which is derived from fundamental physical
laws and magnetization laws of materials.

II. ACTUATOR MODEL WITH HYSTERESIS

When modeling the behavior of variable reluctance actua-
tors, the magnetization of magnetic cores is usually approxi-
mated by a linear B = µ0µrH law and very often neglected
since it is dominated by the air gap [18]. The obtained
force model with neglected magnetization effects is still non-
linear and shows various effects problematic and challenging
for control design. In this paper, in order to obtain a more
realistic model of the reluctance force actuator with respect
to magnetization effects of the core, fundamental physical
laws together with general models and observations for
magnetization of ferromagnetic materials formulated in [12]
and [16] are used. Generally, the behavior of the reluctance
force actuator can be split into three domains: the electrical
domain which includes the electric excitation circuit, the
magnetic domain which includes the magnetic core and the
surrounding air where the magnetic field is formed, and the
mechanical domain which includes the detached core part,
i.e. the floater which is free to move under the influence of
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Fig. 1. Schematics of a C-core linear variable reluctance actuator with the
corresponding scalar physical laws that describe its behavior.

the attractive reluctance force. This separation is depicted
in Fig. 1 together with the corresponding fundamental laws
governing the actuator’s behavior. It has to be noted that all
quantities are assumed lumped.

The electric circuit is described by Kirchhoff’s voltage law,
and Faraday’s law of induction:

u = R · i+NA · dB
dt

, (1)

where u denotes the input voltage, R the excitation coil
resistance, N the total number of coil turns, A is the assumed
constant cross-sectional area of the actuator, and B is the
magnetic flux density which is assumed equally distributed.

The Ampere’s circuital law, and the field separation prin-
ciple from [12] yields:

N · i = 2g

µ0
·B + (Hh +Hclas +Hexc) · lm, (2)

where Hh denotes the hysteresis field, Hclas the classical
eddy-current field, Hexc the excess field, B the magnetic
flux density, g the air gap size, and lm the mean magnetic
circuit length. The attractive force on the floater follows from
the Maxwell’s stress tensor and is given by [18]:

F =
A

µ0
B2. (3)

An approximate lumped model for the eddy current field
and excess field in the core material is obtained from [12]:

Hclas =
σd2

12

dB

dt
, (4)

where σ is the material electrical conductivity and d is the
lamination thickness, and:

Hexc = δ
√
σGSV0

∣∣∣∣dBdt
∣∣∣∣ 1
2

, (5)

where δ = sgn
(
dB
dt

)
, G = 0.1356 is a dimensionless

coefficient, S = d
√
A is the lamination cross-sectional area,

and V0 is an experimentally fitted parameter. The hysteresis
field Hh(B) can be calculated (approximated) by any inverse
ferromagnetic hysteresis model. In this paper, the inverse
model proposed in [14] together with the corresponding

values for Permalloy is used. From (1), (2), (4), and (5),
the following relation is obtained:(

lmσd2

12
+

NA2

R

)
︸ ︷︷ ︸

a

dB

dt
+ δ

√
σGSV0︸ ︷︷ ︸
b

∣∣∣∣dBdt
∣∣∣∣ 1
2

=

=
N

R
u−Hh(B)− 2g

µ0
B︸ ︷︷ ︸

c(u,B)

, (6)

which can be solved for dB
dt to obtain:

dB

dt
=

sgn [c(u,B)]

4

√(
b

a

)2

+
4

a
|c(u,B)| − b

a

2

. (7)

The variable reluctance actuator model used for simulation
purposes is then given by (3), (6), (7), together with Hh(b)
calculated with the inverse hysteresis model of choice, in our
case [14].

Remark II.1 Compared to other approaches where a hys-
teresis model is fitted to the total bulk behavior of the system
[13],[19], in this article the final hysteretic behavior of the
reluctance force actuator is constructed from the material
properties and the actuator structure. The benefit of this
approach is the possibility to extend a large available research
on magnetic field effects in the magnetic materials to the
specific case of the variable reluctance actuator without a
need to develop a new framework. Moreover, this model
gives more physical insight when compared to only input-
output modeling approaches.

Remark II.2 Although the proposed reluctance actuator
model was not yet verified on an experimental setup, it is
expected that the physical actuator will show similar effects,
since the model was derived from fundamental physical
laws and empirical models derived by distinctive authors.
Moreover, in the modeling process, the emphasis was put
on the reproducibility of the hysteresis in the force and
the general behavior with respect to air gap variations, so
other parasitic effects such as leakage flux and fringing were
neglected.

III. INVERSE MODELS WITH THE PARAMETRIC
HYSTERESIS OPERATOR

A. Parametric hysteresis operator

Control synthesis requires simple models of phenomena
that are still sufficiently accurate, directly implementable,
easily identifiable, and mathematically well defined. For the
purpose of hysteresis compensation in the variable reluctance
actuators, a parametric direct and inverse hysteresis oper-
ator pair is used in this paper. This operator is formally
defined and analyzed in [20], whereas the identification
procedure and hysteresis compensation results for current-
mode variable reluctance actuator are given in [21], where an
order of magnitude improved compensation compared to the
best single-valued compensation was experimentally verified.
This operator will be used in the analysis present in this
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paper, since it can be mathematically manipulated, is directly
implementable in a digital controller, and gives a very good
approximation of hysteretic effects for synthesis of control
laws for variable reluctance actuators.

Definition III.1 Let v(t), ud(t) ∈ C∞, k1, k2 ∈ R+. Then
the inverse parametric hysteresis operator :

v(t) = H−1(k1, k2) [ud(t)] (8)

is defined as:

ṽ(t) = ũ(t) +M ·
(
1− e−k2ũ(t)

)
(9)

where ũ(t) = |u(t) − u0|, ṽ(t) = |v(t) − v0|, M = (u0 −
v0) sgn u̇+ k1, and u0 = u(τ∗) and v0 = v(τ∗) where:

τ∗ =

{
sup

u̇(τ)=0,ü(τ )̸=0,τ≤t

τ for t > 0

0 for t = 0,

i.e. τ∗ is the last time instant at which u̇(t) changed sign.
Furthermore, the operator H−1 has memory since u0 and v0
are stored.

The operator basically defines an exponential convergence
with rate k2 from the point (u0, v0) towards the affine
asymptotes defined by k1. The left and the right inverse of
(8), i.e. the direct hysteresis operator, can be constructed
using the Lambert W function. For the definition of the
direct hysteresis operator and more properties of the inverse
operator, the reader is refereed to [20].

B. Inverse compensation

For feed-forward linearizing control, inverse models of
the reluctance force actuator have to be constructed. Rate-
dependent terms in (2) will be neglected since their influence
is negligible in thin core material laminations within the
operating bandwidth.

After neglecting the rate-dependent terms in (2) the fol-
lowing is obtained: N · i = 2g

µ0
·B+H(B) · lm, where H(·)

is the parametric hysteresis operator. Further we can write:

i =
2g

µ0N
·B +

lm
N

· B̃ +
lm
N

M
(
1− e−k2·B̃

)
≈ f(g,B) +

lmM

N

(
1− e−k∗

2 ·f(g,B)
)

≈ H−1 (k∗
1 , k

∗
2) [f(g,B)] (10)

where f(g,B) = 2g
µ0N

· B is a single-valued model of the
magnetic circuit which can be represented in other ways,
e.g. with polynomials [6] or 2D spline [21] to include
all other effects, like flux leakage, which were neglected
in our analysis. H−1 is the inverse parametric hysteresis
operator (8). The parameters k∗1 and k∗2 can be determined
by geometrical fitting of the input-output map of the operator
to the measurements and possible further optimization in
order to obtain a better fit [21]. The function f(g,B) can
be identified separately from H−1 [21].

The linearizing law (10), i.e. a practical implementation of
the described parametric hysteresis inverse, was experimen-
tally verified in [21], where it was shown that the error due

to hysteresis was reduced by order of magnitude for different
air gap sizes.

In the case of voltage control, the feed-forward compen-
sation law is obtained from (1) and (10):

uFF = R · iFF +NA · dBd

dt
. (11)

The voltage-mode linearizing law is load resistance de-
pendent, which means that the current information is still
necessary to estimate the resistance change in (11). Further-
more, the desired magnetic field densities Bd in (10), (11),
(12) and (13) are obtained from the desired force profile by
using the inverse of (3).

Remark III.2 Current and voltage mode linearizing laws
(10) and (11) without hysteresis compensation will be used
in the analysis and are given by:

i∗FF =
2g

µ0N
·Bd, (12)

u∗
FF = R · i∗FF +NA · dBd

dt
, (13)

IV. FEED-FORWARD CONTROL ERROR ANALYSIS

A. Air gap variation
As it will be shown, the force of the C-core reluctance

force actuator is highly air gap dependent, which results in
large errors of inverse models for feed-forward control in
case the air gap is not accurately known. The analysis and
quantification of this error will be carried out by assuming
no hysteresis in the actuator, i.e. the core magnetic field
components Hh, Hclas and Hexc in (2) will be neglected.

In case of the current-mode control, after applying the
linearizing law (12), we get: 2g

µ0
·B − 2g∗

µ0
Bd = 0.

If a mismatch between the real air gap g and the estimated
one g∗, denoted with ∆g = g − g∗ is assumed, we get:

∆B

∆g
= −Bd

g∗
, (14)

where ∆B = B − Bd is the final error in the obtained
magnetic flux density.

In case of voltage-mode control, after applying the lin-
earizing law (13), the following is obtained: 2Rg∗

µ0N
· Bd −

2Rg
µ0N

·B +NAdBd

dt −NAdB
dt = 0.

With ∆g = g − g∗ and ∆B = B − Bd, it becomes:
2Rg
µ0N

∆B +NAd∆B
dt = −2R∆g

µ0N
Bd.

Since, in this section, the effects of ∆g on ∆B are of
interest, Bd and g∗ are assumed constant, which yields an
linear differential equation. This equation, after applying the
Laplace transformation, becomes:

∆B(s)

∆g(s)
= −Bd

g∗
· 1

1 + s · T∆g
, (15)

where T∆g = µ0N
2A

2Rg .
When comparing (14) and (15) it can be seen that the

influence of the air gap variation on the final error in the
magnetic field is damped with time constant T∆g in case of
voltage-mode control. These results are formalized for the
force error in the following proposition:

1610



Proposition IV.1 In case the core magnetic field contribu-
tions in (2) are neglected, and the non-measured position
disturbance ∆g is given by ∆g = Ag · sin(ωgt), then the
bound on the output force disturbance in case of current-mode
linearization (12) is given by:

|∆F | . 3Fd

g∗2
A2

g +
2Fd

g∗
Ag. (16)

On the other hand, the bound on the output force disturbance
in case of voltage-mode linearization (13) is given by:

|∆F | . 3Fd

g∗2
S(ωg)

2A2
g +

2Fd

g∗
S(ωg)Ag, (17)

where T∆g = µ0N
2A

2Rg and S(ω) = 1√
1+ω2T 2

∆g

is an air gap

disturbance frequency dependent scaling.

Proof: From (3) we obtain: ∆F = 2
√

A
µ0
F · ∆B,

which together with (14) and by writing F = Fd − ∆F
gives: ∆F = −2

√
Fd

√
Fd −∆F · ∆g

g∗ . Solving it for ∆F
gives the following second-order approximation:

∆F = −2Fd

(
∆g

g∗

)2

− 2Fd

√(
∆g

g∗

)2

+ 1 · ∆g

g∗

≈ −2Fd

[
3

2

(
∆g

g∗

)2

+
∆g

g∗

]
= −3Fd

g∗2
∆g2 − 2Fd

g∗
∆g.

(18)

The expression (16) is then obtained using the bias and first
harmonic approximation (i.e. describing function) of (18).

In case of voltage-mode control, the expression (17) can
be written as ∆B(s)

∆gV (s) =
Bd

g∗ where ∆gV (s) = ∆g(s)· 1
1+sT∆g

.
We can therefore assume the new attenuated disturbance
∆gV = S(ωg)∆g, where S(ωg) = 1√

1+ω2
gT

2
∆g

and replace

∆g in (18) to obtain (17) after bias and first order harmonic
approximation.

Remark IV.2 In case of voltage-mode control, the air gap
disturbance is damped with the time constant T∆g when
compared to current-mode control, i.e. voltage-mode control
preserves the intrinsic damping of the actuator. Furthermore,
it is important to observe that S(ω) < 1, i.e. the position
disturbance will always be more damped in case of voltage-
mode control. Also, S(ωg → 0) → 1, meaning the steady-
state behavior of both schemes will be the same, i.e. the
difference is visible only during transients.

It can be concluded that the current source adds undesired
negative force position stiffness, since it counteracts any back
EMF induced by the air-gap variation. A voltage source, on
the other hand, permits current change due to back EMF and,
therefore, keeps the intrinsic damping mechanism in place.

B. Hysteresis
In this subsection the force error due to neglected hys-

teresis present in the system is analyzed together with
the comparison of voltage-mode and current-mode control.
Similar analysis applies when the hysteresis is partially
compensated. If rate dependent damping fields in (2) are
neglected, the current-mode feed-forward control law (12)

gives the following relation: 2g∗

µ0
· Bd = 2g

µ0
· B + Hh(B) ·

lm. The hysteresis term Hh(B) can be approximated with
the parametric inverse hysteresis operator (8): Hh(B) =

1
µ0µr

H−1 (µ0µrHc, k2) [B], where µ0µr is the slope of the
anhysteretic curve, i.e. the effective slope of the hysteresis
loop and Hc is the coercitive field, i.e. the effective width
of the hysteresis loop of the core material, and k2 is the
parameter defining the smoothness of the transitions inside
the major loop.

With current-mode linearizing control (12), g∗ = g and
∆B = B −Bd, the following is obtained:

2g

µ0
Bd =

2g

µ0
B +

lm
µ0µr

B̃ + lmHc

(
1− e−k2B̃

)
∆B ≈ µ0lmHc

2g

(
1− e−k2B̃

)
=

µ0lmHc

2g
· SH(B̃), (19)

where SH(B̃) =
(
1− e−k2B̃

)
< 1 is the magnetic field

amplitude dependent scaling of the hysteresis error.
For sinusoidal inputs Bd = Bdm sin(ωt) and after using

the identity max
(
B̃
)
= 2Bdm, which can be shown to hold

for periodic inputs from the definition III.1, the relation (19)
becomes:

|∆BI | . µ0Hc ·
lm
2g

· SH(2Bdm). (20)

The equation (20) shows that the error due to hysteresis
is scaled with lm

2g which depends on the actuator structure,
and SH which depends on the amplitude of the desired field
signal.

On the other hand, the voltage-mode linearizing control
(13) yields: 2g

µ0
∆B + N2A

R
d∆B
dt = lmHc · SH(B̃). For

sinusoidal inputs: Bd = Bdm sin(ωt) it becomes: ∆B +
µ0N

2A
2Rg

d∆B
dt ≈ µ0lmHc

2g · SH(2Bdm). Finally, since the hys-
teresis error will be periodic with the same period as the
desired field signal, the following is obtained:

|∆BV | . µ0Hc ·
lm
2g

· SH(2Bdm) · S(ω) = S(ω) · |∆BI | ,
(21)

where ∆BI is given by (20), TH = µ0N
2A

2Rg , and S(ω) =
1√

1+ω2T 2
H

is a scaling dependent on the field signal fre-
quency.

Remark IV.3 Error expressions (20) and (21) also hold for
biased sinusoidal inputs, Bd = B0 + Bdm cos(ωt), since B̃
is independent of B0 for periodic inputs. This can be seen
from the definition III.1.

These results are formalized for the force error in the
following proposition:

Proposition IV.4 In case the rate-dependent field contribu-
tions in (2) are neglected, there is no unknown variation in the
air gap g, and the desired force profile is assumed a biased
sinusoid Fd = Fdm (1 + sin(ωt)), then an approximative
bound on the output force error due to the uncompensated
hysteresis, in case of current-mode linearization (12), is given
by:

|∆FI | . µ0Hc · SLSH(Fdm)
√

Fd. (22)
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On the other hand, an approximative bound on the output
force error in case of voltage-mode linearization (13) is given
by:

|∆FV | . µ0Hc · SLSH(Fdm)S(ω)
√

Fd, (23)

where SL =
√

A
µ0

lm
g is an actuator layout depen-

dent scaling of the hysteresis, SH = SH(Fdm) =(
1− e−k2

√
2µ0Fdm

A

)
< 1 is a field amplitude dependent

scaling of the hysteresis and S (ω) = 1√
1+ω2·T 2

H

< 1 with

TH = µ0N
2A

2Rg is a desired force signal frequency dependent
scaling.

Proof: After inserting (3) and ∆F = 2
√

A
µ0
F ·∆B into

(20), the following is obtained: ∆F . µ0HcSL

√
Fd +∆F ·

SH(Fm). Solving for ∆F yields: ∆F . (µ0HcSLSH)2

2 +

µ0HcSLSH

√
Fd

√
(µ0HcSLSH)2

4Fd
+ 1. Expression (22) is then

obtained after assuming µ0HcSLSH ≪ 2
√
Fd . Further-

more, the expression (23) is obtained from (21) and (22)
by using the fact that the frequency of the first harmonic of
the magnetic field signal will be the same as the frequency
of the desired force signal.

Remark IV.5 In the expressions (17) and (23) only the
amplitude attenuation is considered, while there are also
phase shifts in the error due to the intrinsic damping and
hysteresis. The analysis of these phase shifts is out of scope
of this paper. Furthermore, sinusoidal reference signals and
sinusoidal first harmonic approximations were assumed for
the convenience of the error expression derivation, as the
basic mechanism is valid for general inputs.

Remark IV.6 It can be observed that TH = T∆g , i.e. the
intrinsic mechanism damping the air gap disturbance is the
same as the mechanism damping the hysteresis. Also, both
time constants are dependent on the resistance in the electric
circuit which includes the excitation coil resistance and the
voltage source resistance. The smaller the total resistance,
more intrinsic damping there is, and if no resistance and no
other losses are assumed, there would be no error due to air
gap variation or hysteresis.

V. DEMONSTRATION EXAMPLES

The following numerical parameter values are used for
demonstration purposes: R = 0.8, N = 600, A = 1 · 10−4,
gnom = 1 · 10−3, lm = 2 · 10−1, σ = 2.5 · 106, d = 1 ·
10−4, V0 = 0.1. These values are chosen so that the actuator
produces a force of 250 at the magnetic flux density in the
material of 1.8. The material properties were obtained from
[12] and the magnetic core hysteresis is simulated by the
model [14] with parameters Hc = 62, Br = 1.7, Hcl = 400
and Bcl = 2.1. Hcl and Bcl are the field values where the
hysteresis loop of the model collapses into a single-valued
map.

Three times differentiable trajectories as depicted in Fig. 3
are used as force reference signals. A current-mode lin-
earizing law (12) is used on the model (7) and the air
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Fig. 2. Force error due to the unmeasured air gap variation for current-
mode and voltage-mode feedforward

gap disturbance in the actuator model was set to ∆g =
2 · 10−4 · sin

(
2πf∆g · t

)
. The results are depicted in Fig. 2

where a large force error, independent of the disturbance
frequency content, is observable. This observations are in
accordance with the expression (16) which gives −28 ≤
∆F ≤ 52. The same simulation is repeated with the voltage-
mode linearizing law (13) and the results are depicted in
Fig. 2 as well. It can be observed that the amplitude of
the force error reduces with the frequency of the air gap
disturbance. This is in accordance with (17) which gives
−11 ≤ ∆F ≤ 13 in case f∆g = 20. The error due to non-
compensated hysteresis is still present in the results from
Fig. 2, but is negligible when compared to the error induced
by the air gap disturbance.

On the other hand, in the results depicted in Fig. 3, there
is no air gap disturbance, so the error due to the non-
compensated hysteresis can be analyzed. It can be observed
that, in case of current-mode control, the error in the force
is independent of the frequency content of the reference
signal. The amplitude of this error is in accordance with
(22) which gives ∆F . 3.5. The same figure shows that
the force error in the case of voltage-mode feed-forward
control is attenuated with the frequency content of the desired
force signal. This is in accordance with the expression (23)
which contains an additional scaling factor S(ω). The force
reference signal in Fig. 3 with dF/dtmax = 10000 has a
period of 0.05 s and can therefore be approximated by a
biased sinusoidal with frequency f = 20. For such a signal,
S(ω) = 0.12, yielding |FV | . 0.42. This is somewhat
smaller then the maximal value depicted in Fig. 3, but that
is to be expected since first harmonic approximations were
used in the derivation of (23).

A comparison of feed-forward laws (10) and (11) based
on the parametric hysteresis inverse made on the model (7)
is depicted in Fig. 4. It can be seen that the hysteresis
inverse significantly improves overall accuracy of the feed-
forward laws. Furthermore, the hysteresis compensation error
is further damped in case of voltage-mode control. Moreover,
the last graph in Fig. 4 shows that the voltage-mode control
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Fig. 4. Comparison of the force error in current-mode and voltage-mode
feed-forward control laws. Error1 - no hysteresis compensation present;
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disturbance ∆g = 1 · 10−5sin(40π · t). The desired force profile is as
in Fig. 2 or 3.

law (11) outperforms the current-mode control law (10) when
both hysteresis and the air gap disturbance are present in the
plant.

VI. CONCLUSIONS

In this article, current-mode and voltage-mode feed-
forward controllers for variable reluctance actuators were
compared on a high-fidelity model. The dependence of the
output force error on the actuator structure, magnetic material
properties and the working point was quantified for periodic
air gap and hysteresis disturbances, for both current and volt-
age mode control. It was shown that the voltage-mode control
has fundamental advantages when compared to the current-
mode control, since the unknown high-frequent air gap and
hysteresis disturbances are damped by the intrinsic actuator
mechanism based on the back EMF. A current source, on the
other hand, automatically counteracts this damping, which is
especially problematic outside the force control bandwidth,

since those disturbances can no longer be actively damped by
the feed-back. The behavior of the current and voltage mode
control in presence of low-frequent, quasi-static disturbances
was shown to be similar.

Furthermore, the parametric hysteresis inverse was shown
to further reduce the force tracking error. This motivates the
usage of voltage-mode feed-forward control with hysteresis
compensation in high-precision force control of variable
reluctance actuators, also in combination with feed-back
control. Simulation results illustrate the analysis.
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