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Abstract— Stochastic programming and robust optimization
are disciplines concerned with optimal decision-making under
uncertainty over time. Traditional models and solution algo-
rithms have been tailored to problems where the order in which
the uncertainties unfold is independent of the controller actions.
Nevertheless, in numerous real-world decision problems, the
time of information discovery can be influenced by the decision
maker, and uncertainties only become observable following an
(often costly) investment. Such problems can be formulated
as mixed-binary multi-stage stochastic programs with decision-
dependent non-anticipativity constraints. Unfortunately, these
problems are severely computationally intractable. We pro-
pose an approximation scheme for multi-stage problems with
decision-dependent information discovery which is based on
techniques commonly used in modern robust optimization. In
particular, we obtain a conservative approximation in the form
of a mixed-binary linear program by restricting the spaces of
measurable binary and real-valued decision rules to those that
are representable as piecewise constant and linear functions of
the uncertain parameters, respectively. We assess our approach
on a problem of infrastructure and production planning in
offshore oil fields from the literature.

Index Terms— endogenous uncertainty, binary decision rules.

I. INTRODUCTION

Stochastic programming is a discipline that develops mod-

els and algorithms for solving decision problems affected by

uncertain data (see e.g. Birge and Louveaux [1]). In most

of these problems, the uncertain parameters are revealed

sequentially as time progresses. The decision-making process

is therefore dynamic in the sense that the decisions are

allowed to depend on the observable data. Mathematically,

these adaptive decisions must be modeled as functions or

decision rules of those uncertain parameters that are known

at the time of decision making.

In stochastic programming it is usually assumed that the

order in which the uncertainties unfold is independent of

the decision maker’s actions. However, this assumption fails

to hold in numerous real-world decision problems, where

the decisions influence the time of information discovery.

In order to establish a succinct terminology, Jonsbråten [2]

coined the terms of exogenous and endogenous uncertainties,

which refer to parameters whose ‘time of revelation’ is

independent and dependent of the decisions, respectively. We

will use this terminology throughout this paper. Moreover,

we will refer to those decisions that trigger an information

discovery as measurement or observation variables.
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We highlight the practical significance of models with

endogenous uncertainties by presenting several real-world

decision problems in which the time of information discovery

is inherently decision-dependent.

A. Motivating examples

Oil companies spend substantial efforts on infrastructure

and production planning in offshore oilfields [3], which

typically consist of several reservoirs with uncertain volumes.

For each reservoir, one needs to determine whether and when

to extract oil. The uncertain volume of a reservoir becomes

observable only when an expensive well platform is built

and the drilling for oil is initiated. The drilling decisions

thus control the sequence of information discovery.

Pharmaceutical companies typically maintain R&D

pipelines that comprise multiple candidate drugs. Before a

drug can enter the marketplace, it needs to pass several costly

clinical trials that may last for many years. The outcome

(success/failure) of each trial is uncertain and will only be

revealed once the trial is completed. Thus, pharmaceutical

companies need to orchestrate the clinical trials with the

goal to maximize the rate of discovering effective drugs [4].

The decisions to proceed with different trials can thus be

viewed as measurement variables which determine how the

uncertainty unfolds.

A related problem is that of R&D project portfolio opti-

mization [5]. Here, the goal is to decide how to distribute

scarce resources among a number of projects with differ-

ent performance characteristics. The return of any project

is uncertain and will only be revealed upon the project’s

termination. The start times of the various projects and the

resource allocations thus impact the time of information

discovery.

B. Literature review

Research on stochastic programs with endogenous uncer-

tainties began with the works of Jonsbråten et al. [6] and

Jonsbråten [2] in 1998 . They studied decision problems in

which the control actions can impact both the distribution

of the uncertainties as well as the timing of their revelation.

Problems with decision-dependent information discovery are

perceived as particularly hard even if the distribution of the

uncertainties is unaffected by the decisions, and therefore the

literature on numerical solution procedures remains scarce.

To the best of our knowledge, all existing algorithms rely

on the assumption that the uncertain parameters follow a

discrete distribution. In this case the decision process can be
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modeled through a finite scenario tree whose branching struc-

ture depends on the binary measurement decisions that deter-

mine the time of information discovery, see Jonsbråten [2].

Goel and Grossmann have shown that stochastic programs

with discretely distributed endogenous uncertainties can be

reformulated as deterministic mixed-binary programs [3], but

unfortunately these reformulations involve an exponential

number of binary variables and non-anticipativity constraints.

Research efforts have consequently focused on approxima-

tion techniques that provide suboptimal but feasible solutions

to the original problem. An effective approach to complexity

reduction is to require that the measurement decisions be

pre-committed, that is, to approximate them by here-and-

now decisions. The resulting approximate problems can be

solved with an enumeration-based branch-and-bound algo-

rithm due to Jonsbråten et al. [6] or via decomposition

techniques by Goel and Grossmann [3]. More recent branch-

and-bound and branch-and-cut algorithms truthfully account

for the adaptive nature of the measurement variables, see

Goel and Grossmann [7], [8] as well as Colvin and Mar-

avelias [9], respectively. Moreover, several iterative schemes

based on relaxations of the non-anticipativity constraints for

the measurement variables have been proposed by Gupta and

Grossmann [10] and by Colvin and Maravelias [9].

Problems involving continuously distributed random pa-

rameters need to be discretized before any of the above

solution procedures can be applied. Solak et al. propose to

use a sample average approximation for this purpose [5].

While discretization appears as a promising approach for

smaller problems, it may result in a combinatorial state

explosion when applied to large and medium sized problems.

Conversely, using only very few discretization points can

result in solutions that are suboptimal or may even fail to be

implementable in practice.

In this paper we develop a methodology for solving

dynamic problems with endogenous uncertainties, which is

inspired by techniques that recently emerged in robust opti-

mization [11]. We suggest to approximate the adaptive mea-

surement decisions by piecewise constant functions and the

adaptive real-valued decisions by piecewise linear functions

of the uncertainties. The resulting approximate problems

are equivalent to mixed-binary linear programs (MBLP),

which can be solved using standard optimization software.

This decision rule approximation remains applicable when

the uncertain parameters are continuously distributed, and it

results in near-optimal solutions that are implementable in

reality. The trade-off between the solution quality and the

computational speed is controlled by the granularity of the

partition of the uncertainty domain. Decision rule techniques

have successfully been used in the context of stochastic and

robust optimization with exogenous uncertainty, see Ben-Tal

et al. [12], Shapiro and Nemirovski [13], Goh and Sim [14]

and Kuhn et al. [15].

This paper is organized as follows. The remainder of this

section introduces the notation, while § II and § III develop

a new decision rule approximation for two- and multi-stage

stochastic programs affected by endogenous uncertainty,

respectively. The benefits of our approach are illustrated

in § IV through an example in the area of infrastructure and

production planning.

Notation Throughout this paper, uncertainty is modeled

by the probability space (Rk,B(Rk),P), which consists of

the sample space R
k, the Borel σ-algebra B(Rk) and the

probability measure P, whose support we denote by Ξ. We

assume that Ξ is a compact polyhedral subset of {ξ ∈
R

k : ξ1 = 1}. This non-restrictive assumption allows us

to represent affine functions of the non-degenerate uncertain

parameters (ξ2, . . . , ξk) in a compact way as linear functions

of ξ = (ξ1, . . . , ξk). We let E(·) denote the expectation

operator with respect to P. We further denote by µ := E(ξ)
the first order moment vector and by Σ := E(ξξ>) the

second order moment matrix of ξ under P. For any m,n ∈
N, we let Lm,n be the space of all measurable functions

from R
m to R

n that are bounded on compact sets. For

two vectors x, y ∈ R
n, we let x ◦ y ∈ R

n denote their

Hadamard product and for j ∈ N, we define x−j ∈ R
n−1

as x−j := (x1, . . . , xj−1, xj+1, . . . , xn). For a square matrix

A ∈ R
n×n, we let tr(A) denote the trace of A. Finally, we

denote by e1 the first canonical basis vector in R
k.

II. THE TWO-STAGE CASE

A. Problem formulation

A two-stage stochastic program with exogenous uncer-

tainty is representable as

min c>x+ E(q(ξ)>y(ξ))
s.t. x ∈ R

n1 , y ∈ Lk,n2

Tx+Wy(ξ) ≤ h(ξ) ∀ξ ∈ Ξ,
(1)

where x ∈ R
n1 stands for the vector of first-stage decisions

and y(ξ) ∈ R
n2 denotes the vector of second-stage (or

recourse) decisions, which may depend on the observed

realization of the random vector ξ ∈ R
k. Here, c ∈ R

n1 and

q(ξ) ∈ R
n2 are interpreted as cost vectors, while T ∈ R

m×n1

and W ∈ R
m×n2 are referred to as the technology and

recourse matrices, respectively. Moreover, h(ξ) ∈ R
m is

termed the right hand side vector. We assume that q(ξ) = Qξ

for some Q ∈ R
n2×k and h(ξ) = Hξ for some H ∈ R

m×k.

The focus of this paper is a variant of problem (1) in

which the random vector is not necessarily observable in

the second stage. Instead, any component of ξ is observed

only if the decision maker decides to observe (or measure)

this particular component. A new binary decision vector

z ∈ Z ⊆ {0, 1}k collects these measurement decisions, that

is, ξi is observed iff zi = 1. We will henceforth assume that

observing random parameters incurs a cost f>z for some

f ∈ R
k and impacts the constraints through an additional

term Bz for some B ∈ R
m×k. In this generalized model,

the second stage decisions may only depend on those random

parameters that have been observed, that is, they must be

representable as functions of z ◦ ξ. Note that the binary

vector z “switches off” those components of ξ that remain

unobserved.
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A two-stage stochastic program with endogenous uncer-

tainty can therefore be formalized as

min c>x+ f>z + E(q(ξ)>y(ξ))
s.t. x ∈ R

n1 , z ∈ Z, y ∈ Lk,n2

Tx+Bz +Wy(ξ) ≤ h(ξ)
y(ξ) = y(z ◦ ξ)

}

∀ξ ∈ Ξ.
(P)

Note that Z can be a strict subset of {0, 1}k, that is, it may

incorporate constraints requiring that a particular component

of ξ is always observed or that two components of ξ must

be observed simultaneously etc.

Problem P encapsulates the two-stage stochastic pro-

gram (1) and the (deterministic) mixed-binary linear program

(MBLP) as special cases, and it involves complex compo-

sitions of functional and binary decisions. Therefore, it is

severely computationally intractable. In the next section we

propose a conservative approximation that reduces P to a

single-stage robust MBLP problem.

B. Decision rule approximation

We can substantially improve the tractability of problem P
by reducing the space of admissible second-stage decisions

to those presenting an affine data dependence, thus being rep-

resentable as y(ξ) = Y ξ for some Y ∈ R
n2×k. This radical

but effective approach to complexity reduction was proposed

in [12], [14], [16], [13] as a means of approximating multi-

stage robust and stochastic programs affected by exogenous

uncertainty. Using this approach to simplify problem P ,

which is affected by endogenous uncertainty, results in the

following conservative (upper bound) approximation.

min c>x+ f>z + tr
(

ΣQ>Y
)

s.t. x ∈ R
n1 , z ∈ Z, Y ∈ R

n2×k

Tx+Bz +WY ξ ≤ h(ξ) ∀ξ ∈ Ξ
|Yij | ≤ Mzj i = 1, . . . , n2, j = 1, . . . , k.

(Pu)

The last constraint in Pu enforces non-anticipativity. It

stipulates that if ξj was not observed in the first decision

stage, then the affine decision rule y(ξ) = Y ξ must be

independent of ξj . Here, M ∈ R+ denotes a suitably chosen

“big-M constant” which is large enough to guarantee that Yij

is unaffected by the non-anticipativity constraint if zj = 1.

Problem Pu can be viewed as a robust MBLP, which involves

semi-infinite constraints parameterized by ξ ∈ Ξ. In the

following section, we reformulate Pu as a standard MBLP.

C. MBLP reformulation

The key ingredient for reformulating Pu as an MBLP is

the following proposition.

Proposition 2.1: For any φ ∈ R
k the following statements

are equivalent:

(i) φ>ξ ≥ 0 for all ξ ∈ Ξ;

(ii) φ is an element of the cone dual to the cone generated

by Ξ, i.e. φ ∈ K := (cone(Ξ))∗.

Proof: As linear functions are positive homogeneous

of degree 1, we have

φ>ξ ≥ 0 ∀ξ ∈ Ξ ⇔ φ>ξ ≥ 0 ∀ξ ∈ cone(Ξ)

⇔ φ ∈ (cone(Ξ))∗

Thus, the claim follows.

By Proposition 2.1, Pu can be reformulated as

min c>x+ f>z + tr
(

ΣQ>Y
)

s.t. x ∈ R
n1 , z ∈ Z, Y ∈ R

n2×k

H − (Tx+Bz)e>1 −WY ∈ Km

|Yij | ≤ Mzj i = 1, . . . , n2, j = 1, . . . , k,

(P ′
u)

where Km denotes the cone of all m × k-matrices whose

rows are all contained in K. Since Ξ is a polyhedral set, Km

is a polyhedral cone. The conic constraint in P ′
u therefore

corresponds to a finite set of linear inequality constraints.

Problem P ′
u is thus equivalent to an MBLP involving only a

finite number of decision variables and constraints. Its size

grows polynomially with k, m, n1, n2 and the number of

constraints defining the uncertainty set Ξ. The decision rule

approximation thus results in a conservative approximation

to P in the form of an MBLP whose size is polynomially

bounded in the size of the original problem’s inputs.

III. THE MULTI-STAGE CASE

A. Problem formulation

A multi-stage stochastic program with exogenous uncer-

tainty over the finite planning horizon T := {1, . . . , T} is

representable as

min E
(
∑

t∈T
ct(ξ)

>yt(ξ)
)

s.t. yt ∈ Lk,nt
∀t ∈ T

∑t

τ=1 Atτyτ (ξ) ≤ ht(ξ)
yt(ξ) = yt(zt−1 ◦ ξ)

}

∀ξ ∈ Ξ, t ∈ T,

(2)

where yt(ξ) ∈ R
nt denotes the vector of time t decisions.

The binary vector zt ∈ {0, 1}k represents the information

base at time t+1, that is, it encodes the information revealed

up to time t. Thus, we have zt,i = 1 iff ξi has been observed

at some time τ ∈ {0, . . . , t}. As information is never

forgotten, we require that zt ≥ zt−1 for all t ∈ T. The last

constraint in (2) enforces non-anticipativity by stipulating

that yt can only depend on uncertainties that have been

observed up to time t− 1.

Without much loss of generality, we assume that the

problem data satisfies ct(ξ) = Ctξ for some Ct ∈ R
nt×k,

ht(ξ) = Htξ for some Ht ∈ R
mt×k and Atτ ∈ R

mt×nτ .

In the remainder we investigate a variant of problem (2)

that enjoys much greater modeling power since the time

of information discovery is kept flexible. We now interpret

the information base zt(ξ) ∈ Zt ⊆ {0, 1}k as an adaptive

decision variable, which itself depends on ξ. The set Zt

may incorporate constraints stipulating, for example, that a

specific uncertainty can only be observed after a certain stage

etc. We assume that including ξi in the information base at

time t, which happens iff zt,i(ξ) = 1, incurs a cost ft,i(ξ) ∈
R. Moreover, z1(ξ), . . . , zt(ξ) also impact the time t con-

straints through the additional term
∑t

τ=1 Btτzτ (ξ) for some

Btτ ∈ R
mt×k. Without much loss of generality, we assume

that ft(ξ) = Ftξ for some Ft ∈ R
k×k.
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A multi-stage stochastic program with endogenous uncer-

tainty can therefore be formalized as

min E
(
∑

t∈T
ct(ξ)

>yt(ξ) + ft(ξ)
>zt(ξ)

)

s.t. yt ∈ Lk,nt
, zt ∈ Lk,k ∀t ∈ T

∑t

τ=1 Atτyτ (ξ) +Btτzτ (ξ) ≤ ht(ξ)
zt(ξ) ∈ Zt

zt(ξ) ≥ zt−1(ξ)
zt(ξ) = zt(zt−1(ξ) ◦ ξ)
yt(ξ) = yt(zt−1(ξ) ◦ ξ)























∀ξ ∈ Ξ,
t ∈ T.

(MP)

The fourth constraint in MP corresponds to an informa-

tion monotonicity constraint and ensures that information is

never forgotten, and the last two constraints enforce non-

anticipativity of the binary and real-valued decision variables,

respectively. Without loss of generality we assume that

z0(ξ) = e1 ∀ξ ∈ Ξ, that is, only the degenerate random

parameter ξ1 is known at the beginning. Problem MP sub-

sumes the multi-stage stochastic program (2) and it involves

decision-dependent non-anticipativity constraints and binary

recourse variables. It is therefore severely computationally

intractable. In the next section, we propose a conservative

approximation that reduces MP to a static robust MBLP.

B. Decision rule approximation

The emergence of binary recourse variables in multistage

models of the type MP adds another level of complexity

to the two-stage models considered in § II. Indeed, while

continuous recourse variables can be approximated by linear

decision rules [12], [16], [14], [13], there seems to be no

flexible decision rule approximation for binary recourse vari-

ables which enjoys good tractability properties. Real-valued

decision rules that are piecewise constant on the subsets of an

adjustable partition of Ξ have been studied in [17]. However,

this adjustability entails considerable complications in the

presence of endogenous uncertainties. We therefore approxi-

mate the measurement decisions in problem MP by binary-

valued decision rules that are piecewise constant with respect

to a preselected partition of Ξ. Similarly, we approximate

all real-valued decisions in MP by decision rules that are

piecewise linear with respect to the same partition. Without

much loss of generality, we assume that all subsets of this

partition are hyper-rectangles of the form

Ξs := {ξ ∈ Ξ : wi
si−1 ≤ ξi < wi

si
, i = 1, . . . , k},

where s ∈ S :=×k

i=1{1, . . . , ri} ⊆ N
k and

wi
1 < wi

2 < · · · < wi
ri−1 for i = 1, . . . , k

represent ri − 1 breakpoints along the ξi axis. We now ap-

proximate the binary-valued decisions in MP by piecewise

constant decision rules of the form

zt(ξ) =
∑

s∈S

IΞs
(ξ)zst (3)

for some zst ∈ {0, 1}k, s ∈ S, t ∈ T, where IΞs
denotes

the indicator function of Ξs. Similarly, we approximate the

real-valued decisions in MP by piecewise linear decision

rules of the form

yt(ξ) =
∑

s∈S

IΞs
(ξ)Y s

t ξ (4)

for some Y s
t ∈ R

nt×k, s ∈ S, t ∈ T.

In order to reduce the notational overhead, we henceforth

suppress the domains of the variables ξ, ξ′ ∈ Ξ, t ∈ T,

s, s′ ∈ S, j, j′ ∈ {1, . . . , k} and i ∈ {1, . . . , nt}.

Proposition 3.1: Under the approximations (3) and (4),

the non-anticipativity constraints in MP are equivalent to

|zst,j′ − zs
′

t,j′ | ≤ zst−1,j

|Y s
t,ij′ − Y s′

t,ij′ | ≤ Mzst−1,j ∀i

}

∀j, j′, s, s′, t :
s−j = s′−j

(5a)

|Y s
t,ij | ≤ Mzst−1,j ∀i, j, s, t, (5b)

where M is a sufficiently large big-M constant.

Proof: The non-anticipativity constraints in MP can

be re-expressed as

zt(ξ) = zt(ξ
′)

yt(ξ) = yt(ξ
′)

}

∀t, ξ, ξ′ : zt−1(ξ) ◦ ξ = zt−1(ξ
′) ◦ ξ′.

Substituting (3) and (4) into the above expression yields

zst = zs
′

t

Y s
t = Y s′

t

}

∀t, s, s′ : zst−1 ◦ s = zs
′

t−1 ◦ s
′ (6a)

and

|Y s
t,ij | ≤ Mzst−1,j ∀i, j, s, t. (6b)

Note that (6a) enforces non-anticipativity across distinct

subsets of the partition, while (6b) enforces non-anticipativity

for the linear decision rules within each subset and is

reminiscent of the non-anticipativity constraints in P ′
u. We

now demonstrate that (5a) and (6a) are equivalent.

(⇐) Assume that (6a) holds, and choose some j, s, s′ and t

with s−j = s′−j . The information monotonicity constraint

stipulated in MP implies that

zsτ−1,j = zs
′

τ−1,j = 1 ⇒ zsτ,j = zs
′

τ,j = 1, (7)

while (6a) and the assumption s−j = s′−j imply that

zsτ−1,j = zs
′

τ−1,j = 0 ⇒ zsτ = zs
′

τ and Y s
τ = Y s′

τ (8)

for all τ ∈ {0, . . . , t − 1}. Since zs0 = zs
′

0 = e1, we

can iteratively apply (7) and the first implication in (8) to

conclude that zst−1,j = zs
′

t−1,j . Thus, (8) implies

|zst,j′ − zs
′

t,j′ | ≤ zst−1,j

|Y s
t,ij′ − Y s′

t,ij′ | ≤ Mzst−1,j ∀i

}

∀j′.

As j, s, s′ and t were chosen arbitrarily, (5a) follows.

(⇒) Assume now that (5a) holds and choose some s, s′

and t with zst−1 ◦ s = zs
′

t−1 ◦ s′. As sj , s
′
j ≥ 1 ∀j, we

conclude that zst−1 = zs
′

t−1. Thus, zst−1 and s− s′ satisfy the

complementarity condition zst−1◦(s−s′) = 0. If s = s′, then

(6a) holds trivially true. Next, assume that s 6= s′ and that

there exists j′ with s−j′ = s′
−j′ , that is s and s′ differ only

in their j′th component. The complementarity of zst−1 and

s−s′ then ensures that zst−1,j′ = 0. Together with the known
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identity s−j′ = s′
−j′ , this implies via (5a) that zst = zs

′

t and

Y s
t = Y s′

t . Thus, (6a) follows. Finally, if s and s′ differ in

two or more components, then (6a) can be established by

applying the above argument iteratively.

C. MBLP reformulation

Substituting the decision rules (3) and (4) into MP and

applying Proposition 3.1 yields a conservative approxima-

tion MPu for MP . We then proceed as in § II-C to obtain

the following MBLP reformulation of MPu,

min
∑

s∈S
ps

∑

t∈T
µ>
s Ft

>zst + tr(ΣsCt
>Y s

t )
s.t. zst ∈ Zt, Y

s
t ∈ R

nt×k ∀s, t

Ht −
∑t

τ=1 AtτY
s
τ +Btτz

s
τe

>
1 ∈ Kmt

s ∀s, t
zst ≥ zst−1∀s, t

|zst,j′ − zs
′

t,j′ | ≤ zst−1,j

|Y s
t,ij′ − Y s′

t,ij′ | ≤ Mzst−1,j ∀i

}

∀s, s′ : s−j = s′−j

∀t, j, j′

|Y s
t,ij | ≤ Mzst−1,j ∀s, t, i, j,

(MP ′

u)

where ps := P(ξ ∈ Ξs), µs := E(ξ|ξ ∈ Ξs), Σs :=
E(ξξ>|ξ ∈ Ξs) and Ks := (cone(Ξs))

∗. Problem MP ′

u

involves only a finite number of decision variables and

constraints. For a fixed number of uncertain parameters k

and fixed number of breakpoints along each coordinate axis

in R
k, the size of MP ′

u remains polynomially bounded

in m :=
∑

t∈T
mt, n :=

∑

t∈T
nt and in the number of

constraints defining the uncertainty set.

IV. CASE STUDY

A. Problem description

We evaluate the proposed decision rule approach on (a

variant of) an infrastructure and production planning problem

in offshore oil fields from the literature [3]. An oil company

has identified an offshore oil extraction site for possible

exploitation. This site comprises several oil fields (or oil

reservoirs) with unknown reserves. The company is assumed

to be aware of the exact locations of the individual oil fields

and needs to plan the oil extraction and gas production

process over a period ranging from 10 to 30 years. The

objective is to maximize the expected net present value

(NPV) of the oil exploitation project.

In order to extract oil from the fields, dedicated well

platforms need to be installed and expanded. We denote the

set of candidate well platforms (that are under consideration

to be built) by W . The oil extracted at the well platforms

is sent through a network of directed pipelines to a (unique)

production platform p ∈ W for gas production. The set of

candidate links between well platforms is denoted by L.

For any platform w ∈ W we denote by L+(w) ⊆ L and

L−(w) ⊆ L the sets of all ingoing pipelines to w and all

outgoing pipelines from w, respectively. We assume that all

expansion and construction decisions take immediate effect

and that once a platform w ∈ W has been built, the size ξw

of the associated oil field is revealed.

We assume that the planning horizon is subdivided into

yearly intervals indexed by t ∈ T. At the beginning of

each year, the oil company decides which new platforms

and pipelines to construct. We set zwt (ξ) = 1 if platform w

exists at time t; = 0 otherwise. Similarly, we set xl
t(ξ) = 1

if pipeline l exists at time t; = 0 otherwise. We assume that

platforms and pipelines cannot be decommissioned, that is

zwt (ξ) ≥ zwt−1(ξ) and xl
t(ξ) ≥ xl

t−1(ξ).
In year t the company selects the yearly oil extraction

ywe,t(ξ) for platform w, the yearly flow ywe,t(ξ) through

pipeline l, and the amount ywc,t(ξ) by which the capacity

of platform w is increased at the start of the year. The

cumulative oil extraction at a particular field can never

exceed the field size,

t
∑

τ=1

ywe,τ (ξ) ≤ ξw ∀w ∈ W,

while the instantaneous oil extraction is limited by the field’s

maximum production rate pw, that is,

0 ≤ ywe,t(ξ) ≤ pw ∀w ∈ W.

The flow conservation constraints

ywe,t(ξ) +
∑

l∈L+(w)

ylf,t(ξ) ≥
∑

l∈L−(w)

ylf,t(ξ) ∀w ∈ W

ensure that no oil is created within the network, and the

box-constraints

0 ≤ ylf,t(ξ) ≤ Mxl
t(ξ) ∀l ∈ L,

which involve a big-M constant, force the flows through

yet inexistent pipelines to vanish. Similar box constraints

guarantee that yet inexistent platforms cannot be expanded.

0 ≤ ywc,t(ξ) ≤ Mzwt (ξ) ∀w ∈ W.

The yearly amount of oil pumped into the network from a

particular platform must not exceed that platform’s capacity,

that is,

∑

l∈L−(w)

ylf,t(ξ) ≤

t
∑

τ=1

ywc,τ (ξ) ∀w ∈ W.

The company chooses the design and operating decisions

with the aim to maximize the project’s expected net present

value (NPV)

∑

t∈T

dtE







c
p
f

∑

l∈L−(p)

ylf,t(ξ)−
∑

l∈L

clb(x
l
t(ξ)− xl

t−1(ξ))

−
∑

w∈W

fw(zwt (ξ)− zwt−1(ξ)) + cwc y
w
c,t(ξ) + cwe y

w
e,t(ξ)

}

,

where c
p
f denotes the unit price for gas, while fw and clb

denote the costs for building platform w and pipeline l,

respectively. Moreover, cwc and cwe represent the unit expan-

sion and extraction costs for platform w, and dt denotes the

discount factor for year t. Note also that
∑

l∈L−(p) y
l
f,t(ξ)

represents the total outflow from the production platform,

which coincides with the yearly gas production. All decisions

selected at the start of year t may depend only on zt−1(ξ)◦ξ.

Thus, if (xt)t∈T are interpreted as measurement decisions for

fictitious degenerate random parameters, the oil extraction

problem can be brought to the form MP .
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Fig. 1. Fig. (a) shows the offshore oil extraction site. The numbers in squares and circles indicate the platforms w ∈ W and the pipelines l ∈ L.
Figs. (b) and (c) illustrate the expected NPV in dependence of solver time for projects A and B. The labels next to the markers represent the breakpoint
configuration (r1, . . . , rk) for the problems that achieved the tightest approximation for a given time budget.

B. Numerical results

We consider an instance of the oil extraction problem with

a 15 year horizon at the offshore site shown in Fig. 1(a).

The field sizes are mutually independent and uniformly

distributed as ξw ∼ U(0, uw) ∀w ∈ W . The input parameters

of the problem are summarized in Table I.

TABLE I

PROBLEM INPUT PARAMETERS

Parameter Value Units

(uw)w∈W (10, 10, 10, 20, 20) 109m3

(pw)w∈W (0.56, 0.56, 0.56, 1.1, 1.1) 109m3/year

cp
f

1.2 EUR/103m3

(cl
b
)l∈L (0, 2, 2, 5, 3, 3, 2) MEUR

(fw)w∈W (5, 2, 2, 3, 3) MEUR

(cwc )w∈W (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) EUR/103m3

(cwe )w∈W (0, 0, 0, 0, 0, 0) EUR/103m3

dt 1/(1 + 0.01)t−1 –

We consider two projects: project A aims at extracting

oil from the fields 1 through 3, while project B considers

all 5 fields. We proceed as described in § III-B and § III-

C to obtain conservative solutions to the expected NPV

maximization problems. The partitions of Ξ are constructed

such that their subsets have equal probability. The results are

shown on Figs. 1(b) and 1(c). For project A (B), we consider

all partitions with |S| ≤ 12 (|S| ≤ 6). The figures illustrate

the increase in expected NPV achieved as the solver time1

increases. For a time budget of less than 70 secs., an increase

in expected NPV of more than 1.4 MEUR is achieved

relative to the non-adaptive strategy which precommits the

measurement decisions at time t = 1 and only allows for

linear extraction and capacity expansion decisions. We note

that for the case |S| = 1, project A appeared not to be

profitable. Finally, we remark that exploiting the full site

results in a substantially higher profit.
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