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Abstract— In this paper we discuss the ergodicity of stochas-
tic and doubly stochastic chains. We define absolute infinite
flow property and show that this property is necessary for
ergodicity of any stochastic chain. The proof is constructive and
makes use of a rotational transformation, which we introduce
and study. We then focus on doubly stochastic chains for
which we prove that the absolute infinite flow property and
ergodicity are equivalent. The proof of this result makes use of
a special decomposition of a doubly stochastic matrix, as given
by Birkhoff-von Neumann theorem. Finally, we show that a
backward product of doubly stochastic matrices is convergent
up to a permutation sequence and, as a result, the set of
accumulation points of such a product is finite.

I. INTRODUCTION

Ergodicity of a chain of stochastic matrices is one of the
fundamental concepts in the study of time homogeneous
and time inhomogeneous Markov chains. For finite state
Markov chains, ergodicity reduces to the convergence of
a forward product of a chain of stochastic matrices to a
rank one matrix. On the other hand, ergodicity of backward
products of stochastic matrices has many applications within
distributed computation [10], [11], decentralized control [1],
distributed optimization [10], [5], [6], and modeling of social
opinion dynamics [3].

In this paper, we study the ergodicity of a backward
product of matrices associated with a stochastic chain. We in-
troduce the concept of absolute infinite flow property, which
is a more restrictive property than the infinite flow property,
as introduced in [8], [9]. We show that this property is indeed
stronger than infinite flow by providing a concrete example
of a chain that has infinite flow property but not absolute
infinite flow property. We further establish that, even-though
it is more restrictive, absolute infinite flow property is still
necessary for ergodicity of any stochastic chain. This result
is a non-trivial extension of our earlier results in [8], [9].
The proof technique relies on the development and study of
rotational transformation, which we introduce as a tool for
the analysis of ergodicity.

We then focus on backward product of matrices associated
with a doubly stochastic chain and investigate a sufficient
condition for ergodicity. We show that, in this case, absolute
infinite flow property is also sufficient for ergodicity. The
proof of this result makes use of properties of rotational
transformation of the chain and the special representation
of a doubly stochastic matrix as a convex combination of
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permutation matrices (as given by Birkhoff-von Neumann
theorem).

Finally, using the properties of the rotational transfor-
mation and our results established in [7], we show that
the backward product of any doubly stochastic chain is
convergent up to a permutation sequence. As a consequence,
we prove that the set of accumulation points of any such a
product is finite, a result that does not hold for stochastic
chains in general.

The paper is structured as follows. In Section II we provide
our basic notation and introduce the notion of ergodicity.
In Section III we introduce absolute infinite property and
discuss how it compares with infinite flow property. We
introduce a rotational transformation of a chain and study its
properties in Section IV. In Section V we show that absolute
infinite flow property is necessary for ergodicity of stochastic
chains. We prove that this property is also sufficient for
ergodicity of doubly stochastic chains in Section VI. In
Section VII, we consider products of doubly stochastic
chains that do not necessarily have absolute infinite flow
property. We show that such products are always convergent
up to a permutation sequence. We conclude in Section VIII.

II. NOTATION AND BASIC TERMINOLOGY

We use subscripts for indexing elements of vectors and
matrices. We write x ≥ 0 or x > 0 if, respectively, xi ≥ 0
or xi > 0 for all i. We use e to denote the vector with
all entries equal to one. We use xT and AT , respectively,
for the transpose of a vector x and a matrix A. A vector
a is stochastic if a ≥ 0 and

∑
i ai = 1. A matrix W is

stochastic if all of its rows are stochastic vectors, and it
is doubly stochastic if its rows and columns are stochastic
vectors. We use [m] to denote the set {1, . . . ,m}. We denote
a proper subset of [m] by S ⊂ [m], and we use |S| to denote
the cardinality of S and S̄ to denote the set complement of
S. A set S ⊂ [m] such that S ̸= ∅ is a nontrivial subset of
[m]. Throughout the paper we work with nontrivial subsets
S of [m].

For a given m×m matrix W and a subset S ⊂ [m], we
let

WS =
∑

i∈S,j∈S̄

(Wij +Wji).

A matrix P is a permutation matrix if it has only one entry
equal to 1 in each row and column. For a permutation matrix
P and a subset S ⊂ [m], the set T ⊂ [m] is the image of S
under P if ∑

j∈T

ej =
∑
i∈S

Pei,
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We will often write T = P (S) to indicate that T is the image
of the set S under the permutation P .

Throughout the paper we work with m × m stochastic
matrices, unless clearly stated otherwise. We will often refer
to a sequence of stochastic matrices as stochastic chain. We
will study the ergodicity of such chains by considering the
backward product of the matrices defining the chain. The
backward product of a stochastic chain {A(k)} is the infinite
product given by: · · ·A(2)A(1)A(0). Often, we use truncated
backward product over a window of time, namely A(k −
1)A(k−2) · · ·A(s+1)A(s) for k > s. We find it convenient
to denote such a truncated product by A(k, s), i.e., we let

A(k : s) = A(k − 1) · · ·A(s) for k > s ≥ 0.

We use the following definition of ergodicity.
Definition 1: We say that a stochastic chain {A(k)} is

ergodic if for any t0 ≥ 0, we have

lim
k→∞

A(k : t0) = evT (t0)

for some stochastic vector v(t0) ∈ Rm.
In other words, {A(k)} is ergodic if, for any t0 ≥ 0, the

backward product A(k : t0) converges to a rank one matrix
(which must be stochastic) as k approaches infinity.

III. ABSOLUTE INFINITE FLOW PROPERTY

In [8], [9], we have introduced the concept of infinite
flow property and have shown that this property is necessary
for ergodicity. In this section we provide a more restrictive
property, namely absolute infinite flow property, and we
discuss its relation with the infinite flow property.

We start our discussion by recalling the definition of the
infinite flow property, as it appeared in [8], [9].

Definition 2: We say that a chain {A(k)} has infinite flow
property if

∞∑
k=0

AS(k) = ∞ for all S ⊂ [m].

The infinite flow property is a necessary condition for
ergodicity of any stochastic chain (as shown in [8], [9]).
However, in general, this property is not sufficient for er-
godicity. For example, consider the chain {A(k)} with

A(k) =

[
0 1
1 0

]
for k ≥ 0. (1)

This chain is not ergodic while it has infinite flow prop-
erty. Our work in [8], [9] revolves around exploring some
additional properties of stochastic chains that together with
infinite flow property imply ergodicity.

In this paper, we provide a more stringent property
stronger than infinite flow, by strengthening the requirement
of the infinite flow property. In particular, observe that in
order to have infinite flow property, a chain {A(k)} has to
satisfy

∑∞
k=0

∑
i∈S,j∈S̄(Aij(k) + Aji(k)) = ∞ for every

S ⊂ [m]. Note that the set S is fixed and we sum, over time
k, all entries Aij(k) and Aji(k) for i and j crossing from
S to S̄.

One may consider the version of the infinite flow property
where the set S is also allowed to be time-varying. To do so,
at first, we need to select well-behaved sequences {S(k)} of
sets S(k) ⊂ [m], which brings us to the following definition.

Definition 3: We say that a sequence {S(k)} of subsets
of [m] is regular if |S(k)| = |S(0)| for any k ≥ 0, i.e., the
cardinality of S(k) does not change with time.
As a simple example of a regular sequence, consider m = 2
and let S(k) = {1} when k is even and S(k) = {2} when
k is odd.

We note that every regular sequence can be viewed as the
image of a set S = S(0) under a permutation chain and
vice versa. To see this, let {P (k)} be a permutation chain
and let S(0) = S for some S ⊂ [m]. Then, recursively
define S(k + 1) = P (k)(S(k)) for all k ≥ 0. Since {P (k)}
is a permutation chain, it follows that |S(k)| = |S(0)| for
all k ≥ 0. Therefore, any sequence {S(k)} constructed in
this way is regular. On the other hand, for any given regular
sequence {S(k)}, let P (k) be any permutation that maps the
indices in S(k) to the indices in S(k + 1) (note that such a
permutation exists since |S(k)| = |S(k + 1)|). In this case,
the regular sequence {S(k)} can be viewed as the image of
the initial set S(0) under the permutation chain {P (k)}.

Now, for two subsets S, S′ ⊂ [m] with the same cardinal-
ity and for a matrix A, let

AS′S=

∑
i∈S′,j∈S̄

Aij +
∑

i∈S̄′,j∈S

Aij . (2)

Note that for the case of S′ = S, we have AS′S = AS .
The relation in (2) serves as a basis for the version of

infinite flow property with time-varying sets. In particular,
we define the flow over a regular set sequence {S(k)} as
follows.

Definition 4: For a chain {A(k)} and a regular sequence
{S(k)}, the flow of {A(k)} over {S(k)} is given by

F ({A(k)}; {S(k)}) =
∞∑
k=0

AS(k+1)S(k)(k).

We next define the extension of infinite flow property.
Definition 5: We say that a chain {A(k)} has absolute

infinite flow property if F ({A(k)}; {S(k)}) = ∞ for any
regular sequence {S(k)}.

Note that, if in the definition of absolute infinite flow prop-
erty, we restrict our attention to constant regular sequences,
i.e., sequences {S(k)} with S(k) = S for all k ≥ 0 and
some S ⊂ [m], then the definition reduces to the definition
of infinite flow property. Also, notice that some chains may
have infinite flow property but not absolute infinite flow
property. As a concrete example, consider the chain {A(k)}
defined in Eq. (1) As discussed earlier, this chain has infinite
flow property. However, it does not have absolute infinite
flow property. This can be seen by considering the sequence
{S(k)} with S(k) given by S(2k) = {1} and S(2k + 1) =
{2} for k ≥ 0, which results in F ({A(k)}; {S(k)}) = 0.
Hence, such a chain does not have absolute infinite flow
property.
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At the first look it may occur that absolute infinite flow
property is very restrictive but, as will be shown subse-
quently, it is not more restrictive than ergodicity. In other
words, it turns out that this property is a necessary condition
for ergodicity of any stochastic chain. To show this result, we
introduce a transformation of stochastic chains with respect
to permutation chains and establish some properties of the
transformation, as seen in the next section.

IV. ROTATIONAL TRANSFORMATION

In this section we define and study a transformation of a
stochastic chain. This transformation is defined with respect
to a sequence {P (k)} of permutation matrices. We refer to
{P (k)} as permutation chain and we reserve the notation
{P (k)} for such chains.

Definition 6: For a stochastic chain {A(k)} and a permu-
tation chain {P (k)}, let the chain {B(k)} be defined by

B(k) = PT (0 : k + 1)A(k)P (0 : k) for k ≥ 0, (3)

with P (0 : 0) = I . We say that the chain {B(k)} is a
rotational transformation of {A(k)} with respect to {P (k)}.

First, note that each permutation chain induces a rotational
transformation of a given stochastic chain {A(k)}. Since
the product of stochastic matrices is a stochastic matrix, a
rotational transformation is a stochastic chain.

Rotational transformation preserves ergodicity properties
of the original stochastic chain {A(k)}. This and some other
properties of a rotational transformation are discussed in the
following lemma.

Lemma 1: Let {B(k)} be the rotational transformation of
a stochastic chain {A(k)} with respect to a permutation chain
{P (k)}. Then, the following holds:
(a) For any t0 ≥ 0 and k > t0, we have

B(k : t0) = PT (k : 0)A(k : t0)P (t0 : 0). (4)

(b) The chain {A(k)} has infinite flow property if and only
if {B(k)} has infinite flow property.

(c) Let {S(k)} be the trajectory of a set S ⊂ [m] un-
der a permutation chain {P (k)}, i.e., S(k + 1) =
P (k)(S(k)) for k ≥ 0 with S(0) = S. Then, we have
AS(k+1)S(k)(k) = BS(k) for all k ≥ 0.
Proof:

(a) Let t0 ≥ 0 be a fixed starting time. The proof follows
by induction on k > t0. For k = t0+1, by the definition
of the rotational transformation, we have

B(t0 + 1 : t0) = B(t0) = PT (t0 + 1 : 0)A(t0)P (t0 : 0)

= PT (k : 0)A(k : t0)P (t0 : 0)

and hence, the claim is true for k = t0+1. Now, suppose
that the claim holds for some k > t0. Then, by the
induction hypothesis, we have

B(k + 1 : t0) = B(k)B(k : t0)

= B(k)
(
PT (k : 0)A(k : t0)P (t0 : 0)

)
=

(
PT (k + 1 : 0)A(k)P (k : 0)

)(
PT (k : 0)A(k : t0)P (t0 : 0)

)
= PT (k + 1 : 0)A(k + 1 : t0)P (t0 : 0),

where the last equality holds since for a permutation
matrix P we have PTP = I . Therefore, the claim holds
for all k > t0. Note that the choice of t0 was arbitrary
and, hence, the claim holds for any k > t0 ≥ 0.

(b) Suppose that {A(k)} is an ergodic chain. Then, by
the definition of ergodicity, we have limk→∞ A(k :
t0) = evT (t0) for a stochastic vector v(t0). Therefore,
it follows that for any ϵ > 0, there exists sufficiently
large integer N > 0 such that for all k ≥ Nϵ, we
have ∥Ai(k : t0) − vT (t0)∥ ≤ ϵ for all i ∈ [m], where
Ai(k : t0) denotes the ith row of A(k : t0). Now, notice
that PT (k : 0)A(k : t0) is a matrix that is obtained
by permuting the rows of A(k : t0). Therefore, for all
k ≥ Nϵ, we have ∥[PT (k : 0)A(k : t0)]i − vT (t0)∥ ≤ ϵ
for all i ∈ [m], where [PT (k : 0)A(k : t0)]i is the ith
row of PT (k : 0)A(k : t0). Thus, we have

∥[PT (k : 0)A(k : t0)P (t0 : 0)]i − vT (t0)P (t0 : 0)∥
= ∥[PT (k : 0)A(k : t0)]i − vT (t0)∥
≤ ϵ,

where we use ∥xTP∥ = ∥x∥ for any x ∈ Rm and any
permutation matrix. The preceding relation shows that
∥Bi(k) − vT (t0)P (t0 : 0)∥ ≤ ϵ for all i ∈ [m] and
k ≥ Nϵ. Note that for a fixed t0, the vector vT (t0)P (t0 :
0) is stochastic. Since the preceding argument holds for
any t0 and any ϵ, it follows that {B(k)} is ergodic.
Using a similar argument one can prove that ergodicity
of {B(k)} implies ergodicity of {A(k)}.

(c) Let {S(k)} be the trajectory of a set S ⊂ [m] under
a permutation chain {P (k)}. Then, using Bij(k) =
eTi B(k)ej , we have

Bij(k) = eTi B(k)ej

= eTi P
T (k + 1 : 0)A(k)P (k : 0)ej

= eTi(k+1)A(k)ej(k)

= Ai(k+1)j(k)(k), (5)

where {i(k)} and {j(k)} are the trajectories, respec-
tively, of the singleton sets {i} ⊂ [m] and {j} ⊂
[m] under the permutation chain {P (k)}. Therefore by
Eq. (5), we have

BS(k) =
∑

i∈S,j∈S̄

Bij(k) +
∑

i∈S̄,j∈S

Bij(k)

=
∑

i∈S,j∈S̄

Ai(k+1)j(k)(k) +
∑

i∈S̄,j∈S

Ai(k+1)j(k)(k)

=
∑

i∈S(k+1),j∈S̄(k)

Aij(k) +
∑

i∈S̄(k+1),j∈S(k)

Aij(k)

= AS(k+1)S(k)(k).

Lemma 1 shows that certain properties, such as ergodicity,
are preserved by rotational transformation. Using Lemma 1,
one can show that a rotational transformation also preserves
absolute infinite flow property (but not infinite flow prop-
erty).
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In the following two sections, through the use of the prop-
erties of rotational transformation, we explore connections
between absolute infinite flow property and ergodicity.

V. NECESSITY OF ABSOLUTE INFINITE FLOW FOR
ERGODICITY

In this section, we show the necessity of absolute infinite
flow property for ergodicity of any stochastic chain. Before
stating the main result let us restate a weaker version of this
result, as appeared in [8], [9].

Theorem 1: Infinite flow property is necessary for ergod-
icity of stochastic chains.

Using the properties of rotational transformation and The-
orem 1, the necessity of absolute infinite flow property for
ergodicity follows.

Theorem 2: Absolute infinite flow property is a necessary
condition for ergodicity of any stochastic chain {A(k)}.

Proof: Let {A(k)} be an ergodic chain. Consider
an arbitrary regular set sequence {S(k)} and suppose that
it is a trajectory of some S ⊂ [m] under a permutation
chain {P (k)}. Let {B(k)} be the rotational transformation
of {A(k)} with respect to the permutation chain {P (k)}.
Then, by Lemma 1-b, the chain {B(k)} is also ergodic.
By Theorem 1, the chain {B(k)} must have infinite flow
property, i.e.,

∑∞
k=0 BS(k) = ∞ for all k. According to

Lemma 1-c, there holds BS(k) = AS(k+1)S(k)(k) and,
therefore, it follows that F ({A(k)}; {S(k)}) = ∞. Since
{S(k)} is an arbitrary regular sequence, we conclude that
{A(k)} has absolute infinite flow property.

As indicated by Theorem 2 ergodicity of a chain {A(k)}
implies absolute infinite flow property of {A(k)}. However,
absolute infinite flow property is not sufficient to ensure
ergodicity. As an example, consider the static chain {A(k)}
defined by

A(k) =

 1 0 0
1
3

1
3

1
3

0 0 1

 for all k ≥ 0.

This chain is not ergodic since both e and e1 are fixed points
dynamics x(k + 1) = A(k)x(k) for k ≥ 0 with an arbitrary
x(0) ∈ R3. On the other hand, it can be seen that for any
S, S′ ⊂ [m] with |S| = |S′|, we have AS′S(k) ≥ 1

3 , implying
that the chain {A(k)} has absolute infinite flow property.

VI. ERGODICITY OF DOUBLY STOCHASTIC CHAINS

Although the converse result of Theorem 2 is not true for
an arbitrary stochastic chain, it is true for doubly stochastic
chains, as shown in this section. The result is based on
properties of rotational transformation (Lemma 1) and the
special representation of a doubly stochastic matrix in terms
of permutation matrices.

Let A be an arbitrary doubly stochastic matrix. Then,
by the Birkhoff-von Neumann theorem ([4], page 527),
the matrix A can be written as a convex combination of
permutation matrices. Specifically, there holds

A =
m!∑
ξ=1

βξP
(ξ), (6)

where βξ ≥ 0 with
∑m!

i=1 βξ = 1. Since scalars βξ are
non-negative and sum up to one, there exists some ξ∗ ∈
{1, . . . ,m!} such that βξ∗ ≥ γ for some γ ≥ 1

m! . Therefore,
we can rewrite Eq. (6) as

A = γP (ξ∗) +

(βξ∗ − γ)P (ξ∗) +
m!∑
ξ=1

βξP
(ξ)


= γP (ξ∗) + (1− γ)Ā,

where Ā = 1
1−γ

(
(βξ∗ − γ)P (ξ∗) +

∑m!
ξ=1 βξP

(ξ)
)

. Note
that the matrix Ā is a convex combination of permutation
matrices. Hence, by the Birkhoff-von Neumann theorem, Ā
is doubly stochastic. All in all, we conclude that any doubly
stochastic matrix A can be written as:

A = γP + (1− γ)Ā,

where P is a permutation matrix, Ā is a doubly stochastic
matrix, and γ is a scalar with γ ≥ 1

m! . Therefore, the
following lemma holds.

Lemma 2: For any doubly stochastic chain {A(k)}, there
exist a permutation chain {P (k)} and a scalar γ > 0 such
that

A(k) = γP (k) + (1− γ)Ā(k) for all k ≥ 0. (7)
For convenience, let us refer to {P (k)} as a permutation

component of the chain {A(k)} and γ as a mixing parameter
for {A(k)}.

Lemma 2 plays a crucial role in the establishment of the
converse result of Theorem 2 for doubly stochastic chains.
The idea is to use rotational transformation of a given
doubly stochastic chain with respect to one if its permutation
components and, then, to show ergodicity of the resulting
chain. The advantage of using rotational transformation will
become apparent from the following result.

Lemma 3: Let {A(k)} be a doubly stochastic chain with a
permutation component {P (k)} and a mixing parameter γ >
0. Let {B(k)} be the rotational transformation of {A(k)}
with respect to {P (k)}. Then Bii(k) ≥ γ for all i ∈ [m]
and k ≥ 0.

Proof: For all k ≥ 0, we have

A(k) = γP (k) + (1− γ)Ā(k).

Therefore, we have

B(k) = PT (k + 1 : 0)A(k)P (k : 0)

= γPT (k + 1 : 0)P (k)P (k : 0)

+ (1− γ)PT (k + 1 : 0)Ā(k)P (k : 0)

= γI + (1− γ)B̄(k),

where B̄(k) = PT (k + 1 : 0)Ā(k)P (k : 0). Therefore, the
result follows.

The final step toward the proof of the main result of this
section is the following result which is a direct consequence
of Theorem 5 in [8].

Theorem 3: Let {B(k)} be a doubly chain with Bii(k) ≥
γ > 0 for all i ∈ [m] and k ≥ 0. Then, {B(k)} is ergodic if
and only if {B(k)} has infinite flow property.
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By putting together Theorem 3, Lemma 2, and Lemma 3,
we now prove that absolute infinite flow property is sufficient
for ergodicity of doubly stochastic chains. Specifically, the
converse of Theorem 2 holds for doubly stochastic chains.

Theorem 4: A doubly stochastic chain is ergodic if and
only if it has absolute infinite flow property.

Proof: The necessity of absolute infinite flow property
is a consequence of Theorem 2. We prove the sufficiency. So
let {A(k)} be a doubly stochastic chain with absolute infinite
flow property. By Lemma 2, any doubly stochastic chain
has a permutation component {P (k)} with mixing parameter
γ > 0. Now, let {B(k)} be the rotational transformation of
{A(k)} with respect to {P (k)}. Since {A(k)} has absolute
infinite flow property, by Lemma 1-c it follows that {B(k)}
has infinite flow property. On the other hand, by Lemma 3,
we have Bii(k) ≥ γ f or all i ∈ [m] and k ≥ 0. Therefore,
by Theorem 3 the chain {B(k)} is ergodic. This in turn, by
Lemma 1-a implies ergodicity of {A(k)}.

Theorem 4 shows that for doubly stochastic chains ergod-
icity and absolute infinite flow property are two equivalent
concepts.

An immediate corollary to Theorem 4 is an equivalent
formulation of strong ergodicity for an inhomogeneous finite
state Markov chain with doubly stochastic probability tran-
sition matrices. Generally, for a Markov chain the concept
of ergodicity has two different aspects, namely weak ergod-
icity and strong ergodicity. A Markov chain with transition
probability matrices {Q(k)} is said to be weakly ergodic if
limk→∞ ∥Qi(t0 : k)−Qj(t0 : k)∥ = 0 for all i, j ∈ [m] and
all t0 ≥ 0 [2]. If a Markov chain is weakly ergodic and the
limit limk→∞ Q(t0 : k) exists for all t0 ≥ 0, it is said to be
strongly ergodic (see [2]).

Using the transpose of the forward product Q(t0 : k)
for k > t0, we arrive at the backward product QT (k :
t0) = QT (k) · · ·QT (t0). Since the transpose of any doubly
stochastic matrix is a doubly stochastic matrix, the resulting
backward product is the product of some doubly stochastic
matrices. Also note that for S, S′ ⊂ [m] with |S| = |S′|,
we have AS′S = AT

SS′ which follows from the definition of
AS′S in Eq. (2). Therefore, the following corollary immedi-
ately follows from Theorem 4.

Corollary 1: An inhomogeneous finite state Markov chain
{x(k)} with doubly stochastic transition probability matrices
{Q(k)} is strongly ergodic if and only if {QT (k)} has
absolute infinite flow property, or in other words:

∞∑
k=0

QS(k)S(k+1)(k) = ∞,

for any regular sequence {S(k)} of sets S(k) ⊂ [m].

VII. INFINITE FLOW GRAPH

In this section, we consider doubly stochastic chains that
do not have infinite flow property and we show that their
backward products always have finitely many accumulation
points.

Let {A(k)} be a doubly stochastic chain. In [7], we
showed that if Aii(k) ≥ γ > 0 for all i ∈ [m] and k ≥ 0,

then the limit limk→∞ A(t : k) always exists. We established
this result by considering the infinite flow graph of a given
chain {A(k)}, as defined bellow.

Definition 7: The infinite flow graph of a stochastic chain
{A(k)} is the graph G∞ = ([m], E∞) with E∞ = {{i, j} |∑∞

k=0 (Aij(k) +Aji(k)) = ∞, i ̸= j ∈ [m]}.
In fact, the infinite flow graph of a chain {A(k)} is a

graph on m vertices with edges that carry infinite flow over
the time. Note that a chain {A(k)} has infinite flow property
if and only if its infinite flow graph is connected. However,
in general, the infinite flow graph may not be connected
and, hence, it may have several connected components. The
following result is a direct consequence of Theorem 5 in [7].

Theorem 5: Let {A(k)} be a doubly stochastic chain with
Aii(k) ≥ γ > 0 for all i ∈ [m] and k ≥ 0. Let G∞ be
the infinite flow graph of {A(k)}. Then, the limit Φ(t0) =
limk→∞ A(k : t0) exists for all t0 ≥ 0. Moreover, Φi(t0) =
Φj(t0) for all t0 ≥ 0 if and only if i and j belong to the
same connected component of G∞.

Note that Theorem 3 is a special case of Theorem 5 when
G∞ is a connected graph.

For the main result of this section, let us define the
following property.

Definition 8: We say that a chain {H(k)} is convergent
up to a permutation sequence, if there exists a permutation
sequence {Q(k)} such that limk→∞ Q(k)H(k) exists.

Note that limk→∞ Q(k)H(k) exists if and only if a per-
mutation of rows of H(k) is convergent which is essentially
equivalent to convergence of the set of vectors consisting of
the rows of H(k), as k goes to infinity.

Now, using Theorem 5 and the properties of the rotational
transformation we can prove the following result.

Theorem 6: Let {A(k)} be a doubly stochastic chain.
Then, as k → ∞, the product H(k) = A(k : t0) is
convergent up to a permutation sequence for all t0 ≥ 0.

Proof: By Lemma 2, {A(k)} has a permutation com-
ponent {P (k)} with a mixing coefficient γ > 0. Let {B(k)}
be the rotational transformation of {A(k)} with respect to
{P (k)}. Then, by Lemma 3 we have Bii(k) ≥ γ for all
i ∈ [m] and k ≥ 0. Therefore, by Theorem 5 the product
B(k : t0) converges as k goes to infinity, for all t0 ≥ 0. On
the other hand, by Lemma 1-a, we have B(k : t0) = PT (k :
0)A(k : t0)P (t0 : 0), or equivalently

B(k : t0)P
T (t0 : 0) = PT (k : 0)A(k : t0).

Since B(k : t0)P
T (t0 : 0) is a matrix given by a fixed

permutation of the columns of B(k : t0), it follows that the
limit

lim
k→∞

B(k : t0)P
T (t0 : 0) = lim

k→∞
PT (k : 0)A(k : t0)

exists for all t0 ≥ 0. The matrix Q(k) = PT (k : 0) is a
permutation matrix for all k ≥ 0 and, hence, the product
A(k : t0) is convergent up to a permutation sequence for all
t0 ≥ 0.

A direct consequence of Theorem 6 is the following
corollary.
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Corollary 2: Let {A(k)} be a doubly stochastic chain.
Then, the set {A(k : 0) | k ≥ 0} has at most m!
accumulation points.

Proof: By Theorem 6, the product A(k : 0) is
convergent up to a permutation sequence, i.e., B =
limk→∞ Q(k)A(k : 0) exists for a permutation sequence
{Q(k)}. Now, consider an accumulation point Ā of {A(k :
0) | k ≥ 0}, as k → ∞. Thus, we have limr→∞ A(kr : 0) =
Ā for a subsequence {kr} and

B = lim
k→∞

Q(k)A(k : 0) = lim
r→∞

Q(kr)Ā.

From this, we conclude that Ā is a permutation of the rows
of B. Since there are m! permutation matrices in Rm×m,
it follows that the set {A(k : 0) | k ≥ 0} has at most m!
accumulation points.

Corollary 2 does not hold in general for an arbitrary
stochastic chain. As an example, consider the chain {A(k)}
given by

A(k) =

 1 0 0
qk 0 1− qk
0 0 1

 ,

where the sequence {qk} is chosen from rational numbers
in [0, 1] such that each rational number in [0, 1] appears
infinitely often in this sequence (since the rational numbers
can be enumerated, such a sequence exists). It can be shown
that in this case the set of accumulation points of {A(k : 0) |
k ≥ 0} is the set of stochastic matrices of the form 1 0 0

c 0 1− c
0 0 1

 where c ∈ [0, 1].

Obviously, the set of such matrices is not finite.

VIII. CONCLUSION

In this paper, we studied the backward product of stochas-
tic and doubly stochastic matrices. We introduced the concept
of absolute infinite flow property and showed that this
property is necessary condition for ergodicity of a stochastic
chain. Moreover, we proved that this property is also suffi-
cient for ergodicity of a doubly stochastic chain. This result
provides an alternative formulation of ergodicity for doubly
stochastic chains. Finally, by considering arbitrary doubly
stochastic chains, we showed that the set of accumulation
points of the backward product of any doubly stochastic
chain is finite.
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