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Abstract— This paper studies optimal switching on and off
the full capacity of an M/M/∞ queue with holding, running
and switching costs. The main result is that an average-cost
optimal policy either always runs the system or is defined by
two thresholds M and N, such that the system is switched on
at arrival epochs when the number of customers in the system
accumulates to N and it is switched off at departured epoch
when the number of customers in the system decreases to M.

I. Introduction

Consider an M/M/∞ queue with customers arriving ac-
cording to a Poisson process with parameter λ. Service
times are exponential with parameter µ and independent. The
number of servers is unlimited. The system can be switched
on and off any time. All occupied servers operate when the
system is on, and all the servers are off when the system is
off.

The costs include the linear holding cost h for a unit of
time that a customer spends in the system, the start-up cost
s1, the shut-down cost s0, and the running costs c1 per unit
time when the system is on and c0 per unit time when the
server is off. All the costs are nonnegative and c1 > c0. Let
c = c1 − c0. The goal is to maximize the average cost per
unit time. It is clear that without loss of generality we may
assume that c1 = c > 0 and c0 = 0. So, throughout the paper
the cost of running the system per unit time equals c > 0, and
the cost of keeping the system off is zero. We also assume
that h > 0, and at least one of the costs s0 or s1 is positive,
that is s0 + s1 > 0.

To simplify the initial analysis, we assume that the server
can be turned on and off only at time 0, customer arrival
times, and customer departure times. These times are jump
epochs for the process X(t) of the number of customers in
the system at time t. Let t0, t1, . . . be the sequence of jump
epochs. We initially consider the servers can be switched on
and off only at jump epochs. Switching takes place only
at these times is not restrictive, and the optimal policies
described in the paper are also optimal when the system can
be turned on and off any time.

The main result of this paper is that either the policy
that always keeps the server on is average-cost optimal or
for some integers M and N, where N > M ≥ 0, the so-
called (M,N)-policy, is average-cost optimal. The (M,N)-
policy switches the running system off when the number of
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customers in the system is not greater than M and it turns
the idling system on when the number of customers in the
queue reaches or exceeds N.

In particular, (0,N)-policies are known in the literature
under the name of N-policies. It is well-known [8] that for
an M/G/1 queue either the policy that always runs the sever
is average-cost optimal or, for some natural number N, the
N-policy is average-cost optimal. As numerical results show,
N-policies may not be average-cost optimal for M/M/∞
queues. [14] studied (M,N)-policies for GI/G/1 queues, and
[2] studied N-policies for M/M/∞ queues.

The difference between the results for single-server queues
(optimality of N-policies) and multi-server queues (optimal-
ity of (M,N)-policies and suboptimality of N-policies) allows
the following intuitive explanations. In classic single-server
queues, the same resource (the single server) is allocated to
each customer during its service, and this does not depend
on when the customer is served. Therefore, to minimize
average switching and holding costs, the system should be
always run when it is not empty. For queues with parallel
servers and running costs independent of the number of
customers in service, the costs to run the servers are spread
among the customers in service. Therefore, if the number of
customers in system is small, the cost to serve each customer
is relatively high. Thus, it may be profitable to switch the
system off when the number of customers in the system is
small (though it is positive). Among other results, the current
paper proves this concept for M/M/∞ queues.

Reference [10] analyzes a queueing model of software re-
leases, computes performance characteristics for N policies,
and finds the best N-policy. In this model, the customers
are software users, and each release serves each customer
waiting for a software release with a probability p. Thus,
if there are n customers waiting for service, on average
np of them will be served by a software release. Similarly
to M/M/∞, for this model the number of simultaneously
served customers increases with the number of customers in
system, and service times are independent on the number of
customers in the system. Though the queue studied in in [10]
differs from M/M/∞, these two models have the same fluid
approximations. Therefore, the results of the current paper
can provide insights regarding the optimal policies for the
software maintenance model considered in [10].

Another possible application is a scalable IT system. Con-
sider an IT application or a server that is capable of parallel
processing of a large number of requests. Additional request
have negligible effects on the times to process other requests.
This system can be approximately modelled by a parallel
queue with an unlimited number of servers. Therefore, if
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the number of requests is small then it may be profitable to
turn the system off or switch it to other operations, such as
maintenance, if there are customers in the system, but their
number is small.

While it is easy to derive performance characteristics for
M/G/1 queues controlled by (M,N)-policies, this problem
is nontrivial for M/M/∞ queues. As far as we know, there
are no finite formulae for expectations of busy periods and
waiting times for M/M/∞ queues controlled by (M,N)-
policies. This complicates the analysis of the problem studied
in this paper. Performance characteristics for specific multi-
server queues with switching on and off certain groups of
customers were recently analyzed in [19] and [16], and a
genetic algorithm to find the closed-form multi-threshold
control policy for a two-server case is presented in [11].

A controlled M/M/∞ queue can be modeled as a
Continuous-Time Markov Decision Process. Since the ser-
vice rate is iµ when there are i customers in the system and
i is not bounded, the transition rates in this CTMDP are
not bounded. This is an additional complication. CTMDPs
with unbounded transition rates were recently studied by
[6]. However, it was assumed there that any stationary
policy defines an ergodic continuous-time Markov chain.
This condition does not hold for the problem we consider
because the policy that always keeps the system off defines
a transient Markov chain. Therefore, in this paper we provide
a direct analysis of this problem.

First we study the expected total discounted costs. The
problem with the expected total discounted costs can be
reduced to a discrete-time problem with the expected total
costs. Since the transition rates are unbounded, the total
costs for discrete-time problem cannot be presented as total
discounted costs with the discounted factor smaller than 1.
However, since all the costs are nonnegative, the resulted
discrete-time problem belongs to the class of negative MDPs.
For this negative MDP we derive the optimality equation,
show that the value function is finite, and establish the
existence of stationary optimal policies; see Theorem 1.

Then, in Section III-B we investigate the discrete-time
total-cost problem limited to the policies that never turn
the running system off. Such policies are called full-service.
We show that within the class of full-service policies there
exist stationary total-cost optimal policies. These policies are
computed explicitly in Theorem 3. They are defined by a
number nα such that the system should be switched on as
soon as the number of customers is greater or equal than
nα, where α > 0 is the discount rate. The important feature
of the function nα is that it is increasing in α and therefore
bounded when α ∈ [0, α∗] for any α ∈ (0,∞).

In Section III-D we prove the existence of stationary
Blackwell-optimal policies and describe their structure. A
policy is called Blackwell-optimal, if there exists α∗ > 0
such that this policy is discount-optimal for any discount
rate α ∈ (0, α∗].

II. Problem Formulation
We model the above described problem as a CTMDP. The

state space is S = N×{0, 1}, where N = {0, 1, . . .}. If the state
of the system at the decision epoch n is xn = (Xn, δn) ∈ S ,
this means that the number of customers in the system is Xn

and the state of the system is δn, with δn = 1 if the system
is on and δn = 0 if the system is off. The action set is
A = {0, 1}, where a = 0 means that the system should be off

and a = 1 means that the system should be on. If the action
an is selected at a decision epoch tn, when the system is at a
state (Xn, δn), the system is switched immediately, if an , δn,
and its status (on or off) remains unchanged, if an = δn. In
particular, if the system is off, that is δn = 0, the decision
an = 1 turns the system on, and, if the system is on, that is
δn = 1, the decision an = 0 turns it off.

If the system is off or Xn = 0, the time until the next jump
epoch, which is an arrival, has an exponential distribution
with the intensity λ. If Xn = i > 0 and the system is
on, the time until the next jump epoch has an exponential
distribution with the intensity Λi = λ + iµ, and this jump is
an arrival with the probability λ/Λi and a departure with the
probability iµ/Λi.

A history of the process up to nth jump, n = 0, 1, . . .,
is the sequence t0, x0, a0, . . ., tn−1, xn−1, an−1, tn, xn. Let Hn

be the set of all histories up to nth decision epoch. Then
H = ∪0≤n<∞Hn is the set of all histories that contain a finite
number of decision epochs. A (possibly randomized) policy
π is defined as a transition probability from H to A such that
π(A|hn) = 1 for each hn ∈ H, n = 0, 1, . . .. A stationary policy
is defined by a mapping π : S → A such that π(x) ∈ A, x ∈ S .

For each initial state of the system x0 = (i, δ), and for
any policy π, the policy π defines a stochastic sequence
{xn, an, tn, n = 0, 1, . . .}, where t0 = 0 and tn+1 ≥ tn. We denote
by Eπ

x0
the expectation of this process.

Now we define the cost function. If xn = {i, δ}, and an
action a is selected then the cumulative cost during the
interval [tn, tn+1], where 0 ≤ tn ≤ tn+1 is

c(i, δ, a, tn, tn+1) =

∫ tn+1

tn
(hi + cI{δ = 1})dt + sa|δ − a|,

where I is the indicator function. The cumulative cost over
the interval t is

C(t) =

N(t)−1∑
n=0

c(Xn, δn, an, tn, tn+1) + c(XN(t), δN(t), aN(t), tN(t), t),

where N(t) is the number of jump epochs up to time t. Thus,
N(t) does not count the jump at t0 = 0.

Let N1(t) be the number of arrivals and N2(t) be the
number of departures by time t. Since N1(t) is a Poisson
process then with probability 1 N1(t) < ∞ for t < ∞ and
N1(t) → ∞ as t → ∞. Since N(t) = N1(t) + N2(t) and
N2(t) ≤ N1(t) + X0, we have that N1(t) ≤ N(t) ≤ 2N1(t) + X0.
This implies that with probability 1 N1(t) < ∞ for t < ∞ and
N1(t)→ ∞ as t → ∞. Thus with probability 1 all the epochs
tn are finite and tn → ∞ as n→ ∞.

We observe that C(t) = ∞ with probability 1 when N(t) =

∞. We define the state of the server at time t as δ(t) = δn
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for tn ≤ t ≤ tn+1, and the number of customers at time t as
X(t) = Xn for tn ≤ t ≤ tn+1. Using these notations, we can
rewrite

C(t) =

∫ t

0
(hX(t) + cδ(t))dt +

N(t)∑
n=0

san |an − δn|, (1)

where we use that |a − δ| = 0, if a = δ, and |a − δ| = 1,
if a , δ. Observe that C(t) is a nondecreasing nonnegative
function.

For any initial state of the system x0 = (i, δ), and for any
policy π, the expected total discounted cost over the infinite
horizon is

Vπ
α(i, δ) = Eπ

(i,δ)

∫ ∞

0
e−αtdC(t)

=Eπ
(i,δ)[

∫ ∞

0
e−αt(hX(t) + δ(t)c)dt +

∞∑
n=0

e−αtn |an − δn|san ]. (2)

The average cost per unit time is defined as

vπ(i, δ) = lim sup
t→∞

t−1Eπ
x0

C(t). (3)

Let

Vα(i, δ) = inf
π

Vπ
α(i, δ), (4)

v = inf
π

vπ(i, δ). (5)

A policy ϕ is called discount-optimal if Vϕ
α (i, δ) = Vα(i, δ)

for any policy π and for any x0 = (i, δ). A policy ϕ is
called average-cost optimal if vϕ(i, δ) = v for any policy π
and for any x0 = (i, δ). If π is a Blackwell optimal policy
and the limit in (3) exists then π is average-cost optimal.
This follows from Tauberian theorems [18]. An average-cost
optimal policy may not be Blackwell optimal.

III. Discounted Cost Criterion

In this section we study the expected total cost criterion.

A. Reduction to Discrete Time and Existence of Stationary
Discount-Optimal Policies

In this subsection, we formulate the optimality equation,
prove the existence of stationary discount-optimality equa-
tions. This is done by reduction of our problem to discrete
time.

When the system is on and there are i customers in it,
the time until the next jump has an exponential distributions
with intensity Λi → ∞ as i → ∞. Since the jump rates
are unlimited, it is impossible to present the problem as a
discounted MDP with the discount rate smaller than 1. Thus,
we shall present our problem as a negative MDP.

A discrete time MDP is called negative [15], [1], [12],
[5], if the costs are nonnegative and the goal is to minimize
the expected total costs. Similar to discounted MDPs, the
value function for a negative MDP satisfies the optimality
equation. In addition, if the action sets are finite, there exists
a stationary optimal policy. Furthermore, a stationary policy
is optimal if and only if it satisfies an optimality equation.
This means that for an MDP with a countable state set

X, action sets A(x), transition probabilities p(y|x, a) , and
nonnegative one-step costs c(x, a), a stationary policy φ is
optimal if and only if for all x ∈ X it satisfies

V(x) = c(x, φ(x)) +
∑
y∈X

p(y|x, φ(x))V(y), (6)

where V(x) is the infimum of the expected total costs starting
from state x. In addition, the value function V(x) satisfies the
optimality equation

V(x) = min
a∈A(x)

{c(x, a) +
∑
y∈X

p(y|x, a)V(y)}, x ∈ X. (7)

For our queueing control problem, define the following
values:

β(i, a) =


λ

λ + α
, if a = 0,

Λi

Λi + α
, if a = 1,

(8)

p( j|i, a) =



1, if a = 0, j = i + 1,
λ

Λi
, if a = 1, j = i + 1,

iµ
Λi
, if i > 0, a = 1 j = i − 1,

0, otherwise,

(9)

and c((i, 0), 0) =
hi

λ + α
, c((i, 1), 0) = s0 + c((i, 0), 0),

c((i, 1), 1) =
hi + c
Λi + α

, and c((i, 0), 1) = s1 + c((i, 1), 1). Let

pα( j|i, a) = β(i, a)p( j|i, a)).

We follow the conventions that pα(−1|i, a) = 0, Vα(−1, δ) =

0,
∑
∅

= 0, and
∏
∅

= 1.

The following theorem is the main result of this subsec-
tion.

Theorem 1: For any α > 0 the following statements hold:
(i) For all i = 0, 1, . . .

Vα(i, δ) ≤ (1 − δ)s1 +
hi

µ + α
+

hλ
α(µ + α)

+
c
α
< ∞.

(10)

(ii) For all i = 0, 1, . . . and all δ = 0, 1 the value function
Vα(i, δ) satisfies the optimality equation

Vα(i, δ) = min
a∈{0,1}

{c((i, δ), a) + pα(i − 1|i, a)Vα(i − 1, a)

+ pα(i + 1|i, a)Vα(i + 1, a)} = min{(1 − δ)s1 (11)

+
hi + c
α + Λi

+
λ

α + Λi
Vα(i + 1, 1) +

iµ
α + Λi

Vα(i − 1, 1), δs0

+
hi

α + λ
+

λ

α + λ
Vα(i + 1, 0)}.

(iii) There exists a stationary discount-optimal policy, and a
stationary policy φ is discount-optimal if and only if for
all i = 0, 1, . . . and for all δ = 0, 1

Vα(i, δ) = min
φ(i,δ)∈[0,1]

{c((i, δ), φ(i, δ))

+ pα(i − 1|i, φ(i, δ))Vα(i − 1, φ(i, δ)) (12)
+pα(i + 1|i, φ(i, δ))Vα(i + 1, φ(i, δ))} .
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Because of Theorem 1(iii), we consider only stationary
policies in the remaining part of the paper. Define V1

α(i, δ)
and V0

α(i, δ) as follows:

V1
α(i, δ) = (1 − δ)s1 +

hi + c
α + Λi

+
λ

α + Λi
Vα(i + 1, 1)

+
iµ

α + Λi
Vα(i − 1, 1),

V0
α(i, δ) = δs0 +

hi
α + λ

+
λ

α + λ
Vα(i + 1, 0). (13)

The following lemma follows from optimality equation (11).
Lemma 3.1: The following properties hold for the func-

tion Vα(i, δ).
(a) If Vα(i, 0) = V1

α(i, 0), then Vα(i, 1) = V1
α(i, 1).

(b) If Vα(i, 1) = V0
α(i, 1), then Vα(i, 0) = V0

α(i, 0).
(c) −s1 ≤ Vα(i, 1) − Vα(i, 0) ≤ s0.

B. Full Service Policy

In subsection III-A, we defined the MDP action sets
A(i, δ) = A = {0, 1} for all i = 0, 1, . . . and for all δ = 0, 1.
The class of the policies that never turns the running server
off is the class of all policies in the MDP with A(i, 0) = A
and A(i, 1) = {1}, i = 0, 1, . . . . This is a sub-model of our
original model. Define by (4) Uα(i, δ) as the optimal total
discount cost for this new MDP. From (10) we have

Vα(i, δ) ≤ Uα(i, δ) ≤ (1 − δ)s1 +
hi

µ + α
+

hλ
α(µ + α)

+
c
α
.

(14)

Theorem 2: For any α > 0 the following statements hold:
(i) For all i = 0, 1, . . .

Uα(i, 1) =
hi

µ + α
+

hλ
α(µ + α)

+
c
α
. (15)

(ii) For all i = 0, 1, . . ., the value function Uα(i, 0) satisfies
the optimality equation

Uα(i, 0) = min{s1 +
hi + c
α + Λi

+
λ

α + Λi
Uα(i + 1, 1)

+
iµ

α + Λi
Uα(i − 1, 1),

hi
α + λ

+
λ

α + λ
Uα(i + 1, 0)}.

(16)
Proof:

(i) Let π be the policy that never turns the running system

off. Uα(i, 1) = Vπ
α(i, 1) =

hi
µ + α

+
hλ

α(µ + α)
+

c
α

.

(ii) Since Uα(i, 0) is the optimal discount cost for the sub-
model of the original MDP, it satisfies the optimality
equation of the original MDP. Thus, (16) follows from
(11).

Definition 1: For an integer n ≥ 0, a policy is called n-full
service if it never turns the running sever off and turns the
inactive server on if and only if there are n or more customers
in the system. In particular, the 0-full service policy turns on
the server at time 0, if it is off, and always keeps it on. A
policy is called full service if and only if it is n-full service
for some n ≥ 0.

The following theorem implies that an n-full service policy
is discount-optimal within the class of policies that never turn
the running system off.

Theorem 3: A policy φ is discount optimal within the
class of the policies that never turn off the server if and
only if for all i = 0, 1, . . .,

φ(i, 0) =

1, if i > A(α),
0, if i < A(α),

where

A(α) =
(µ + α)(c + αs1)

hµ
. (17)

The following definition and lemmas are used in the proof
of Theorem 3.

Definition 2: The policy ϕ with ϕ(i, δ) = δ for all i =

0, 1, . . . and δ is called passive.
Lemma 3.2: For any α > 0, the passive policy ϕ is not

optimal within the class of policies that never turn off the
running system. Furthermore, Vϕ

α (i, 0) > Uα(i, 0) for all i =

0, 1, . . ..
Lemma 3.3: Let ψ be the policy that turns the system on

at time 0 and keeps it on forever, and π be the policy that
waits for one arrival and then turns the system on and keeps
it on forever. Then

Vπ
α(i, 0) > Vψ

α (i, 0), if i > A(α),
Vπ
α(i, 0) < Vψ

α (i, 0), if i < A(α),
Vπ
α(i, 0) = Vψ

α (i, 0), if i = A(α);

where A(α) is as in (17).
Proof: Let φ be a stationary optimal policy within the

class of the policies that never turn off the running system.
Let ψ be the policy that turns the system on at time 0 and
keeps it on forever, and π be the policy that waits for one
arrival and then turns the system on and keeps it on forever.
By (16),

Vφ
α(i, 0) = min

{
s1 + Uα(i, 1),

hi
λ + α

+
λ

λ + α
Uα(i + 1, 0)

}
.

(18)

We show that if i > A(α), then φ(i, 0) = 1. Indeed, let φ(i, 0) =

0 for some i > A(α). By Lemma 3.2, φ( j, 0) = 1 for some
j > i. Thus, there exists an i∗ ≥ i such that φ(i∗, 0) = 0
and φ(i∗ + 1, 0) = 1. This implies that Vψ

α (i∗, 0) ≥ Vπ
α(i∗, 0),

where i∗ > A(α). By Lemma 3.3, this is a contradiction. Thus
φ(i, 0) = 1 for all i > A(α).

If i < A(α), then Lemma 3.3 implies Vπ
α(i, 0) < Vψ

α (i, 0).
Thus φ(i, 0) = 0 for all i < A(α).

Let A(α) be an integer and i = A(α). In this case,
Lemma 3.3 implies Vψ

α (i, 0) = Vπ
α(i, 0). From (16), Vψ

α (i, 0) =

Vπ
α(i, 0) = Uα(i, 0) = min

{
Uψ
α (i, 0),Uπ

α(i, 1)
}
. Thus φ(i, 0) = 1

or φ(i, 0) = 0.
Corollary 1: Let

nα = dA(α)e, (19)

7681



where A(α) is as in (17). Then for i < nα

Uα(i, 0) =

nα−i−1∑
k=0

(
λ

λ + α

)k h(i + k)
λ + α

+

(
λ

λ + α

)nα−i (
s1 +

hnα
µ + α

+
hλ

α(µ + α)
+

c
α

)
, (20)

and for i ≥ nα

Uα(i, 0) = s1 +
hi

µ + α
+

hλ
α(µ + α)

+
c
α
, (21)

Proof: Theorem 3 implies that nα-full service policy is
discount-optimal within the class of policies that never turn
off the running system, where nα is as in (19).

C. Reduction to Finite State Space and Existence of Black-
well Optimal Policies

In this section, we explore the existence of Blackwell
optimal [3], [9] policy. Define

N∗α = min{i ≥ 0 : V1
α( j, 0) ≤ V0

α( j, 0), for all j ≥ i}. (22)

The following lemma implies that N∗α is well defined.
Lemma 3.4: N∗α ≤ nα for all α > 0.
From Lemma 3.4, N∗α is bounded from above by nα

for each α. Define an SMDP with finite state space S ′ =

{0, 1, . . . , nα} × {0, 1}.The state of this SMDP at the decision
epoch n is xn = (Xn, δn) ∈ S ′. The action set A = {0, 1}
is the same as the original CTMDP. The time until the
next decision epoch is the same as the original CTMDP
for Xn = 0, 1, . . . , nα − 1 and δn = 0, 1. When at state
(nα, 1), let τ be a random variable that represents the first
time the system returns to (nα, 1) before transition to (nα −
1, 1). The transition probabilities p̃( j|i, a) = p( j|i, a) from
(9) for i, j = 0, 1, . . . , nα − 1 and a = 0, 1 , except that
p̃(nα|nα, a) = 1. The one step cost c̃((i, δ), a) = c((i, δ), a)
for i = 0, 1, . . . , nα − 1, δ = 0, 1 and a = 0, 1, except
c̃((nα, 1), 1) = E

[∫ τ

0 (c + hX(t))dt
]
, and c̃((nα, 0), 1) = s1 +

c̃((nα, 1), 1), where X(t) is the system size at time t. Denote
by Ṽα(i, δ) as the optimal total discounted cost for this SMDP.
Define T ′i as the time for the number of customers in the
system becomes i − 1 if at time 0 it is i = 1, 2, . . . if the
system is running all the time. Let C′i,α be the total holding
and serving costs during T ′i , i.e.

C′i,α =

∫ T ′i

0
(c + hX(t))dt. (23)

We show next that this SMDP is equivalent to the original
CTMDP, i.e., Ṽα(i, δ) = Vα(i, δ) for all i = 0, 1, . . . and δ =

0, 1.
Lemma 3.5: If Vϕ

α (i, δ) = Vα(i, δ) for i = 0, 1, . . . , nα and
ϕ(i, δ) = 1 for all i > nα, then Vϕ

α (i, δ) = Vα(i, δ) for i =

nα + 1, nα + 2, . . ..
Proof: Proof of Lemma 3.5. For an α∗ > 0, let ϕ be

an optimal stationary policy for the SMDP defined above.
Define ϕ∗ for the original CTMPD as

ϕ∗ =

ϕ(i, δ), if i ≤ nα∗ ,
1, otherwise.

(24)

We show that for α ∈ (0, α∗], Ṽα(i, δ) = Vα(i, δ), for all
i = 0, 1, . . . and δ = 0, 1. Indeed,

Ṽα(i, δ) = Ṽϕ
α (i, δ) = Vϕ∗

α (i, δ) ≤ Vα(i, δ).

On the other hand, since Vα(i, δ) = V1
α(i, δ) for all i ≥ Nα,

then

Vα(i, δ) ≤ Vϕ∗

α (i, δ) = Ṽϕ
α (i, δ) = Ṽα(i, δ).

Thus each optimal stationary policy for the reduced SMDP
is also optimal for the original CTMDP.

Theorem 4: There exist a Blackwell optimal policy for the
original model.

Proof: Proof of Theorem 4. Consider the SMDP defined
before Lemma 3.5. Since Ṽφ

α(i, δ) > 0 for all α > 0 and any
for any policy π, then α = 0 is the isolated singularity of
every function αṼπ

α(i, δ), α > 0. According to [3, Theorem 3],
this implies that the reduced SMDP has a Blackwell optimal
policy ϕ. Because of Lemma 3.5, the policy ϕ∗ defined in
(24) is Blackwell optimal for the original problem.

D. Structure of Blackwell Optimal Policies

Definition 3: A policy is called (M,N)-policy if there
exists two integers M and N, with 0 ≤ M < N < ∞, such
that at state (i, 0), leave the system off if i < N and turn on
the system if i ≥ N; at state (i, 1), leave the system on if
i > M and turn off the system if i ≤ M.
The main result of this section is Theorem 5.

Theorem 5: Let n = lim
α→0

nα = bc/h + 1c, where nα is as in
(19).
(i) When c < λ(s0 + s1)/n + h(n − 1)/2, the n-full service

policy is Blackwell optimal;
(ii) When c > λ(s0 + s1)/n + h(n − 1)/2, there exist two

integers M and N, with 0 ≤ M < N ≤ n, such that the
(M,N)-policy is Blackwell optimal.

Consider an α∗ > 0 such that a Blackwell optimal policy
is discount optimal for all α ∈ (0, α∗]. By Definition 3, M is
the threshold that we switch off the system upon a departure,
i.e.

M = max{i ≥ 0 : V0
α(i, 1) ≤ V1

α(i, 1)}, α ∈ (0, α∗]. (25)

In view of Theorem 5 (ii), M is well defined. Let N be the
threshold that we turn on the system upon an arrival,, i.e.

N = min{i ≥ 0 : V1
α(i, 0) < V0

α(i, 0)}, α ∈ (0, α∗]. (26)

0 ≤ N ≤ N∗α for α ∈ (0, α∗], where N does not depend on α.
We first provide some lemmas before proving Theorem 5.

Lemma 3.6: There exists an α∗ > 0 such that for all α ∈
(0, α∗], E[C′i,α] =

h
µ + α

+ vE[T ′i ] + O(α),

where v is as in (5).
The next lemma implies the monotonicity property of

E[T ′i ]. The stochastic monotonicity for stationary recurrence
times in queueing control model with a removable server is
considered in [4].

Lemma 3.7: E[T ′i ]−E[T ′i+1] > 0 and is decreasing in i for
i = 1, 2, . . ..
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Lemma 3.8: There exists some α∗ > 0 such that for α ∈
(0, α∗], if Vα(i, 1) = V1

α(i, 1), then Vα(i + 1, 1) = V1
α(i + 1, 1).

Corollary 2: Vα(i, 1) = V1
α(i, 1) for all i > M and

Vα(i, 1) = V0
α(i, 1) for all i ≤ M, where M is as in (25).

Proof: By definition of M, Vα(M, 1) = V0
α(M, 1) and

Vα(i, 1) = V1
α(i, 0) for all i > M. Assume that there exists

an 0 ≤ i ≤ M such that Vα(i, 1) = V1
α(i, 1). By Lemma

3.8, Vα(i + 1, 1) = V1
α(i + 1, 1) and by induction we have

Vα(M, 1) = V1
α(M, 1). This is a contradiction.

Lemma 3.9: There exists some α∗ > 0 such that for α ∈
(0, α∗], if Vα(i, 0) = V1

α(i, 0), then Vα(i + 1, 0) = V1
α(i + 1, 0).

Corollary 3: There exists some α∗ > 0 such that for α ∈
(0, α∗], Vα(i, 0) = V0

α(i, 0) for all i < N, and Vα(i, 0) = V1
α(i, 0)

for all i ≥ N, where N is as in (26).
Proof: By definition of N, Vα(N, 0) = V1

α(N, 0) and
Vα(i, 0) = V0

α(i, 0) for all i < N. From Lemma 3.9, Vα(i, 0) =

V1
α(i, 0) for all i > N.
Corollary 4: There exists α∗ > 0 such that for all α ∈

(0, α∗], N = N∗α,where N∗α is as in (22).
Proof: By Corollary 3, Vα(i, 0) = V1

α(i, 0) for all i ≥ N,
thus N ≥ N∗. On the other hand, Vα(N∗, 0) = V1

α(N∗, 0), thus
N∗ ≥ N.

Corollary 5: There exists some α∗, such that for all α ∈
(0, α∗], M < N

Proof: Assume that N ≤ M. Let i be such that N ≤ i ≤
M. By Corollary 3, Vα(i, 1) = V1

α(i, 1). However, by Corollary
2, Vα(i, 1) = V0

α(i, 1). This is a contradiction.

IV. Average Cost Criterion

The theorem below follows from Theorem 5. It describes
the structure of average-cost optimal policies.

Corollary 6: For average costs per unit time, let n =

bc/h + 1c. Then

(i) When c ≤ λ(s0 + s1)/n + h(n − 1)/2, any full-service
policy is average-cost optimal.

(ii) When c > λ(s0 + s1)/n + h(n − 1)/2, there exist two
integers M and N, with 0 ≤ M < N ≤ n, such that the
(M,N)-policy is average-optimal.

V. Conclusions

This paper describes optimal policies for switching on and
off the full service capacity of an M/M/∞ queue. The cost
structure consists of linear holding costs, the cost to run the
systems per unit time, and the switching costs. For average
costs per unit time, we prove that there is an optimal policy
that either always runs the system or is an (M,N)-policy. An
(M,N)-policy, where N > M ≥ 0, switches the system on
when there are N or more customers in the system and turns
it off when the number of customers in the system is M or
less than M. Unlike the case of single-server queues, (0,N)-
optimal policies may not be optimal. The described structure
of average-cost optimal policies has been established by
describing the properties of optimal policies for the expected
discounted total costs when the discount rate is close to 0
(the so-called Blackwell optimal policies).
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