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Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe
Handling System

Martin Choux and Mogens Blanke

Abstract— Leakage and increased friction are common faults
in hydraulic cylinders that can have serious consequences if
they are not detected at early stage. In this paper, the design
of a fault detector for a nonlinear hydraulic mechanical system
is presented. By considering the system in steady state, two
residual signals are generated and analysed with a composite
hypothesis test which accommodates for unknown parameters.
The resulting detector is able to detect abrupt changes in
leakage or friction given the noisy pressure and position
measurements. Test rig measurements validate the properties of
residuals and high fidelity simulation and experimental results
demonstrate the performance and feasibility of the proposed
method.

I. INTRODUCTION

Hydraulic pistons are indispensable in industrial fields
that require high actuation forces. The high difference of
pressure needed inside the cylinder chambers in order to
deliver the necessary force can be realised only if the
leakage between the two chambers is kept small, involving
considerable friction against the piston displacement. These
two parameters, friction and leakage, play an important role
in the reliability of hydraulic systems and their changes are a
direct consequence of components’ wear. To reduce the cost
of maintenance and to prevent such systems from failures,
a fault detection for leakage and friction must be consid-
ered. However, due to significant nonlinearities in hydraulic
systems and the large uncertainties in their parameters, fault
detection is difficult to implement in practice.

Numerous techniques have been developed in order to
generate residuals for nonlinear hydraulic systems, using
artificial neural network in [1], extended Kalman filtering
in [2] and robust observers in [3]. Once the residual signal
is generated, the fault detector must analyse and process
the signal to decide on the presence of a fault. This paper
focusses on the design of residual generators for an hydraulic
actuator system using statistical change detection algorithms
[4], [5], [6]. Diagnosis and fault-tolerant control of a similar
system was demonstrated in [7] where a differential geomet-
ric approach for fault diagnosis was succesfully demonstrated
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but the statistical properties of diagnosis were not pursued.

A model was developed in [8] that is representative for a
typical nonlinear hydraulic-mechanical system (NHMS) used
in a commercial off-shore drilling equipment. The system is
used for drilling pipe handling and for operations such as
making up a string of drilling pipe. Leakage or increased
friction in an actuator could lead to pipe damage or to
hazards in operation, so both are essential to diagnose. Resid-
ual generation is investigated for this highly nonlinear and
parameter-uncertain system, and residuals are determined
from which the two high severity faults could be diagnosed.
Statistical change detection methods are employed for hy-
pothesis testing about faults and results are validated against
a high fidelity simulation model and against experiments.

II. MODEL DESCRIPTION

The nonlinear hydraulic-mechanical system (NHMS) in
[8] was further decomposed, in [9], in a linear hydraulic actu-
ator connected to a mechanical mass-spring-damper system,
which could be analysed separately to reduce the complexity
of the initial system.

The reduced NHMS is hence considered in this paper
with two modifications arising from experience: control valve
dynamics can be neglected and system input is then valve
opening u = x,; the friction model need be extended to
better describe static and dynamic friction phenomena.

Fig. 1 shows a drawing of the system. Pressure sensors
provide measurement of pressure difference between the two
cylinder chambers py,, also referred to as the load pressure,
and displacement sensors measure the position y of the mass
element. Total load mass is M, equivalent spring coefficient
is k and damping is d. These parameters are time varying
and very uncertain. Before the tool engages with a drilling
tube, spring coefficient and damping are literally nil. At
engagement, load mass and the k£ and d parameters jump
to high values, and during operation of the tool, plasticity
can decrease k.

In the real offshore application of the system, too high
forces from the cylinder would damage the drilling pipe and
too low forces could cause loss of grip of the pipe. High
cylinder friction could cause lower forces than needed, but
if interpreted by a pressure feedback loop as if the necessary
engagement force had been obtained, loss of grip would be
at risk. Undetected leakage (change in the leakage coefficient
cr) could also cause loss of grip. Therefore, hazardous
conditions and associated risks are pertinent for this crucial
hydraulic gripping element in an offshore drilling operation,
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unless friction and leakage faults can be reliably diagnosed,
and better: reliably prognosed.
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Fig. 1. Nonlinear hydraulic-mechanical system with control valve and
hydraulic cylinder exerting forces on the object to be handled. Total load
mass M, equivalent spring coefficient £ and damping d are time varying
and very uncertain.

The following equations in hydraulic units (for example
pr in bar instead of Pa) govern the NHMS:
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Eq.(1) represents flow, @)y, through the valve orifice,
where p is the supply pressure, p is the hydraulic fluid
density, Cy is the orifice discharge and w is the opening
width. Eq.(2) is acceleration of the actuator tool and the
load mass, where A is the cylinder effective area. Eq.(3)
is pressure dynamics, where [ is the hydraulic fluid bulk
modulus and V4 is the effective cylinder volume. Eqs.(4) and
(5) are position and load pressure measurements where wj,
and wy,, are measurement noise generated by the electronic
devices, considered as thermal noise and modelled as an
additive white gaussian noise (WGN) with zero mean.

Friction inside the cylinder has significant effects in the
performances of position tracking and change in one of
its parameter could have severe consequences. In order for
the friction model to accurately represent static phenomena
such as Coulomb friction and the Stribeck effect, as well as
dynamic friction phenomena, including pre-sliding displace-
ment and hysteresis, a LuGre model [10] was chosen, which
is described by the following equations:

[ Ffric:002+0'173+0'2y (11)
o PR I (12)
9()
F. F.—F. .
o : g(y) = =5+ ——=e W 13)
g0 g9
. dz
d4 : z = E (14)

Here, F'y,;. is friction force, 2 is an internal state variable,
and material dependent parameters are F., the Coulomb
friction, Fj, the stiction, v,, the Stribeck velocity, op and o7,
stiffness and damping coefficients, and o2, a viscous friction
coefficient.

Parameters and variables in this model are listed in Tables
I and II, respectively.

TABLE I
VALUES OF THE SYSTEM PARAMETERS IN HYDRAULIC UNITS

Parameter ~ Value Parameter ~ Value
M =41 kg
k = 11400 N/m d = 200 Ns/m
A = 946 mm?2 B = 12665 bar
p =900 kg/m3 Vi = 782 cm?
Cy = 0.65 w =T7mm
p = 80 bar cr = 0 cm3/s/bar
oo = 5880 N/m o1 = 108 Ns/m
o2 = 500 Ns/m F. =270 N
Fs =500 N Vs = 0.05 m/s

TABLE 11

LIST OF SYSTEM VARIABLES IN HYDRAULIC UNITS

Variables  Unit Variables ~ Unit
Y m Y m/s
pPL bar Ty mm
Qr L/min r L/min

ITII. RESIDUAL GENERATION

A formal analysis of analytic redundancy relations, which
can be used for residual generation, is obtained from the

constraints of the system, Eqs.(1 - 14),

C :{Cla62)63564765766)m1am27a17a27

di,da,ds, dys}
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The unknown variables in these constraints are

X:{QL7x’U7FfTiCaZ7éay7y7yapLap.L7p} (16)
and the known variables are
K:{y17y27u17u2} (17)

A standard structural analysis [11] reveals that the maximal
number of analytical redundancy relations are |C|—|X'| where
|| denote the number of elements in the set, also referred to
as cardinality. The three resulting residual generators were
found to be quite difficult to work with in practice due to
the complex nature of the LuGre model of friction. Instead,
a simplified, steady state model is considered.

A. Steady state model

In steady state, when the mass velocity g is constant,
Eqgs.(11, 1-3) become s; to s4 below,
s1: Fric = g(y)sign(y) + o2y (18)

1
s9:  Qp =6000v10C,;wz, \/(p — sign(x,,)pr)
p
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di : = — 26
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In the set of steady state equations, C = {s1, s, S3, 54, M1,
ma,a1,a2,d1}, X = {Qr, v, Firic,y, ¥, pr,p} and K =
{y1,y2,u1,u2}. Therefore there are a maximum of two
residuals. This gives the possibility to detect and isolate the
leakage and friction faults.

Two unmatched constraints, that can be used for residual
generation, are Eqs. 20 and 21.

Eq. (21) is sensitive to detect a leakage, but it is sensitive
also to possible faults related to aq, as, m; and ms. In a
similar way Eq.(20) can be used to detect a fault in friction,
if the pressure and position measurements are available, but
it is sensitive also to sensor faults in m; and ms. In the rest
of the paper only the leakage detection is considered but the
fault detection in friction can be designed using the same
methods. Fault isolation is not directly obtainable through
passive diagnosis, i.e. by just observing the residuals. Instead
active fault diagnosis can be employed where perturbation
signals on w; and uy cause response signatures in yi, Yo
and the two residuals, which depend on the type of fault
that is present, see [12], [13] and [14] and references herein.

B. Residual for leakage detection
During operation, when the system is gripping a drilling
pipe, velocity is zero, valve opening z, is positive and the
load pressure is high. Eq.(21) gives in this case the following
residual r:
50

0= QL@ —cLpr

r =10°V10C, w z, P=Y _ crLy2
\/ P
r=10°V10C; w x4/ b—Pr \/1—711}2”— cr(pr + wan)
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27)

Considering pf;L << 1 an Euler approximation gives:
5 p—PL /
r=10°v/10Cyw x, —ecLpL +w (29)
where
w = — (IOSVIOC’dwm \/Tl +CL> Wa
Vo 2vp—pL ?30)

From Eq.(30) it follows that the noise w’ in the residual
is also white with gaussian distribution. This assumption
will held in the following sections when designing the fault
detectors.

The goal of the leakage detector is to decide between two
hypothesis. The null hypothesis (#(), when only noise w’ is
present in the residual, characterises an acceptable leakage,
whereas the alternative hypothesis (7{1), when a constant
signal and noise is present in the residual characterises a too
high leakage. The probability of false alarm (Pg4) is chosen
by the designer.

IV. DETECTOR DESIGN FOR UNKNOWN
PARAMETERS

A. Unknown DC levels and noise parameters

In a first step, the time ny when the fault occurs is
supposed to be known. This assumption will be relaxed in
a second step. Since the leakage in the cylinder as well
as the valve parameters Cy, w and p are uncertain, the
DC level of residual (29) before and after the jump time,
respectively A; and Ao are unknown. The variance of the
WGN in the residual depends on the leakage in the cylinder
as shown in Eq.(30). It is hence considered as another
unknown parameter. The hypothesis testing problem is

HO:AIZAQ
Hy: Ay # Ay

Since this is a composite hypothesis test, the usual general
generalised likelihood ration test (GLRT) is applied, which
for a signal with unknown parameter vector 6 in WGN, is
to decide H; if the log-likelihood L(x) exceeds a threshold

7> A

31
p: Ho) >y 3D
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where 7y is determined by the desired false alarm probability
Pr4 and 0 is the maximum likelihood estimator (MLE) of
6 (maximises p(x; 60, H1)).

The probabilities for false-alarm Pr 4and detection Pp are

/ p(x; Ho)dx
{z:L(x)>~}

/ p(x; Ha)de.
{z:L(z)<v}

The MLEs of the DC levels and the variances of the
residual before and after the jump time under Ho (i.e. A
and ¢3) and under H; (i.e. Ay, Ay, 02 and o3 respectively)
are determined as follows [4], [5]:

Ppa = (32)

Pp = (33)
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p(w; A, A, 02, 02)
Assuming Gaussian distributions, which will be verified
experimentally in Section V,
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and by using the estimates in Eq. 34,
2InLg = Nln(UAg) —ng ln(a?) — (N —nyp) ln(UA%)

Since the logarithm is a monotonic function, the GLRT
decides H; if :

02
21n Lg(x) = Nln An—qz\_n > ’7/ (36)
<W@Wﬁ)“

where v/ = 21In~.

B. Unknown DC levels and noise parameters and jump time

To accommodate with unknown jump time, the transition,
if it occurs, is assumed not too close to the endpoints of

the observation interval. ng_, < ng < no,,,, wWhere
presumably no,,,, > 1 and no,,,, <N —1
w2 g, Ar, Ag, 02, 02
Lo(r) = PEfo Ay o s
p(x; A, 05)
where 77y is the MLE under ;. Or equivalently,
Lo(r) = maxp, p(z;ng, H1) (38)

p(x; Ho)

Since the PDF under H, does not depend on ny and is
nonnegative, the test is also:

p(x;n()v?-ll)
2ln ——M—~
< B (s Ho)

The GLRT decides H; if

2
o (01) ¥ (03)™ ¥

where, again 7/ = 21n~.

max
no

> > 2Iny 39

C. Adaptive threshold

In order to reduce the time to detect the leakage, to reduce
the false alarm rate and to revert to non-faulty case when a
fault disappears, a recursive cumulative GLRT with adaptive
threshold and upper bounded is implemented. Following is
the algorithm for an upper bound 2 = 90 and an initial
threshold o = 30.

a) Initialisation:

h =90
Yo =30

b) Loop:

9k = Tk — VYk—-1
Yk = xp, — sign(gx) min(|gx|, A)
gr, = max(0, gx—1 + g)

gr = min(h, gx,) (41)
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c) Result:
gr,  for increasing time 7y

where xp is the value at time ¢; of the statistical test in
Eq. (40) and A is the maximum difference between the
threshold and the statistical test. The motivation behind the
threshold adaptivity is to decrease the time to detect fault
reversion.

V. EXPERIMENTAL MODEL VALIDATION

Fig. 2.

Test bench. 1: Mass, 2: Mechanical spring/damper, 3: Hydraulic
cylinder, 4:Servo-valve, 5:Pressure source, 6: Position sensor (LVDT), 7:
Velocity sensor (tachometer), 8: Pressure sensors, 9: Thermometer, 10:
Internal leakage flow valve, 11: External leakage flow valve

In order to apply the theory by [5], developed in the
previous section for a NHMS, the residual used to detect
a fault in leakage needs to be white or uncorrelated. In order
to validate this assumption used in the detector degign, an
experiment is conducted on the NHMS shown in Fig. 2
whose model and governing equations were presented in
section II. Position and velocity of the mass as well as
pressure in each of the cylinder chambers are recorded every
millisecond by the sensors when the NHMS is in steady state
with constant valve opening and during a total time of 100s.
! Time record of the residual is given in Fig. 3 together with
its probability density function (PDF). It results from the
analysis of this signal that the distribution can be considered
as gaussian. Fig. 4 shows the power spectral density (PSD) of
the residual build from experiment data and hereby validates
the assumption that the residual is white, i.e. its PSD is flat
with frequency up to 900 Hz. Fig. 5, the autocorrelation
function plot, also validates the white residual assumption
by showing that each sample is uncorrelated with all the
others.

From the experiment data, noise present in the load
pressure measurement is found to be WGN with standard
deviation o = 0.0963. The same noise properties will be
used in the next section to detect a simulated fault.

IThis configuration represents the phase when the tool is engaged and
the applied force is constant.
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Fig. 4. Power Spectral Density of residual from experiment.

VI. DETECTION AND PROGNOSIS OF FAULTS

Adjusting with sufficient precision a leakage flow with
a correct magnitude to represent a realistic behaviour of
a leakage across hydraulic cylinder chambers is a difficult
task to realise in practice. First the fault is simulated using
the model described in section II. After estimation of the
parameters in table I and noise characteristics in section V,
the model fits closely to the experimental test bench. A fault
occurring between time ¢t = 14s and ¢ = 15s is introduced
and is caused by an increase of 0.1cm3 /bar /s in the leakage
parameter cr. The residual is given in Fig. 6, for a 20 second
simulation of the NHMS in steady state with a constant valve
opening.

Fig. 7 shows the GLRT values for different jump times.
The simulation is run 14.3 s, the real jump time is at 14
s and the GLRT values are given for assumed jump times
ranging from 13.1 s to 14.3 s. As expected, the highest value
of the GLRT occurs at time close to ¢ = 14s and gives
GLRT = 71.53, represented by a red dot on Fig. 7.
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Fig. 5. Normalized autocorrelation function of residual from experiment.
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Fig. 6. Residual signal from simulation. Fault in leakage occurs between
time ¢ = 14s and ¢t = 15s.
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Fig. 7. GLRT for different values of assumed jump time after 14.3s of
simulation. (Real jump time = 14s.)

Fig. 8 shows the GLRT with unknown jump time for
different simulation end times. For each of these simulation
end times a GLRT is run as in the previous figure and the
maximum value is returned. The red dot in Fig. 8 hence
corresponds to the red dot in Fig. 7. Fault detection is now
possible using this last test. For example if the threshold ~
was fixed at 100, no false alarm would occurs and the time
to detect the fault would be 0.4s.

Running the recursive cumulative GLRT with adaptive
threshold and choosing A = 50 in order to reduce the time to
detect fault reversion, the values g, are given in Fig. 9. The
alarm or stopping time is the smallest time instant at which
gr crosses the given threshold h;. For h; equal to thirty,
detection time is equal to 0.2s. The new detector doesn’t
trigger any false alarm. The delay of reverting to non-faulty
case from faulty is reduced if & is decreased. In the present
case, h = 90 gives a reverting time equal to 0.25s. In order
to prevent the detector from switching excessively between
the two cases, the falling edge threshold hs is taken as half
the rising edge threshold, h;. The final fault detection is
plotted at the bottom of Fig. 9. The fault cases simulated
here demonstrate the ability of the diagnostic method using
a somewhat academic case of a fault. The next step is to
validate the method with physically developments of leaks.
For this purpose the test bench shown in Fig. 2 is run and an

GLRT with different end time

Test

i i i
12 125 13 135 14 :14.5 15 155 16 16.5 17
End-time (sec)

Fig. 8. GLRT with unknown jump time.
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PTo) T . Y P P - ERT

30

12 125 13 135 14 145 15 155 16 16.5 17
End time (sec)

S I

12 125 13 13.5 14 145 15 155 16 16.5 17

Fault

Fig. 9. Fault detector with reversion. Thresholds 21 = 30 (above, a fault
is detected) and Ao = 15 (below, a the detected fault is reset) . Real fault
occurs between 14 and 15s. Red area is time to detect. Blue area is time to
revert to non-faulty case.

internal flow is introduced between the cylinder chambers by
opening the valve 10 in Fig. 2, which represent an internal
leakage fault. Whereas the mass is maintained constant
by the mean of a controller (classical PID controller), the
leakage fault is introduced from time ¢ = 22.5s to £ = 5.6s
with initial non faulty internal leakage equal to 0.91/min and
faulty leakage equal to 1.91/min, corresponding to an increase
of 0.2em3/bar/s in the leakage parameter cj, i.e. twice
as large as the previously simulated fault. The generated
residual is shown in Fig. 10. Applying the fault detector
designed in section IV, the fault is successfully detected after
0.16s and the time of reverting to non-faulty case is 0.2s (see
Fig. 11)
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Fig. 10. Residual signal from experiment. Fault in internal leakage occurs
between time £ = 22.5s and ¢t = 25.6s, from 0.9/min to 1.9/min. Position
of the mass is stabilised around a constant value with a PID controller.
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Fig. 11. Fault detector with reversion. Thresholds 21 = 10 (above, a fault
is detected). Real fault occurs between 22.5 and 25.6s. Red area is time to
detect. Blue area is time to revert to non-faulty case.

VII. CONCLUSIONS

A fault detector for leakage and increased friction in
hydraulic cylinders was developed by initially considering

a high fidelity model of a nonlinear hydraulic-mechanical
system. Using structural analysis, a robust residual was
generated that accommodated unknown parameters and a
composite hypothesis test was derived. Test rig measure-
ments were used to validate the properties of residuals
and simulation as well as experimental results demonstrated
the performance and feasibility of the proposed method
regarding prognosis of leakage.

Future research directions are expected to include gener-
alisation of this fault detector to the case of coloured noise

in measurements, on real-time implementation on the test rig
and on the industrial counterparts in the offshore industry.
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