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Abstract— In this paper the problem of distributed target
tracking is considered. A network of heterogeneous sensing
agents is used to observe a maneuvering target and, at each
iteration, all the agents are able to agree about the estimate of
the target position, despite the fact that only a small percentage
of agents can sense the target at each time instant. Our
Consensus-based Distributed Target Tracking (CDTT) is a fully
distributed iterative tracking algorithm, in which each iteration
is based on two phases: an estimation phase and a consensus
one. As a result, the estimated trajectories are identical for
all the agents at each time instant. Numerical simulations and

comparison with another target tracking algorithm are carried
out to show the effectiveness and feasibility of our approach.

I. INTRODUCTION

In this paper we focus our attention on the distributed

target tracking problem: a pool of networked agents try

to track a mobile target which moves on a given field.

Usually, each agent individually performs an estimate of the

target position; then a global estimate is carried out through

computing and communicating between the network nodes.

It is assumed that all the sensors have a limited sensing range,

and consequently that, at a given time, the target is sensed

by only a subset of the sensors in the network. Several target

tracking algorithms presented in literature rely on some form

of centralization, even though a local connection scheme

among agents is very often assumed. Some algorithms make

use of a data fusion center [1], some others on local filtering

associated with all-to-all communication schemes, which

can introduce an heavy communication overhead [2], [3],

[4]. An important step towards the realization of distributed

approaches has been made in [5], through the introduction of

a new generation of distributed Kalman filtering algorithms,

also referred as Kalman-Consensus Filters, which rely on

a peer-to-peer architecture that reaches a consensus on es-

timates of local Kalman Filters. The disagreement among

local filters is reduced by applying a consensus step right

after the estimation step. An extension of this work is then

presented in [6] where a hybrid architecture is proposed.

Even though this algorithm joins a good performance with an

acceptable communication overload, it keeps some aspects of

centralized computation.
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In this paper we present a target tracking strategy which

is fully distributed. The sensors have limited communication

and sensing ranges, and only a fraction of them can sense

the target at a given time. Moreover, a certain degree of

heterogeneity of the sensors is introduced, by considering

sensors with different sensing ranges [7]. This assumption

implies that the measurement reliability changes along the

space. Each iteration of the proposed algorithm consists of

two phases: an estimation phase and a consensus one. In the

former phase, each network node estimates the position of

the target. If the node can perform a measurement, then it

will estimate the target position through the measurement,

improved by a Kalman filter. Otherwise, the node will

predict the target motion according to the embedded linear

motion model of the Kalman filter. In the latter phase, the

estimates performed individually by each node converge on

a common value by means of a suitable consensus strategy.

In our approach, we suitably apply a max-consensus algo-

rithm [8] such that the best individual estimate can propagate

through the whole network in a finite number of steps.

In particular, each individual estimate made by a node is

associated to a perception confidence value which quantifies

the reliability of the target position estimate. Then, a max-

consensus algorithm applied to the perception confidence

value will allow all the network nodes to agree on the best

estimate available. Simulation results are totally satisfactory,

both in absolute terms and when compared to the Kalman-

Consensus Filter [6] which, we remind, retains some aspects

of centralized computation. Finally, our framework is quite

general and is easily extendable to many other problems of

distributed estimation.

II. BACKGROUND

The communication structure of a network is usually

represented by a graph. A graph G is a pair (I, E), where

I △
= {1, . . . , n} is a finite nonempty set of nodes and

E ⊂ I × I is a set of ordered pairs of nodes, called edges.

The existence of an edge (i, j) ∈ E denotes that node j
can obtain information from node i, but not necessarily vice

versa. If the pairs of nodes are ordered the graph is said

directed (also known as a digraph), otherwise if node i and

j can always obtain information from each other, that is

pairs of nodes are unordered and therefore the existence of

link (i, j) ∈ E implies that of link (j, i) ∈ E , the graph

is said undirected. Let G = (I, E) be an undirected graph

with n nodes; the set of neighbors of node i is defined by

Ni = {j ∈ I : (j, i) ∈ E}.
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Fig. 1. Abstract representation of the the distributed tracking scenario. The
case of four nodes {p1, · · · ,p4} randomly placed in the environment is
shown. The communication topology, indicated by the gray links, depends
on the communication range rc (not depicted for clarity). The local sensing
area (circles around each node) is defined by the range rsi , indicated, for
clarity sake, only for the node 1, rs1 . The target trajectory ξ(k) over time
is depicted with the bold line, that is continuous when the target is in the
sensing range of at least one node, and dashed on the opposite case.

The aim of a consensus protocol is to make all the

nodes in a network agree on some quantity of interest,

based only on local communication. In this work we exploit

the features of a particular class of algorithms called max-

consensus [8]. The max-consensus makes all the nodes agree

on the maximum value of their initial states. In the discrete

time, its update rule is very simple:

xi(k + 1) = max
j∈Ni∪i

{xj(k)} , (1)

where xi is the state variable of the node i and k is the

discrete time index.

In accordance with [8], we define the achievement of max-

consensus as:

Definition 2.1: Given a directed graph G, an initial vector

of information states x(0) := (x1(0), . . . , xn(0))
T and algo-

rithm (1), max-consensus is said to be achieved if ∃l ∈ N0

such that

xi(k) = xj(k)

= max {x1(0), . . . xn(0)} , ∀k ≥ l,
(2)

for all nodes i, j ∈ I.

If (2) holds for all x(0), a strong max-consensus is achieved.

If (2) only holds for a subset of all possible x(0), weak max-

consensus is achieved. For our aims, we will exploit two

important properties derived in [8]:

1) given a graph G, strong max-consensus (2) is achieved

if and only if G is strongly connected1;

2) if strong max-consensus is achieved, then it will be

achieved in a number of steps l ≤ D(G) ≤ n− 1,

where D(G) is the graph diameter [9].

III. PROBLEM FORMULATION

In this paper we deal with the distributed tracking of a

maneuvering target, performed by a sensor network in which

each node has limited sensing and communication ranges,

that is to say, only a subset of the nodes in the network can

1In this paper we make only use of undirected graphs, so the fact of being
connected implies that of being strongly connected.

sense the target, and that each node is directly connected to a

limited fraction of the nodes in the network. Moreover, each

sensor has its own sensing range that differs from sensor to

sensor. Fig. 1 shows an abstract representation of the network

in the case of four nodes.

We consider a sensor network composed by n nodes which

have the objective to track a target moving in the environment

E
△
= [−L/2, L/2]× [−L/2, L/2] ⊂ R

2, where L > 0, that

is a square field2 with side length L. In the following, we

will refer to the generic node of the sensor network with the

term agent, to emphasize the fact that each node of the sensor

network must have sensing, computation and communication

capabilities.

The target moves along a piece-wise linear trajectory

which can be described by a linear switching system as in [6].

In practice, the target moves on a blend of random linear

tracts, and when it reaches the boundary of the region, it is

pushed back by a force which is orthogonal to the region

boundary.

We will refer to the target trajectory as ξ(k), where ξ(k) ∈
E and k is the discrete time. An agent i ∈ I △

= {1, · · · , n},

is described by the tuple:

〈pi, ξ̂i(k), Mi, γi(k), rsi〉 (3)

where the vector pi ∈ E denotes the position of the agent

in the environment; the vector ξ̂i(k) ∈ E is the estimated

position of the target at time k made individually by agent i;
the entity Mi is the i-th agent’s memory, which contains all

the global estimates (i.e., after the agreement of the whole

network) of the target position over time. The size of Mi

is equal to the number of time instants during which the

target is tracked, kf . In the following we will indicate with

Mi(k) the global estimate of the target state performed by

the network at time k. Note that the difference between ξ̂i(k)
and Mi(k) is that the former is the target state estimation

performed individually by agent i at time k, whereas the

latter is the estimate of the target state performed globally

over the sensor network and stored in agent i at time k.

The value γi(k) ∈ R is called perception confidence value,

and quantifies the reliability of the information about the

estimate of the target position ξ̂i(k) made by the i-th agent.

Its working principle will be clarified later in the paper. The

value rsi ∈ R is the sensing range of agent i. Each agent

senses the target at time k if and only if ||pi−ξ(k)|| ≤ rsi .
The network topology is determined by the communica-

tion range rc ∈ R, that we assume equal for each agent,

such that two agents, i and j ∈ I, can communicate, i.e. a

link between them exists, if and only if ||pi − pj || ≤ rc.

In this way, the communication scheme of the network is

described by an undirected graph G = {I, E}, where I is

the set of agents and E ⊆ I × I is the set of edges (links)

representing the point-to-point communication channels. We

assume a one-hop communication among agents, that is each

agent can send and receive messages only with its direct

neighbors.

2This can be easily extended to convex polyhedra.
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Finally, among the many possible aspects of the perfor-

mance assessment in the target tracking framework [10],

in this work we will focus our attention on the tracking

accuracy, by evaluating the mean square error between

estimated and actual target trajectory.

IV. CONSENSUS-BASED DISTRIBUTED TARGET

TRACKING

The proposed Consensus-based Distributed Target Track-

ing (CDTT) algorithm is an iterative strategy that, at each

iteration, consists of two main phases: estimation and con-

sensus. During the estimation phase each agent performs an

individual estimate of the target position at the current time

step. If the target is in the sensing range of a given agent,

its estimate is carried out through a measurement, improved

by a Kalman Filter. On the contrary, the measurement will

not be available to the agent at that time, and a prediction

will be performed according to the prediction part of the

Kalman Filter only. We will use the term sensing agent

for those agents for which the target lays in their sensing

range; the term predicting agent otherwise. At the end

of the estimation phase, each agent updates its perception

confidence value γi(k) on the basis of the a posteriori

estimate covariance matrix of the Kalman Filter. In the

second phase, a max-consensus algorithm on the perception

confidence value is run, to make all the agents agree on the

agent (or agents) which performed the best estimation of

the target position. At the same time, during the execution

of the max-consensus algorithm, the best estimate will be

propagated among all agents. The CDTT algorithm, running

at each iteration the two phases, guarantees the agreement

of the whole network on the target position over time,

exploiting the convergence property of the max-consensus

algorithm, making our approach fully distributed. At the

end of the consensus phase, each agent will possess the

same information about the target state, that is to say, the

best estimate of the target position and the best estimate

covariance matrix. Then, a new estimation phase will be

started again. To improve the estimation performance, the

state of each individual Kalman Filter will be reset to the

best available measurement available in the network, and the

correspondent best covariance estimate matrix will be used

to compute the new Kalman gain.

Note that our algorithm requires the synchronization of

agent clocks to rely on a common discrete timeline. This

need does not invalidate the distributed nature of our ap-

proach in real applications, because the sensor network

itself can be effectively exploited to achieve the global

synchronization of agent’s clocks [11]. Let us now describe

in detail the two phases of each iteration. We describe the

computation of iteration at time k assuming, therefore, that

each agent has available the information in its tuple (3) up

to time k − 1.

A. Phase 1: Estimation Phase

In this phase each agent estimates the target position.

If the agent i is a sensing agent, this means that the target

is within the sensing range of the agent, i.e., di(k) = ||pi−
ξ(k)|| ≤ rs, thus the position of the target is measured by the

sensing system. The challenge lies in that the measures are

inevitably inaccurate and also the speed cannot be measured

directly. Then for each sensing agent we employ a Kalman

Filter to obtain an optimized estimate of target position.

Let us define x(k) = [ξ[1](k), ξ[2](k), v[1](k), v[2](k)]T the

target state vector, where ξ[1](k), ξ[2](k) are the coordinates

of target position and v[1](k), v[2](k) the velocity compo-

nents at time instant k. Assuming that the target moves

according to a linear dynamic process, a classical Kalman

Filter is used.

To this aim, we assume that the linear dynamic equation

for the target movement is given as follows:

x(k) = Ax(k − 1) + ω(k − 1)

where

A =




1 0 ǫ 0

0 1 0 ǫ

0 0 1 0

0 0 0 1




is the state transition matrix, ǫ is the time step, and ω is

a noise term, that is white Gaussian noise with zero mean

and covariance matrix Q, i.e., ω(k − 1) ∼ N(0, Q), Q =
diag(σ2

Q, σ
2
Q, σ

2
Q, σ

2
Q).

Let us denote with zi(k) the measurement of the target

position performed by the agent i at time k as follows:

zi(k) = Hx(k) + νi(k) (4)

where H is the measurement output matrix, defined as:

H =

[
1 0 0 0

0 1 0 0

]

and νi is the measurement noise, which is white Gaussian

with zero mean and covariance matrix Ri, i.e., νi(k) ∼
N(0, Ri(k)). Supposing that for each agent ξ[1] and ξ[2]

are independent variables, the covariance matrix Ri(k) can

be defined as Ri(k) = diag(σ2
Ri
(k), σ2

Ri
(k)). where we

set σ2
Ri
(k) = di(k)

rs
, i.e., the higher the relative distance

between the agent i and the target, the higher the uncertainty

on measurement. Using the above process formulation the

following update equations are applied for each sensing agent

i:
State Prediction

x̂
−
i (k) = Axi(k − 1) (5)

Error Covariance Prediction

P−
i (k) = AP i(k − 1)AT +Q (6)

Kalman Gain Matrix

Ki(k) = P−
i (k)HT [HP−

i (k)HT +Ri(k)]
−1 (7)

State Estimation

x̂i(k) = x̂
−
i (k) +Ki(k)[zi(k)−Hx̂

−
i (k)] (8)
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Error Covariance Estimation

Pi(k) = [I −Ki(k)H ]P−
i (k) (9)

Please note that xi(k − 1) and P i(k − 1) are the global

(best) estimate of the target position and the global (best)

estimate covariance matrix, respectively, computed at time

k − 1 through the max-consensus phase. Their computation

will be explained in the next Section.

On the other hand, if the target is not within the sensing

range of the i-th agent, that is, i is a predicting agent, the

target state is estimated by using only the state prediction

equation (5).

In both cases, i.e. agent i is a either sensing agent or

a predicting one, the initial guess of target state xi(0) =
[ξ̂i(0)

T v̂(0)T ]T is set to xi(0) = 0; this means that the initial

estimation of the position of the target coincide with the

center of the field, and the initial target velocity is considered

null.

Phase 1 ends up with each agent possessing an individual

estimate of the target position, ξ̂i(k) = x̂i(k), obtained either

by measurement or by prediction. Phase 2 will make all

agents agree on a common estimate of the target position,

via a max-consensus algorithm. To this aim, the perception

confidence value γi(k) is conveniently set during Phase 1

for each agent, in order to quantify the reliability of the

estimate of each agent, which will determine the influence

of the single agent estimate on the final outcome of Phase 2.

In particular γi(k) is defined as following:

γi(k) =






1

Tr (Pi(k))
if i is a sensing agent

0 if i is a predicting agent
(10)

where Tr(·) is the matrix trace operator. It is clear that γi(k)
grows with the reliability of the estimation performed by the

agent i at time k.

B. Phase 2: Consensus Phase

In this phase, a max-consensus based algorithm is run in

order to select, in a totally distributed fashion, the agent with

most reliable estimates of the target position and to propagate

its correspondent estimate through the whole network. This

Phase is schematized in Algorithm 1. Agent i sets its internal

variables ζi ∈ R, χi ∈ R
4, and Πi ∈ R

4,4 to the values

obtained from Phase 1, γi(k), x̂i(k), Pi(k), respectively.

Then, a max-consensus protocol allows the variable ζi to

converge to the maximum of the perception confidence

values all over the network, that is to say, to select the

agent which performed the best estimate of the target posi-

tion. In correspondence with this selection, suitable variable

assignments will allow the agent i to store in its variables,

χi(k) and Πi(k), the corresponding estimate and covariance

estimate matrix, respectively. It is straightforward to note

that the convergence condition of Algorithm 1 is the same

of the max-consensus of eq. (1), that is to say, the network

must be strongly connected (connected, in our case, in

which undirected graphs are adopted). According to [8], the

algorithm will converge in at last n−1 iterations, so we will

Algorithm 1 Consensus phase for agent i at iteration k

1: Input: γi(k), x̂i(k), Pi(k)
2: Output: xi(k), P i(k)
3: ζi(0) = γi(k)
4: χi(0) = x̂i(k)
5: Πi(0) = Pi(k)
6: for t = 1 to n− 1 do

7: ζi(t) = maxj∈Ni∪i {ζj(t− 1)}
8: νi(t) = argmaxj∈Ni∪i {ζj(t− 1)}
9: χi(t) = ζνi(t− 1)

10: Πi(t) = Πνi(t− 1)
11: end for

12: xi(k) = χi(n− 1)
13: P i(k) = Πi(n− 1)

make the Algorithm run for the maximum number of cycles

needed for convergence. The sampling time connected with

the discrete time index t of Phase 2 must be chosen such that

Phase 2 is completed before a new instance of Phase 1 can

start, that is to say, the sampling time of Phase 2, dubbed as

ε, must be such that tp +(n− 1)ε < ǫ, where tp is the time

required to perform the perception phase.

At the end of the consensus phase, an agreement both

on the best estimation of the target state and on the related

a posteriori covariance matrix is achieved. Each agent will

store these values in its variables xi(k) and P i(k). These

two variables will be fed back to the next Phase 1 of the

algorithm, in order to let the Kalman filter of each agent

start from the best available estimate and therefore improve

the individual prediction performance.

Remark 4.1: It is clear that using a network with a large

number of sensors can lead to a detriment of the algorithm

performance, in terms of an increasing in the sampling time

ǫ. To overcome this drawback, one can keep the number

of sensors relatively small and increase the sensing radii,

and consequently the coverage ratio ρ, without affecting the

algorithm performance (see Section V). Another strategy can

be that of adopting networks with a large number of sensors

but a relatively small diameter, and strictly limit the number

of steps of the consensus algorithm to the network diameter

(which must be known at the time the sensor network is

designed).

Remark 4.2: We remark that at step 8 of Algorithm 1,

a tie-break rule is needed in the case that the maximum

value for ζj(t− 1) is allocated in more than an agent in the

agent’s neighbors. This case is of particular interest when

the target is out of the sensing range of every agent, that

is to say γi(k) = 0, ∀i ∈ I. The tie-break rule could be,

for example, to choose an index at random among those

corresponding to the maximum, or perform, on steps 9 and

10, an average along the involved indices νi, rather than a

variable assignment.

V. NUMERICAL RESULTS

The performance of the CDTT are analyzed by running a

number of Monte Carlo simulations for a generic heteroge-
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(a) (b)

Fig. 2. Two CDTT simulations of random generated target trajectories for a network of n = 25 heterogeneous agents. The target comes from the top
side of the environment and the filled red circle indicates its last position. (a) A simulation of the network with ρ = 55%. Note that until the target is not
sensed by any agent the algorithm does not start.(b) The same network with ρ = 85%. In the latter case, due to the greater number of sensing agent, the
global error in the estimated trajectory is reduced.

neous sensor network. We simulate a sensor network tracking

the position of a maneuvering target which moves on a square

field E with side length L = 90, with a motion model

as described in Section III, and, for comparison purposes

with [6], with communication radius rc = (3⌈√n⌉) + 2.

Please note that, to satisfy the hypothesis of convergence of

the algorithm, one has to check that the network is connected.

Heterogeneity in the sensing range of each agent is obtained

by picking at random a sensing range for each agent, through

a Gaussian stochastic process with average 0.1L and standard

deviation 0.03L. The initial guesses of the estimated target

position and velocity are ξ̃i(0) = [0, 0]T and ṽ(0) = [0, 0]T .

Moreover, the covariance matrix of the Kalman Filter used

in Phase 1, is chosen as Q = k2wI4, where kw = 5 and Im
is the m-dimensional identity matrix.

In order to evaluate the global performance of the CDTT,

we define two additional parameters. The former, ρ, rep-

resents the ratio between the coverage sensing area and the

total area of the field E. The latter, ϕ, represents the average

percentage of sensing agents during a single run.

As a metric of target tracking accuracy, the following mean

square error (in norm) is computed:

α =
1

kf

kf∑

k=1

||M(k)− ξ(k)||2 (11)

where kf is the length (in time samples) of the target

trajectory, ξ(k) is the actual target position at time k, M(k)
is any of the global estimates Mi(k) (which, thanks to the

consensus protocols, are identical at any given time) at time

k.

We now evaluate the performance of the CDTT algorithm

in different setups of the simulation scenario. Table I lists

the values obtained for these parameters in different simu-

lations. As can be noted, a comparable improvement in the

tracking performance can be achieved either by increasing

the number of sensors, or by increasing the coverage ratio

(i.e., increasing the sensing radii). Moreover, the values of

ϕ confirm that only a small number of sensors senses the

target at a given time.

Two cases of the aforementioned simulation campaign are

depicted in Fig. 2. In particular, two trajectories estimated

by CDTT for a network of 25 agents are considered. In

these pictures, in order to show the improvement in CDTT

trajectory against the real one, two values of coverage

percentage are considered. It can be noticed that when the

target is not sensed by any of the agents the algorithm does

not stop, the prediction follows the linear model defined in

Section IV.B, and when the target comes back into any of the

sensing ranges of at least one sensor, the prediction suddenly

starts again to follow the target trajectory.

TABLE I

VARIABILITY OF PARAMETERS ρ, ϕ AND α IN DIFFERENT SIMULATION

CASES.

n ρ ϕ α

50% 0.78% 10.39

25 75% 1.40 % 2.33

100% 19.95% 0.08

50% 1.24% 6.01

50 75% 1.97% 2.25

100% 12.54% 0.08

50% 2.43 % 0.89

75 75% 4.77% 0.16

100% 6.25% 0.06
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(a) (b)

Fig. 3. Comparison between CDTT and KCF: Values of α as function of the parameter ρ for a network of n = 25 agents (a) and n = 50 agents (b).
Each point is computed by averaging 50 random trajectories.

A. Comparison with the KCF algorithm

In order to evaluate the tracking performance of our

CDTT algorithm we compare it to the hybrid architecture of

the Kalman Consensus Filter with message passing (KCF)

as described in [6]. This method is based on distributed

microfilters with message-passing between agents and the use

of a high-level fusion center for aggregating the estimates of

a suitably selected set of agents, specifically, those who show

the best agreement in the trajectory estimate (this is done

by evaluating the covariance matrix of the local estimates).

As detailed in [6], we set the following KCF parameters:

Ri = k2vI2, Q = k2wI4, and P0 = 10k2wI4, where kv = 3
and kw = σ0 = 5.

The comparison between CDTT and KCF is performed

through several Monte Carlo simulations based on 50 re-

peated random trajectories for different values of ρ. More

specifically, the average value of α over the test trajectories

has been computed for each value of ρ and compared with the

correspondent performance parameter obtained through the

KCF algorithm trajectories. The results of this comparison

are depicted in Fig. 3. Our algorithm clearly outperforms

the KCF algorithm. We performed many other simulations

with different values of the simulation parameters, which

are not reported in this paper due to space constraints.

Moreover, our algorithm is less dependent on the number of

the sensing agents, as it selects only the best estimate at each

iteration. On the other hand, to achieve good performance,

KCF algorithm needs a certain number of sensing agents to

achieve a satisfactory performance after the application of

the sensor fusion phase. Conversely, our algorithm imposes

some limitations on the sampling time of the tracking. In fact,

the sampling time ǫ must be chosen such that the consensus

phase ends before a new iteration of the tracking algorithm.

Nevertheless, this limitation can be mitigated by estimating

the network diameter at the time of the sensor network

setup (i.e., when checking the network connectivity). This

assumption is reasonable in practical applications as long as

the network topology is fixed in time, as in our case.

VI. CONCLUSION

In this paper we have addressed the problem of distributed

target tracking by a network of heterogeneous sensory agents.

The approach relies on an iterative strategy based on the

execution of a perception phase, which makes use of a

Kalman filter, followed by a max-consensus phase, which

allows all the agents to agree on the best estimate of the

target position through the whole network. The novel aspect

of our approach is the full distribution of the algorithm.

Moreover, the performance is good despite the fact that a

few agents can actually sense the target at each iteration, and

the environment is not fully covered by the sensor ranges.
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