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Abstract— Many modern engineering systems can be mathe-
matically modeled as hybrid systems. For many such systems,
there may be uncertain parameters and also parameters that
can be adjusted so that the system achieves some optimal
performance. It is important to develop efficient numerical
tools and software to optimize for these adjustable parameters.
We focus on a specific class of hybrid systems where mode
transitions are dependent only on the amount of time spent in
a mode (or equivalently a clock value). The amount of time
spent in each mode is assumed to be a random variable with a
known distribution. We aim to design or choose values for the
free parameters in each mode of the hybrid system so that the
expected value of some meaningful cost-function is minimized.
This can be framed as a stochastic optimization problem.
We use the sample average approximation method to solve the
resulting stochastic optimization problem. We illustrate the
method for the optimal design of a thermal management system
of a prototypical aircraft.

I. INTRODUCTION

Hybrid systems are a useful abstraction for systems that
have a combination of discrete and continuous dynamics.
They typically consist of digital programs that interact with
each other and with an analog environment. Examples in-
clude manufacturing controllers, aircraft management sys-
tems, unmanned aerial vehicles and robots. For plants that
can be modeled as hybrid systems, we may also need a
controller that is hybrid in nature. Design of such hybrid
controllers or computation of optimal controls for hybrid
systems in general is a difficult task. For some results,
see [1] and [2]. In [1], the authors present a method to
compute approximations to optimal feedback control laws
using discretizations of Bellman type inequalities for lower
bounds on the optimal value function. In [2], the authors
discuss necessary conditions for optimality for a class of
hybrid systems and show how this leads to non-smooth
optimization problems.

However, efficient algorithms for solving these non-
smooth optimization problems are still not available. In
[3], the author discusses algorithms which efficiently solve
control synthesis problems for constrained linear systems
and constrained linear hybrid systems. There are also tools
like HYSDEL ([4]) that provide a computational framework
for modeling hybrid systems with linear affine dynamics in
discrete time. Models described in HYSDEL can be used
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by a set of tools that solve reachability analysis and control
problems. There are few or no tools currently available for
optimal control of nonlinear hybrid systems or stochastic
hybrid systems.

In this paper, we focus on numerical methods for a class
of nonlinear hybrid systems where the mode transitions are
enabled by a clock value. i.e., mode transitions are dependent
only on the amount of time spent in a mode and not on the
actual state of the system. The amount of time spent in a
mode of operation (the transition time) is also assumed to
be a random variable with a known distribution. Thus the
transition times can be thought of as uncertain parameters of
the hybrid system. Note that these transitions times are not
part of the design and are a characteristic of the system to be
controlled. The hybrid system also has some free adjustable
parameters corresponding to each mode of operation that
can be chosen by the designer. The objective is to pick
values for these adjustable parameters of the system that
minimizes the expected value of some meaningful cost-
function that captures the behavior of the system over a finite
time-horizon. Thus the cost-function may include finite-time-
integrals of some function of the states of the system and the
controls.

We show an optimal control synthesis technique to min-
imize the expected value of a cost-function. This can be
framed as a stochastic optimization problem. We use the
sample average approximation method described in [5] to
solve the stochastic optimization problem. The basic idea
behind the sample average approximation method is simple.
It is a Monte Carlo sampling-based approach to stochastic
optimization problems. A random sample of the uncertain
parameters is generated and the expected value function is
approximated by the corresponding sample average function.
The resulting sample average optimization problem is solved
using standard optimization techniques. We use the optimiza-
tion software IPOPT ([6]) to numerically solve the resulting
sample average optimization problem. One could also use
software like CPLEX ([7]) to solve the resulting optimization
problem.

As a case study, we illustrate the method for the design
of a thermal management system of a prototypical aircraft.
The parameters to be optimized for are the fuel flow rates
of the system during various phases of the mission and
the uncertain parameters are the time durations of various
phases of the mission. In principle it would also be possible
to take into account the effects due to the implementation
platform such as delays in computation and communication,
and reliability of communication.
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II. OPTIMAL DESIGN OF HYBRID SYSTEMS WITH
TIME-TRIGGERED MODE TRANSITIONS

In this section, we discuss an approach to compute optimal
controls for discrete-time hybrid systems with uncertain
parameters. In particular, we look at discrete-time hybrid sys-
tems with time-triggered mode transitions. i.e., the switching
of the system from one mode to another depends only on the
amount of time spent in that mode (or equivalently a clock
value). The amount of time spent in each mode is a random
variable with some known distribution. Note that for such
systems, the sequence of modes that the system operates
in is known beforehand. Thus the system we consider has
dynamics of the form

x(k+1) = T (1,x(k), p0) for j0 ≤ k < j1
x(k+1) = T (2,x(k), p1) for j1 ≤ k < j2
x(k+1) = T (3,x(k), p2) for j2 ≤ k < j3

.....

x(k+1) = T (m,x(k), pm) for jm−1 ≤ k < jm.

(1)

Here k represents the time-index. The amount of time spent
in each mode ∆q = jq− jq−1, is a random variable with some
known distribution Wq. The system has m modes and the
m−th is considered to be the ’final’ mode. The time duration
of a sample trajectory is given as

L =
m

∑
q=1

∆q. (2)

Systems described above are particularly useful to model
processes where the sequence of modes of operation are
fixed and known in advance, but the transition times are
uncertain. A good example for such a system is the typical
mission of an aircraft which has various modes of operation
like Taxing, Take-off, Flying and Landing. A typical aircraft
mission follows a fixed sequence of modes, but the time
spent in modes like Taxing and Flying may be uncertain.

The variables pq are parameters that need to be optimized
for in the operation of each mode. In what follows, we
describe how one can do such an optimization. The cost-
function we use is the expected value of some functional
of the sample trajectories. The optimization problem can be
written as

min
pq∈Uq

C := E∆

 m

∑
q=1

jq

∑
k= jq−1

Fq (x(k), pq)

 . (3)

where x(k) is subject to the dynamics described in (1). Fq is
assumed to be a differentiable function of x(k) and pq. ∆ is
the vector of transition times. i.e. ∆q is the q− th component
of the vector ∆. The expectation is taken over the uncertain
transition times ∆q. To solve the stochastic optimization
problem described above, the sample average approximation
(SAA) method (see [5]) is a natural choice. We briefly review
the SAA method in the following subsection.

A. Review of the sample average approximation method
In the most general form, stochastic optimization problems

take the form

min
u∈U
{g(u) := EPG(u,W )} . (4)

Here W is a random vector having probability distribution
P. U is the set from which the variables u can be chosen
from. For the optimal design problem we described before,
the random vector W would correspond to the vector ∆

whose elements are the random transition times for each
mode. The variables u include both the parameters pq
that need to be optimized for and the states x(k) that are
subject to the constraints imposed by the system dynamics.
EPG(u,W ) =

∫
G(u,W )P(dw) is the expected value of the

objective function G(u,W ). The SAA method is suitable for
optimization problems that have the following characteristics.
• The expected value function g(u) := EPG(u,W ) cannot

be written in a closed form and its value cannot be easily
calculated.

• The function G(u,W ) is easily computable for given u
and W .

• The set of feasible solutions U is very large so that
enumeration is not feasible.

The optimal design problem we described before has all
these characteristics and therefore makes the sample average
approximation method a natural approach to this problem.
The basic idea of sample average approximation is simple
indeed. It is a Monte Carlo sampling-based approach to
stochastic optimization problems. A random sample of W is
generated and the expected value function is approximated
by the corresponding sample average function. The obtained
sample average optimization problem is solved, and the
procedure is repeated several times until a stopping criterion
is satisfied.

Let W 1, ...,W N be an independently and identically dis-
tributed (i.i.d) random sample of N realizations of the random
vector W . Consider the sample average function

ḡN(u) :=
1
N

N

∑
i=1

G(u,W i). (5)

The sample average approximation (SAA) problem is

min
u∈U

ḡN(u). (6)

It has been shown that the solution of the sample average
approximation problem (6) converges to the solution of the
original problem (4) with probability one. Also roughly
speaking, the optimal value for the objective function ob-
tained from the approximate problem converges exponen-
tially fast to the true optimal value for the objective function
as N → ∞. For more theoretical details on the convergence
of the SAA method, see [5].

B. Application of SAA to optimization of time-triggered
hybrid systems

For hybrid systems of the type described in (1) at the
beginning of this section, optimal design can be done using
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the SAA method described before. One can generate a finite
number of samples for the random vector of transition times
∆ and then find the optimal parameters pq that minimize the
corresponding sample average function. The variables u that
need to be optimized for include both the state variables xi

k
corresponding to each sample ∆i and the parameters pq. In
our notation, ∆i for i = 1,2, ...,N are N i.i.d. samples for the
vector of transitions times and xi

k is the state of the system at
time k for a trajectory corresponding to the sample ∆i. The
state variables xi

k are subject to the constraints imposed by
the system dynamics given as

gi
k = xi

k+1−T (1,xi
k, p0) = 0 for j0 ≤ k < ji

1

gi
k = xi

k+1−T (2,xi
k, p1) = 0 for ji

1 ≤ k < ji
2

gi
k = xi

k+1−T (3,xi
k, p2) = 0 for ji

2 ≤ k < ji
3

.....

gi
k = xi

k+1−T (m,xi
k, pm) = 0 for ji

m−1 ≤ k < ji
m.

(7)

where ji
q− ji

q−1 = ∆i
q. The cost-function is approximated by

the sample average given as

C̄ =
1
N

N

∑
i=1

 m

∑
q=1

jiq

∑
k= jiq−1

Fq
(
xi

k, pq
) . (8)

To find the state variables xi
k and the parameters pq that min-

imizes the cost-function C̄ subject to the constraints in (7),
we use the optimization software IPOPT (see [6]). IPOPT is
a software package for large-scale nonlinear optimization. It
uses an interior point line search filter method to find local
solutions to nonlinear optimization problems. For the IPOPT
software, it is necessary to compute the gradient of the cost-
function C̄ with respect to the variables xi

k and pq. These
derivatives are given as

∂C̄
∂xi

k
=

1
N

∂Fq

∂xi
k

(9)

∂C̄
∂ pq

=
1
N

N

∑
i=1

 jiq

∑
k= jiq−1

∂Fq

∂ pq

 . (10)

It is also necessary to compute the Jacobian of the constraint
equations. The elements of the Jacobian of the constraint
equations are computed as

∂gi
k

∂xi
k+1

= 1.0

∂gi
k

∂xi
k
=
−∂T (q, ., .)

∂xi
k

∂gi
k

∂ pq
=
−∂T (q, ., .)

∂ pq
.

(11)

The IPOPT software takes in as input the user-provided
routines that compute the cost-function, the gradient of the
cost-function and the Jacobian of the constraint equations
and returns optimal values for the parameters pq.

III. APPLICATION TO OPTIMAL DESIGN OF AIRCRAFT
THERMAL MANAGEMENT SYSTEM

As a case study, we apply the SAA method described
before to the optimal design of the thermal management
system of a prototypical aircraft. In a typical aircraft, the
fuel flow rates for each mode of operation is maintained at
a steady state. A pump is used to push fuel from the fuel
tank into the fuel circuit. The fuel is then used to reject the
heat produced by the environmental control system (ECS)
and the electric power system (EPS). Only part of the fuel
flowing in the circuit is sent to the nozzles for consumption.
Part of the fuel goes back to the fuel tank. For a schematic
of the thermal management system, see Figure 1.

Fig. 1. Model of thermal management system.

The heat loads and fuel consumption rates during various
modes of the aircraft mission are different. This leads to
some interesting design problems. One interesting design
problem is to find the optimal fuel flow rates for each mode
so that the temperature of the fuel that goes into the nozzles
stays close to an optimal temperature. For the purposes of
this paper, we consider the design of the TMS as if there were
only two modes - Taxing and Flying. Indeed, these modes
are the two most crucial modes of a typical mission as the
amount of time spent in other modes like take-off and landing
is extremely short compared to the overall mission time
and the contribution of design parameters in these modes
to relevant cost-functions is negligible. Therefore we focus
on the problem of choosing the optimal fuel flow rates during
the taxing and flying modes and treat the problem as if there
were only two modes.

We consider two dynamic variables - the mass (M) and
temperature (T ) of the fuel remaining in the tank. The
temperature of the fuel after it absorbs heat from the EPS and
ECS is denoted by Tf . The increase in temperature (T f −T )
is related to the fuel flow rate mout through the heat-balance
equation

moutCsp
(
Tf −T

)
= HL, (12)

where HL is the heat load coming from the ECS/EPS. Csp
is the specific heat of the fuel. The fuel that is returned to
the fuel-tank is cooled by the air-fuel heat exchanger. The
temperature of the fuel after it is cooled is denoted by Tin.
The drop in temperature (Tf −Tin) is assumed to be a fraction
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of the difference between T f and the outside air temperature
Tair. i.e.,

Tf −Tin = f (T f −Tair), (13)

where f is referred to as the heat sink efficiency. If m f is
the rate at which fuel is consumed, then the rate at which
fuel is returned to the fuel-tank after re-circulation is given as
min =mout−m f . The rate of change of the temperature of the
fuel remaining in the tank is derived from the heat-balance
equation

minCspTin−moutCspT =
d
dt

(MCspT )

=−m fCspT +MCspṪ .
(14)

Discretizing the above equations, the discrete-time dynamics
for the temperature (T ) and mass (M) variables can be written
as
M(k+1) = M(k)−δ .m f (k)

T (k+1) = T (k)+
δ

M(k)

(
min(k)Tin(k)−mout(k)T (k)+m f (k)T (k)

)
.

(15)

Here δ is the size of the discrete time-step and from the
above equations we have

Tin(k) = T f (k)+ f (Tair−T f (k))

and where T f (k) = T (k)+
HL

moutCsp
.

(16)

Note that m f and mout are considered to be constant within
each mode. More precisely

mout(k) =

{
mtaxi if 0≤ k < ∆taxi

m f ly if ∆taxi ≤ k < ∆taxi +∆ f ly.
(17)

mtaxi and m f ly are the parameters that need to be chosen
so that we get some desirable thermal behavior. ∆taxi and
∆ f ly are random variables uniformly distributed within the
intervals [300s,900s] and [3600s,4500s] respectively. HL is
also considered to be constant within each mode. The cost-
function that we are going to use for this problem is a
combination of the quality of the fuel temperature going into
the combustor (T f ) and the control effort in terms of the fuel
flow rates. The cost-function is

C = E

[
1
2 ∑

k
(T f (k)−Tset)

2 +
W
2 ∑

k
m2

out(k)

]
(18)

Tset is a set-point temperature at which we desire the fuel-
combustor temperature (T f ) to be close to. W is a parameter
that decides how much the control effort in terms of the fuel
flow rates should be penalized.

As described for the SAA method, we generate a finite
number of samples for the taxing and flying times. The
samples are ∆i

taxi and ∆i
f ly for i = 1,2, ....,N. The sample

average cost-function is given as

C̄ =
1
N

N

∑
i=1

1
2 ∑

k

(
T f i

k−Tset
)2

+
W
2

1
N

N

∑
i=1

∆
i
taxim

2
taxi +∆

i
f lym2

f ly.

(19)

The gradient of the sample average cost-function with respect
to the optimization variables are given as

∂C̄
∂Mi

k
= 0.0,

∂C̄
∂T i

k
=

1
N

(
T f i

k−Tset
)
,

∂C̄
mtaxi

=
1
N

N

∑
i=1

∆i
taxi

∑
k=0

(T f i
k−Tset).

−HL

m2
taxiCsp

+
W
N

N

∑
i=1

∆
i
taximtaxi,

∂C̄
m f ly

=
1
N

N

∑
i=1

∆i
taxi+∆i

f ly

∑
k=∆i

taxi

(T f i
k−Tset).

−HL

m2
f lyCsp

+
W
N

N

∑
i=1

∆
i
f lym f ly.

(20)

The constraints on the variables Mi
k and T i

k are derived from
the dynamics as described in equation (7) of Section II-B.
Also the elements of the Jacobian of the constraint equations
are computed as described in equation (11) of Section II-B.

A. Results

We solved the SAA problem for different number of
samples. For 50 samples, the number of constraint equations
derived from the system dynamics is around 450,000. For a
problem of this size, IPOPT takes about 4 minutes to solve
the optimization problem on a laptop with a Intel Core2 Duo
CPU P9400 running at 2.40 GHz and 2.95 GB RAM. The
values for various fixed parameters in the TMS model are
shown in Table I. Figure 2 shows some optimization results
obtained using IPOPT for different values of W . The plots
shows how the optimal fuel flow rates obtained change as the
number of samples are increased. As you can see, the optimal
values converge very quickly with respect to the number of
samples.

For W = 1.0, the optimal taxing fuel flow-rate (mtaxi) is
roughly 3 times bigger than the fuel consumption rate (m f ).
The value of the cost-function is lowest for this higher flow-
rate because the penalty on the control effort is small and
for this higher fuel-rate, the resulting fuel temperature (T f )
after it absorbs heat from the ECS/EPS is made lower (and
closer to Tset ). However, if the fuel flow-rate is increased
beyond this optimal value, the cost-function would increase
because the resulting temperature T f may go way below the
set-point temperature Tset . For W = 250.0, the optimal value
for mtaxi is roughly 2 times bigger than m f . This is because
the penalty on the control effort is higher and the fuel-flow
rates have to be reduced resulting in higher values for T f .

Figure 3 shows the variation of the objective function
and optimal fuel flow-rates with respect to the weighting
parameter W . As described before, the objective function has
two components. The first component reflects the quality of
the fuel temperature going into the combustor and is given
as

C1 = E

[
1
2 ∑

k
(T f (k)−Tset)

2

]
. (21)
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(a) W = 1.0

(b) W = 125.0

(c) W = 250.0

Fig. 2. Results obtained using the SAA method for the optimal design of
TMS. These plots show results obtained for different values of W . The plots
show how the optimal fuel-flow rates change as the number of samples are
increased.

Variable Value
HL (Taxing) 18.44(kW )
HL (Flying) 20(kW )
m f (Taxing) 0.84 (kg/s)
m f (Flying) 1.44 (kg/s)
Csp 0.2 (kJ/kg K)
f 0.1
Tset 320K
M(0) 9000 kg
T (0) 280K

TABLE I
FIXED PARAMETER VALUES FOR TMS MODEL.

The second component reflects the control effort in terms of
the fuel-flow rates and is given as

C2 = E

[
1
2 ∑

k
m2

out(k)

]
. (22)

Now for different values of W , we get different Pareto
optimal solutions in the following sense. For a given value
of W , let p∗q be the optimal parameters that lead to optimal
objective function values of C∗1 and C∗2 . Then for the system
to perform such that the objective function C1 = C∗1 , the
minimum required value of C2 is C∗2 and vice versa. Figure
3 shows a plot of (C∗1 ,C

∗
2) for different values of W . Figure

3 also shows how the optimal fuel flow rates change with
respect to W . It can be clearly seen that the optimal flow
rates decrease as W is increased.

IV. SUMMARY AND FUTURE STEPS

We have described a simple but effective procedure to
optimally design hybrid systems whose mode transitions are
time-triggered. In particular, we assumed that the transitions
times are random variables with known distributions and
used stochastic optimization methods to design the hybrid
system so that on average, its performance is optimal. We
illustrated the method to optimize the fuel flow-rates in
different modes of operations of the thermal management
system of a prototypical aircraft. In the current setting, we
assumed that the parameters to be optimized for are fixed
for each mode. It is possible to formulate optimal control
problems where the control has some feedback dependence
on the state. The feedback dependence on the state can be
expressed in terms of parameters and then one could in
principle optimize for these parameters.

ACKNOWLEDGMENT

This work was supported by DARPA under contract
#FA9550-10-C-0116. The views expressed are those of the
authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. Distribution
Statement “A” (Approved for Public Release, Distribution
Unlimited).

REFERENCES

[1] S. Hedlund and A. Rantzer, “Optimal control of hybrid systems,” in
In Proceedings of the 38th IEEE Conference on Decision and Control,
1999, pp. 3972–3977.

543



(a) Pareto optimal curve. The x-axis is for C∗1 as defined in (21) and the y-axis
is for C∗2 as defined in (22).

(b) Variation of optimal fuel flow-rates with W .

Fig. 3. Results obtained using the SAA method for optimal design of TMS

[2] C. G. Cassandras, D. L. Pepyne, and Y. Wardi, “Optimal control of
a class of hybrid systems,” IEEE Transactions on Automatic Control,
vol. 46, no. 3, pp. 398–415, 2001.

[3] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems,
ser. Lecture Notes in Control and Information Sciences. Springer, 2003,
vol. 290.

[4] F. D. Torrisi and A. Bemporad, “HYSDEL – A tool for generating
computational hybrid models for analysis and synthesis problems,”
IEEE Transactions on Control Systems Technology, vol. 12, no. 2, pp.
235–249, 2004.

[5] A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello, “The sample
average approximation method for stochastic discrete optimization,”
SIAM J. Optim., vol. 12, no. 2, pp. 479–502, 2001.

[6] A. Wchter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.

[7] IBM ILOG CPLEX V 12.1: User’s Manual for CPLEX, International
Business Machines Corporation, 2009.

544


