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Abstract— This paper addresses the problem of set-point
tracking for a continuous-time process modeled by a multi-
input multi-output (MIMO) linear system that may switch, in
unknown and unpredictable fashion, among different modes
taken from a finite set. The proposed methodology relies on
an high level controller which, from time to time, can switch
on in feedback with the process a set-point controller, from a
family of candidate controllers, based on a real-time estimation
of the current process mode. It is shown that, under certain
conditions, global exponential stability can be achieved for any
slow-on-the-average process mode switching sequence.

I. INTRODUCTION

In recent years, switching systems have attracted signif-

icant research efforts both in theory and applications, as

they allow one to describe the behavior of a large class

of plants resulting from the interactions of continuous dy-

namics, discrete dynamics, and logic decisions [1]. These

contributions have been basically of a two-fold nature: on

one side [2], [3], [4], [5], [6], [7], [8], [9] several studies

have focused on mode observability and mode estimation;

on the other side, the main interest has been devoted to

stability and stabilization problems. Within this latter source

of contribution, however, the major emphasis has been on

basic issues, namely the characterization of the control laws

which can ensure stability to the switching system under the

assumption that an exact knowledge of the current process

mode is available in real-time or with delay [10], [11], [12].

As a matter of fact, the departure from the assumption that

an exact knowledge of the process mode sequence is avail-

able poses major challenges. Indeed, such a departure (akin

to the step from gain-scheduling to adaptive control) must

invariably be undertaken by adopting specific mechanisms

for estimating the current process mode on the grounds of the

available data. To the best of the authors’ knowledge, there

are only few contributions which address the case where

the knowledge of the plant configuration is not available,

neither in real time nor with delay [13], [14], [15], [16].

In addition, fundamental issues such as how to deal with

persistent disturbances or how to satisfy control objectives

other than stability are as yet largely unexplored.

A recent paper [17] has considered the zero regulation

problem for continuous-time processes modeled by a multi-

input multi-output (MIMO) linear system which are subject
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to persistent disturbances and may switch, in unknown and

unpredictable fashion, among different modes taken from a

finite set. The solution there proposed enjoys the following

features: i) It is realized via an high level control scheme

whereby a controller, selected from a finite family of candi-

date controllers, is at any time switched-on in feedback to the

plant; ii) The control scheme relies on an adaptive control

strategy where the controller selection is made in accordance

with the current process mode estimate.

The present paper aims at extending the approach of [17]

to the case of set-point tracking as well as to discuss how this

additional control objective can affect the process mode esti-

mate. Intuitively, the possibility to properly infer the current

process mode, and hence, to properly reconfigure the control

action is closely connected to plant mode observability

considerations [2], [3]. As will be seen, in contrast with the

zero regulation problem, the mode observability conditions

can fail to hold in the set-point tracking case, because such an

additional control objective forces the system along nonzero

terminal trajectories. Nonetheless, it is shown that by adopt-

ing sensible modifications to the mode estimator it is possible

to preserve exponential stability for any slow-on-the-average

process mode switching sequence and further ensure the

offset-free tracking property whenever the switched system

makes this objective conceptually achievable. For the sake

of brevity, all the proofs are omitted.

Notations. Given a matrix M , M⊤ is its transpose and

‖M‖ =
[

λmax(M
⊤M)

]1/2
its norm, where λmax denotes

the maximum eigenvalue. Given a measurable time function

v : R+ ∈ R
n and a time interval I ⊆ R

+, we denote its

L2 norm on I as ‖v‖2,I =
√

∫

I
|v(t)|2dt. Finally, L2(I)

denotes the sets of square integrable time functions on I.

II. PROBLEM FORMULATION AND BACKGROUND

Consider a plant Pσ(t) described by a continuous-time

switching linear system of the form

ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t)
y(t) = Cσ(t) x(t)

}

(1)

where t ∈ R+; x ∈ R
n is the plant state, u ∈ R

p is the

control input, y ∈ R
p is the plant output and σ ∈ N ,

N := {1, 2, . . . , N} is the plant mode. Ai, Bi, and Ci,

i ∈ N , are constant matrices of appropriate dimensions. It is

supposed that the unknown and unobserved switching signal

σ : R+ → N belongs to the class S of all the functions that

are piecewise constant, right continuous, and admit no Zeno
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behavior (i.e. the number of switching instants is finite on

every finite interval).

Further, let yr ∈ R
p be a constant set-point to be tracked

by the output and e(t) = y(t)−yr denote the corresponding

tracking error. The aim is to find possibly nonlinear feedback

controls which globally asymptotically stabilize (1) and

possibly yields offset-free asymptotic tracking of constant

set-points yr. To this end, we consider a one degree-of-

freedom linear switching controller Cσ̂(t) of the form

q̇(t) = Fσ̂(t) q(t) +Gσ̂(t) e(t)
u(t) = Hσ̂(t) q(t)

}

(2)

where q ∈ R
m is the controller state vector and σ̂ ∈ N is

the controller mode; Fi, Gi, Hi, and Ki, i ∈ N , are constant

matrices of appropriate dimensions. The switching signal σ̂ :

R
+ → N is supposed to be known and belonging to S.

Hereafter, for the sake of simplicity, both the plant Pi and

the controller Cj will be understood to be controllable and

observable for any fixed indices i and j, respectively. Then,

given (2), the adopted approach consists of suitably selecting

a discrete family {(Hi, Fi, Gi)}
N
i=1 and a switching signal σ̂

generating mechanism in such a way that the regulated plant

have the stated stability properties.

In connection with the design of the switching controller,

some preliminary observations are in order, which pertains

to the frozen-time analysis. According to the internal model

principle [18], [19], a classic approach adopted to asymp-

totically reject constant disturbances and achieve offset-free

tracking of constant set-points is to enforce an integral action

from e to u. It is well-known that, given a time-invariant

plant Pi ∼ (Ci, Ai, Bi) of the form (1), a stabilizing linear

error-feedback law Cj ∼ (Hj , Fj , Gj) exists which ensures

an offset-free steady-state tracking only if

det

[

Ai − λiI Bi

Ci 0

]

6= 0, i = 1, 2, . . . , p (3)

The latter is indeed a necessary and sufficient condition

for the existence of a stabilizing linear error-feedback law

with integral action for system (1) under controllability of

(Ai, Bi) and observability of (Ci, Ai) [18].

A property closely related to (3) is the following. Assume

that (3) holds for all i ∈ N , and consider a left and a right

polynomial matrix fraction description (MFD) of the plant

Hσ(t)(s) = P−1
σ(t)(s)Qσ(t)(s) = Qσ(t)(s)P

−1
σ(t)(s) (4)

where, for each i ∈ N , Pi and Qi (P i and Qi) are left (right)

coprime polynomial matrices of appropriate dimensions with

det (sI −Ai) = detPi(s) = k detP i(s), k ∈ R\{0}. Here,

equation (4) is intended as a shorthand notation to mean that

over each time interval where σ(t) = i, y is the output of the

LTI system with transfer matrix Hi(s) = P−1
i (s)Qi(s) =

Qi(s)P
−1
i (s) and state at the beginning of this interval being

initialized according to (1). Then, as a standard result of

linear system theory (e.g. see [20]), (3) is equivalent to the

fact that s = 0 is not a transmission zero of Hi(s), and,

hence, Qi(0) is full-rank ∀ i ∈ N . Likewise, consider a left

and a right polynomial MDF of the controller

Kσ(t)(s) = R−1
σ(t)(s)Sσ(t)(s) = Sσ(t)(s)R

−1
σ(t)(s) . (5)

As beforehand, for each j ∈ N , Rj and Sj (Rj and Sj)

are left (right) coprime polynomial matrices of appropriate

dimensions with det (sI − Fj) = detRj(s) = h detRj(s),
h ∈ R\{0}. Assuming that Cj has integral action, then Cj
has the right MFD Sj(s)Rj

−1(s) = Sj(s)∆
−1(s) R̃−1

j (s)
with ∆(s) = s I . If such a property is enforced for all can-

didate controllers, it follows that under (3) the characteristic

polynomial ϕi/j(s) of the the closed-loop (Pi/Cj),

ϕi/j(s) = det

[

Pi (s)−Qi (s)
−Sj (s) Rj(s)

]

= h det
(

Pi(s)Rj(s)−Qi(s)Sj(s)
)

is such that ϕi/j(0) 6= 0, ∀ i, j ∈ N . Under the just

mentioned conditions, the latter property is indeed a direct

consequence of the fact that Rj(0) = 0, ∀ j ∈ N , Qi(0) is

full-rank ∀ i ∈ N , and the fact that Rj and Sj are coprime.

III. MODE-OBSERVABILITY OF FEEDBACK LINEAR

SWITCHING SYSTEMS

In this section, based on the foregoing observations,

attention will be devoted to the problem of inferring the

plant mode σ from the measured data. Toward this end,

consider first the following state space realization for the

closed-loop system (Pσ(t)/Cσ̂(t)) resulting from the feedback

interconnection of (1) with (2)

ẇ(t) = Acl
σ(t)/σ̂(t) w(t) +Bcl

σ̂(t) yr
z(t) = Ccl

σ(t)/σ̂(t) w(t) +Dcl yr

}

(6)

where w := [xT qT ]T ∈ R
n+m and z := [uT eT ]T ∈ R

2p

denote the closed-loop state and output response, respec-

tively. Furthermore,

Acl
i/j :=

[

Ai Bi Hj

Gj Ci Fj

]

, Bcl
j :=

[

0
−Gj

]

,

Ccl
i/j :=

[

0 Hj

Ci 0

]

, Dcl :=

[

0
−I

]

, i, j ∈ N .

Let zi/j(t, t0, w0, yr) denote the output response of (6) at

time t > t0 when the initial state at time t0 is w0, the

reference is yr, the controller switching signal is σ̂(τ) = j
for any τ ∈ [t0, t], and the plant switching signal is σ(τ) = i
for any τ ∈ [t0, t].

The following notion of distinguishability between two

plant modes can be introduced.

Definition 1: For system (6), two plant modes i, i′ ∈ N
with i 6= i′ are said to be distinguishable if

zi/j(·, t0, w0, yr) 6= zi′/j(·, t0, w
′
0, yr) a.e. on [t0, t]

for any t0, t with t > t0, j ∈ N , yr ∈ R
p, and w0, w

′
0 ∈

R
n+m with w0 6= 0 or w′

0 6= 0.
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In words, two plant modes are distinguishable when, over

any finite interval, they always lead to different data z
provided that the initial state is different from zero. As

discussed next, in contrast with the analysis of autonomous

switched systems (where yr is absent), the distinguishability

of two plant modes depends in a crucial way on their zero-

frequency gains. To see this, it is first convenient to recall

the following result, which provides conditions for the state-

space solution of the error-feedback regulation problem.

Proposition 1: [21] Consider a plant Pi ∼ (Ci, Ai, Bi)
with (Ai, Bi) stabilizable and (Ci, Ai) detectable. Let the

controller Cj ∼ (Hj , Fj , Gj) be stabilizing. Then, Cj pro-

vides asymptotic offset-free tracking if and only if there exist

matrices Πi, Ξi and Σi/j such that

Ai Πi +Bi Ξi = Πi E, Ci Πi = I,

Fj Σi/j = Σi/j E, Hj Σi/j = Ξi

In connection with Proposition 1, it is an easy matter to

see that, for any feedback interconnection (Pi/Cj), Πi yr,

Σi/j yr and Ξi yr represent the steady-state solutions associ-

ated to x, q and u, respectively. It is a standard exercise

to verify that a controller satisfying the requirements of

Proposition 1 can be expressed in the observer-based form

q̇(t) =

([

Ai 0
0 0

]

−Gj

[

Ci −I
]

)

q(t)

+

[

Bi

0

]

u(t) +Gj e(t)

u(t) = [Kj ( Ξi −Kj Πi ) ] q(t)



































(7)

where Kj , Gj are such that

Ai +Bi Kj and

([

Ai 0
0 0

]

−Gj

[

Ci −I
]

)

are stability matrices. Further, in this case, Σi/j = [ΠT
i I ]T .

The introduction of Proposition 1 is motivated by the fact

that it has a direct connection to the issue of plant modes

distinguishability. Consider in fact that the output of (6)

zi/j(t, t0, w0, yr) =Ccl
i/j e

Acl
i/j(t−t0)w0

+Ccl
i/j

∫ t

t0

eA
cl
i/j(t−τ) Bcl

j yr dτ +Dcl yr

can also be rewritten as

zi/j(t, t0, w0, yr) = C
cl
i/j e

Acl
i/j(t−t0)

(

w0 + (Acl
i/j)

−1
B

cl
i/j yr

)

+
(

D
cl − C

cl
i/j (A

cl
i/j)

−1
B

cl
i/j

)

yr (8)

In equation (8), invertibility of Acl
i/j , i, j ∈ N , follows from

the fact that ϕi/j(s) = det(sI−Acl
i/j) and that ϕi/j(0) 6= 0,

∀ i, j ∈ N as pointed out at the end of Section II.

Let

Gi/j := Dcl − Ccl
i/j (A

cl
i/j)

−1 Bcl
i/j , i, j ∈ N

From equation (8), it is simple to conclude that it is impossi-

ble to distinguish between two plant modes i and i′ in case

Gi/j = Gi′/j . In such a case, it is indeed sufficient to let

w0 = −(Acl
i/j)

−1 Bcl
i/j yr and w′

0 = −(Acl
i′/j)

−1 Bcl
i′/j yr in

order to obtain zi/j(·, t0, w0, yr) ≡ zi′/j(·, t0, w
′
0, yr).

Proposition 2: Two plant modes i, i′ ∈ N with i 6= i′

can be distinguishable only if the matrix Gi/j−Gi′/j , is non-

singular ∀ j ∈ N .

From Proposition 1, one sees that the indistinguishability

condition corresponds exactly to the situation where the

switched system is in steady-state and there exist two plant

modes i and i′ such that

0 =Acl
i/j w0 +Bcl

j yr = Acl
i/j

[

Πi

Σi/j

]

yr +Bcl
j yr

=Acl
i′/j w

′
0 +Bcl

j yr = Acl
i′/j

[

Πi′

Σi′/j

]

yr +Bcl
j yr

z(t) =Ccl
i/j w0 +Dcl yr =

[

Ξi

0

]

yr = Gi/j yr

=Ccl
i′/j w

′
0 +Dcl yr =

[

Ξi′

0

]

yr = Gi′/j yr

Despite this, it should be clear that, from the point of

view of the control objectives, it is not necessary to require

distinguishability when the switched system is in steady-state

but only that the switched system be mode observable along

all possible non steady-state trajectories. These concepts will

be better formalized in the following.

A. Non steady-state Mode-observability

The above analysis motivates the introduction of a differ-

ent notion of distinguishability between two plant modes. To

this end, consider first the following.

Definition 2: Let zi/j(·, t0, w0, yr) be the output of the

unswitched feedback loop (Pi/Cj). Then, zi/j(·, t0, w0, yr)
is said to be a steady-state output trajectory on [t0, t] if

zi/j(·, t0, w0, yr) ≡ Gi/j yr on [t0, t].

It is to be pointed out that each feedback loop (Pi/Cj)
(stable or not) admits a unique steady-state solution being

Acl
i/j non singular. The following definition can be given.

Definition 3: For system (6), two plant modes i, i′ ∈ N
with i 6= i′ are said to be non steady-state distinguishable

(NSS distinguishable, for short) if they are distinguishable

along their non steady-state output trajectories.

Further, (6) is said to be non steady-state mode-observable

(NSS mode-observable, for short) if any two different plant

modes i, i′ ∈ N are NSS distinguishable.

In practice, NSS mode-observability corresponds to the

invertibility of the mapping from the any non steady-state

output trajectory z(·) to the plant switching signal σ(·). As

will be seen, NSS mode-observability allows one to recon-

struct the unknown switching signal σ(·) from observation

of z(·), provided that the switched system is not in steady-

state. In this respect, necessary and sufficient conditions for

NSS mode-observability of (6) are given in the following.
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Let now O
(k)
i/j denote the observability matrix of order k

of the feedback system (Pi/Cj)

O
(k)
i/j :=















Ccl
i/j

Ccl
i/j A

cl
i/j

...

Ccl
i/j

(

Acl
i/j

)k−1















.

It is worth pointing out that, since the pairs (Ci, Ai) and

(Fj , Hj) are observable by hypothesis, then also (Ccl
i/j , A

cl
i/j)

turns out to be observable, i.e. the observability matrix O
(k)
i/j

is full-rank for any k ≥ n+m. The following lemma unveils

that the joint observability matrix

[

O
(2n+2m)
i/j O

(2n+2m)
i′/j

]

plays a key role in determining NSS distinguishability of two

plant modes i and i′.

Lemma 1: Two plant modes i, i′ ∈ N with i 6= i′ are

NSS distinguishable if and only if their joint observability

matrix is full-rank, i.e.,

rank
[

O
(2n+2m)
i/j O

(2n+2m)
i′/j

]

= 2n+2m, ∀j ∈ N . (9)

As a consequence, the feedback system (6) is NSS mode-

observable if and only if condition (9) holds for any pair of

different plant modes i, i′ ∈ N .

As can be seen, the conclusions of Lemma 1 are closely

connected to those derived in [2] and [3] for autonomous

switching linear systems. In the next two sections, we

describe how Lemma 1 can be used so as to extend the

results of [17] to the case of set-point regulation.

IV. SWITCHING CONTROLLER AND

SUPERVISED SYSTEM

In this section, we discuss how stability of the feedback

system (6) can be achieved by means of a suitable choice of

the controller switching signal σ̂. To this end, it is supposed

that (1) and (2) satisfy the following basic requirements.

A1. Condition (3) holds for every i ∈ N .

A2. For each plant mode i ∈ N , the corresponding

controller Ci is stabilizing, and Ri(0) = 0.

A3. The feedback system (6) is NSS mode-observable.

While A1 and A2 can be regarded as feasibility conditions

in order to achieve stability and, possibly, the offset-free

tracking property, A3 requires some additional arguments.

In this respect, a sufficient condition to ensure NSS mode-

observability is provided in the following.

As it emerges from the proof of Lemma 1, (9) is a

necessary and sufficient condition for mode-observability (in

the sense of Definition 1) of the autonomous system given

by (6) when yr = 0. Indeed, the joint observability matrix

PσCσ̂

MODE

ESTIMATOR

e σ̂

yr u y
−

+

Fig. 1. Block diagram of the feedback control system with mode estimator.

equals the observability matrix of the autonomous system

χ̇(t) =

[

Acl
i/j 0

0 Acl
i′/j

]

χ(t)

ζ(t) =
[

Ccl
i/j Ccl

i′/j

]

χ(t)



















(10)

obtained from the parallel connection of (Pi/Cj) with

(Pi′/Cj). This implies that (9) holds under the same con-

ditions which ensure mode-observability (in the sense of

Definition 1) of the autonomous system given by (6) when

yr = 0. Then, next result follows as a simple variant of its

counterpart in [17].

Proposition 3: Two plant modes i, i′ ∈ N with i 6= i′

are NSS distinguishable if, for any j ∈ N , the closed-loop

characteristic polynomials ϕi/j(s) and ϕi′/j(s) are coprime.

According to Proposition 3, A3 holds provided that for any

pair i, i′ ∈ N with i 6= i′ and any j ∈ N the closed loop

polynomials ϕi/j(s) and ϕi′/j(s) have no common roots. As

discussed in [17], for single-input single-output systems, the

conditions of Proposition 3 are also necessary.

A. Dwell-time switching and mode estimator

The choice of the control action to use, among all the

candidate controllers Ci, i ∈ N , is carried out in real-

time by an high-level unit called mode estimator. At each

time t ∈ R+, the mode estimator generates an estimate

σ̂(t, z(·)) ∈ N of the current plant mode based on the

measured data z(·) up to the current time t. As depicted in

Figure 1, the estimate is then used as the controller switching

signal, i.e. σ̂(t) = σ̂(t, z(·)). The plant mode estimate is

generated according to a dwell-time switching logic (DTSL,

for short), whose functioning can be explained as follows.

The mode estimator updates its estimate σ̂(t, z(·)) of the

plant mode σ(t) at discrete-time instants of the type kT
where k ∈ Z+ and T , a positive real, is the so called dwell

time. This amounts to assuming the controller switching

signal constant over each time interval Ik := [kT, (k+1)T ),
i.e. σ̂(t) = σ̂k , ∀t ∈ Ik .

In order to generate σ̂k+1, the mode estimator employs a

finite family of N performance signals δi/j(z(·), Ik), i ∈ N ,

which provide a measure of the distance between the plant

and the i-th model when the switched-on controller is Cj .

432



Accordingly, one selects a value i∗ ∈ N among those which

achieve the minimum, i.e.

i∗ ∈ argmin
i∈N

δi/σ̂k
(z(·), Ik) .

If δi∗/σ̂k
(z(·), Ik) is smaller than δσ̂k/σ̂k

(z(·), Ik), then σ̂k+1

is set equal to i∗, otherwise the controller mode is left

unchanged. It is to be noted that, as in [22], one could collect

the data only in a subinterval of Ik of the type [kT, kT + τ)
with τ ∈ (0, T ), keeping the remaining subinterval [kT +
τ, (k + 1)T ) for all the necessary computations. It is not

difficult to verify that all next developments hold true also

in this more general setting.

Thanks to the adoption of the DTSL, a simple criterion to

generate the estimate σ̂k can be devised. To this end, notice

first that, whenever also the plant mode takes on a constant

value, say i, over Ik, the evolution of the plant input/output

data on Ik can be written as

z(t) = zi/σ̂k
(t, kT, w(kT ), yr) , t ∈ Ik .

Thus, the set Si/σ̂k
(Ik) of all possible measured data on Ik

associated with a plant mode i and a controller mode σ̂k

corresponds to the affine subspace

Si/σ̂k
(Ik) :=

{

ẑ ∈ L2(Ik) : ẑ(·) = zi/σ̂k
(·, kT, ŵ, yr)

on Ik, for some ŵ ∈ R
n+m

}

(11)

where yr is a preassigned and fixed output reference. There-

fore, next proposition directly descends from the definition

of NSS mode-observability.

Proposition 4: Under assumption A3, for any two differ-

ent plant modes i, i′ ∈ N and any controller mode σ̂k ∈ N ,

Si/σ̂k
(Ik) ∩ Si′/σ̂k

(Ik) =
{ {

Gi/σ̂k
yr

}

, if yr ∈ ker (Gi/σ̂k
− Gi′/σ̂k

)
∅, otherwise

where ker(·) denotes the kernel.

In view of the above considerations, a convenient approach

for estimating the plant mode σ(·) on Ik consists in choosing

the index i for which the distance between the observed

data z(·) on Ik and the affine subspace Si/σ̂k
(Ik) is mini-

mal. More precisely, let Wi/j(t, t0) denote the observability

Gramian of (Pi/Cj) on [t0, t), i.e.

Wi/j(t− t0) :=

∫ t

t0

ΨT
i/j(ξ, t0)Ψi/j(ξ, t0)dξ , (12)

Ψi/j(t, t0) := Ci/j e
Ai/j(t−t0) .

Then, at the generic time (k+1)T the estimate σ̂k+1 can be

obtained according to the minimum-distance criterion

δi/j(z(·), Ik) := min
ŵ∈R

n+m

∥

∥z(·)− zi/j(·, kT, ŵ, yr)
∥

∥

2,Ik
(13)

= min
ŵ∈R

n+m

∥

∥ζi/j(·, kT )−Ψi/j(·, kT ) ŵ
∥

∥

2,Ik

where

ζi/j(t, kT ) :=

z(t) − Ccl
i/j

∫ t

kT

eA
cl
i/j(t−τ) Bcl

j yr dτ −Dcl yr

Notice that, being the pair (Ccl
i/j , A

cl
i/j) completely observ-

able by hypothesis, the observability Gramian Wi/j(t − t0)
is positive definite for any t > t0. Accordingly, the mini-

mization in (13) yields

δi/j(z(·), Ik)

=

(
∫

Ik

∣

∣

∣

∣

ζi/j(t, kT )−Ψi/j(t, kT )
(

Wi/j(kT )
)−1

×

∫

Ik

(

Ψi/j(ξ, kT )
)⊤

ζi/j(ξ, kT ) dξ

∣

∣

∣

∣

2

dt

)1/2

.

The relevant property of the criterion (13) is that when σ(t)
is constant in the interval Ik, one has

ζσk/σ̂k
(t, kT ) = Ψσk/σ̂k

(t, kT )w(kT ) t ∈ Ik .

and, hence, δσk/σ̂k
(z(·), Ik) = 0.

V. STABILITY ANALYSIS

In this section we show how the previous results can be

used to analyze the stability properties of the switched system

(6). To this end, some preliminary observations are in order.

Consider first that assumption A1 amounts to the existence

of two positive reals µ and λ such that

‖eA
cl
i/it‖ ≤ µe−λt, ∀ t ∈ R+, ∀ i ∈ N . (14)

Further, since the set N is finite, one has

‖eA
cl
i/jt‖ ≤ θeρt, ∀ t ∈ R+, ∀ i, j ∈ N (15)

for some positive reals θ and ρ.

The following result can be proven which is instrumental

for next developments.

Theorem 1: Assume that A1-A3 hold and that the plant

mode is constant on the time interval [th, tH). Then, if the

criterion (13) is used in the DTSL, there exist finite positive

real β and γ such that

|w(t)| ≤ β e−λ(t−th) |w(th)|+ γ |yr| , ∀ t ∈ [th, tH)

Theorem 1 shows that, under the stated assumptions, the

proposed minimum-distance criterion ensures exponential

stability of the switched system whenever no plant variation

occurs. As discussed next, similar conclusions hold true

provided that the plant switching signal is sufficiently slow

on the average. In this respect, let Nσ(t, t0) be the number of

discontinuities of σ in the interval (t0, t), then the following

assumption is needed [23].
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A4. There exist a positive real τD, called average dwell-

time, and a positive integer N0, called chatter bound,

such that

Nσ(t, t0) ≤ N0 +
t− t0
τD

for any t, t0 ∈ R+ with t > t0.

The main stability result of this section can be stated.

Theorem 2: Assume that assumptions A1-A4 hold and let

the criterion (13) be used in the DTSL. Then,

i) If the average dwell-time τD is such that

τD > [log µ+ 2 log θ + (λ+ ρ)2T ] /λ , (16)

there exist finite positive reals α∗, β∗ and γ∗ such that

|w(t)| ≤ β∗ e
−α∗(t−t0) |w(t0)|+ γ∗ |yr| , ∀ t ≥ t0 (17)

ii) If the plant switching signal σ(·) is finitely convergent,

we also have limt→∞ e(t) = 0.

It should be clear from the above analysis that, in contrast

with the case where no plant variations occurs, it may be

impossible to ensure the offset-free tracking property in the

presence of plant variations. However, it is not difficult to

verify that conditions do exist under which the offset-free

tracking property can be recovered.

Let each candidate controller has the observer-based form

(7). In case Πi = Π and Ξi = Ξ, ∀ i ∈ N , it is immediate to

verify that the switched system (6) admits the coordinate

transformation x̃ := x − Π yr, q̃ := q − Σ yr, where

Σ :=
[

ΠT I
]

T . Under such circumstances the set-point

tracking problem can be converted to an equivalent pure zero-

regulation problem for the switched system

˙̃w(t) = Acl
σ(t)/σ̂(t) w̃(t)

z̃(t) = Ccl
σ(t)/σ̂(t) w̃(t)

}

(18)

where z̃ := [ ũT eT ]T , ũ := u − Ξ yr. Then, asymptotic

stabilization of (18) implies asymptotic stabilization of (6)

along with the offset-free tracking property. For instance, it

is not difficult to show that, when Ai is invertible ∀ i ∈ N ,

Σ and Ξ do exist provided that all the candidate plants have

the same open-loop input-to-state and input-to-output gains.

VI. CONCLUSIONS

Consideration has been given to the set-point tracking

problem for MIMO switching linear systems thay may switch

in unknown and unpredictable fashion, among different

modes taken from a finite set. It is shown that suitable

adaptive control schemes do exist which ensure exponential

stability for any slow-on-the-average process mode switching

sequence and further ensure the offset-free tracking property

whenever the switched system makes this objective con-

ceptually achievable. The positive assessment of robustness

against the presence of persistent disturbances in the loop as

reported in [17], indicates that similar desiderable properties

are likely to be enjoyed by the present scheme: a topic

currently under consideration by the authors of this paper.
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