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Abstract— In this paper we present some initial results
on the design of dynamic controllers for electromechanical
oscillation damping in large power systems using Synchronized
Phasor Measurements. Our approach consists of three steps,
namely - 1. Model Reduction, where phasor data are used to
identify second-order models of the oscillation clusters of the
system, 2. Aggregate Control, where state-feedback controllers
are designed to achieve a desired closed-loop transient response
between every pair of clusters, and finally 3. Control Inversion,
where the aggregate control design is distributed and tuned to
actual realistic controllers at the generator terminals until the
inter-area responses of the full-order power system matches
the respective inter-machine responses of the reduced-order
system. Although a general optimization framework is needed
to formulate these three steps for any n-area power system,
we specifically show that model reference control (MRC) can
be an excellent choice to solve this damping problem when the
power system consists of two dominant areas, or equivalently
one dominant interarea mode.

Index Terms— Power systems, damping control, model re-
duction, swing equation, model reference control.

I. INTRODUCTION

Model-based control of multi-machine power systems has
seen a rich history of nearly fifty years, addressing the funda-
mental issues of mathematical modeling, stability and robust-
ness of large power networks with a natural progress towards
more advanced concepts of component-level dynamics. Over
the past few years, however, following the US Northeast
Blackout of 2003, the research mindset of power system
control engineers has steered more towards measurement-
based control designs. The relevance of this interest has been
particularly facilitated by the recent outburst of power system
measurement and instrumentation facilities in the form of the
Wide-Area Measurement System (WAMS) technology [1].
Sophisticated digital recording devices called Phasor Mea-
surement Units or PMUs (shown in Figure 1) are currently
being installed in accelerating proportions at different points
in the North American grid. Concerted efforts are being made
to develop nationwide ‘early warning’ mechanisms using
PMU measurements that will enable power system operators
to take timely actions against blackouts and other widespread
contingencies. Excellent visualization tools, for example, in
the form of Real Time Dynamics Monitoring System (RT-
DMS) and US-Wide Frequency Monitoring Network (FNET)
[2] are currently being deployed across various corners of
the US grid using voltage, current and frequency phasors,
complimented by data analysis methods and software plat-

forms such as Dynamic System Identification (DSI), Prony
analysis and Mode Meter , Hilbert-Huang transforms [3] and
phasor-based state estimation.

The majority of research done so far in the Synchrophasor
community in the United States, however, pertains only to
ideas of monitoring and observation. No rigorous research
has yet been done to investigate how Synchrophasors, beyond
simply monitoring, can also be used for autonomous, wide-
area damping control of power system oscillations. In this
paper we address this pertinent problem, and present some
initial results inspired from the model-reference adaptive
control (MRAC) literature, applied to simplistic yet practi-
cally relevant topologies of multi-area power systems with a
particular focus on two-area systems. The main idea behind
our design is a so-called, novel control inversion framework
which allows PMU-based linear/nonlinear control designs,
developed for reduced-order power systems, to be inverted
(or, equivalently distributed) to local controllers in actual
higher-order systems via suitable optimization methods. The
approach, in general, consists of three precise steps, namely:

1. Model Reduction/Dynamic Equivalencing - where PMU
data are used to identify equivalent models of the oscillation
clusters of the entire power system based on the differences
in their coupling strengths; for example, Figure 1 shows a 6-
machine 8-line power system, where the electrical reactances
or the edge weights of lines {1, 5, 6, 7, 8} are assumed to
be significantly smaller compared to those of lines 2, 3
and 4, separating the entire network into three coherent
clusters or areas, and forcing the system to evolve as an
equivalent 3-machine system over a slow time-scale treating
all the machines inside Area 1 to be aggregated into one
hypothetical equivalent machine. The first step in our design
involves identification of these equivalent machine models
using PMU data available from the terminal buses of each
area. Detailed derivations of these measurement-based equiv-
alencing methods have been presented in our recent work
[4], and, therefore, will not be our focus in this paper. Our
objective is to design controllers for damping the oscillations
between these areas, for which we will simply assume that
the area models are available to us by prior identification
methods available from [4].

2. Aggregate Control - where state-feedback controllers are
designed to achieve a desired closed-loop transient response
between every pair of clusters in the reduced-order system.
For the system in Figure 1 this would mean that a controller,
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Fig. 1. Network of 6 generator nodes and 8 tie-line edges

either centralized or distributed, is designed for the three
equivalent machines to achieve a desired dynamic response
of the aggregated state variables (technically referred to as
the inter-area state responses), and finally

3. Control Inversion- where the aggregate control design
is distributed and tuned back to actual realistic controllers
at the generator terminals until the inter-area responses of
the full-order power system matches the respective inter-
machine responses of the reduced-order system. For the
6-machine system of Figure 1 this would mean that the
controller designed for the equivalent machine of Area 1 will
be mapped back to a set of controllers for the four machines
contained in this area, and tuned until the slow modes of
this full-order system exhibit similar transient response as
the respective closed-loop states in Step 2.

Although a general optimization framework is needed to
formulate these three steps for a n-area power system, we
specifically show in this paper that model reference control
(MRC) can be an excellent choice to solve this damping
problem when the power system consists of two dominant
areas, or equivalently one dominant interarea mode.

II. PROBLEM FORMULATION FOR n-AREA SYSTEMS

Consider a network of electrical oscillators with n gen-
erators (nodes) connected to each other through m tie-lines
(edges) with m ≤ n(n − 1)/2, forming a connected graph
with cardinality (n, m), such that atmost one edge exists
between any two nodes. This may also be thought of as
a power system although we use the word ‘power’ with
reservation as in a real power system generators are not
necessarily connected directly but via intermediate buses due
to which the network Laplacian becomes extremely compli-
cated, especially for large networks. To avoid this difficulty
and in the interest of the specific application discussed in
this paper, we restrict our discussion to networks where each
dynamic element i.e., a generator is directly connected to
its neighbors. An example of such a network consisting of
n = 6 generators and m = 8 tie-lines is shown in Figure 1.
The arrows along each edge denote the direction of effective

power flow. Let the internal voltage phasor of the ith machine
be denoted as

Ẽi = Ei∠δi, i = 1, 2, . . . , n (1)

where, following synchronous machine theory [5], Ei is
constant, δi is the angular position of the generator rotor,
and Ei∠δi denotes the polar representation Eiε

jδi (j =√
−1). The transmission line connecting the pth and the qth

machines is assumed to have an impedance

z̃pq = rpq + jxpq (2)

where ‘r’ denotes the resistive part and ‘x’ denotes the
reactive part. Here p ∈ {1, 2, ..., n} and q ∈ Np where Np

is the set of nodes to which the pth node is connected. It
follows that the total number of tuples formed by pairing
p and q is m. For the rest of the paper we will denote the
edge connecting the pth and the qth node by epq . Equation
(2) can also be regarded as a complex weight of an edge
in the network, and implies that z̃pq = z̃qp. If two nodes
do not share a connection then the impedance corresponding
to that non-existing edge is infinite (i.e., open circuit), or
equivalently,

ỹpq =
1

z̃pq
=

1

rpq + jxpq
= 0 ∀q ̸∈ Np (3)

where ỹpq is the admittance of epq . The mechanical inertia
of the ith machine is denoted as Hi.

The dynamic electro-mechanical model of the ith genera-
tor, neglecting damping, can be written as [5]

δ̇i = ωi − ωs (4)
2Hiω̇i = Pmi

−
∑
k∈Ni

(
E2

i rik − EiEkpik cos(δik + αik)

p2ik

)
(5)

where δik = δi − δk, ωs = 120π is the synchronous
speed for a 60 Hz system, ωi is the rotor angular velocity,
Pmi is the mechanical power input, pik =

√
r2ik + x2

ik

and αik = tan−1(xik/rik). All quantities are in per unit
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except for the phase angles which are in radians. We assume
that the network structure is known, i.e., the set Ni for all
i = 1, 2, . . . , n in (4)-(5) is known.

We linearize (4)-(5) about an initial equilibrium (δi0, 0)
where 0 < δi0 < 90◦ for all i = 1, 2, . . . , n, and denote the
perturbed state variables as

∆δ = col(∆δ1,∆δ2, . . . ,∆δn) (6)
∆ω = col(∆ω1,∆ω2, . . . ,∆ωn). (7)

We assume that the control input u enters the system (note:
the network graph is connected, by assumption) through the
jth node, j ∈ {1, 2, . . . , n}.[

∆δ̇
∆ω̇

]
=

[
0 I

M−1L 0

]
︸ ︷︷ ︸

A

[
∆δ
∆ω

]
+

[
0
Ej

]
︸ ︷︷ ︸

B

u (8)

where I is the n-dimensional identity matrix, Ej is the jth

unit vector with all elements zero except the jth element
which is 1, M = diag(M1,M2, . . . ,Mn), Mi is the inertia
of the ith generator, and L is the n × n Laplacian matrix
with elements:

Lii = −
∑
k∈Ni

EiEk

pik
sin(δi0 − δk0 + αik), (9)

Lik =
EiEk

pik
sin(δi0 − δk0 + αik), k ∈ Ni, (10)

Lik = 0, otherwise (11)

for i = 1, 2, . . . , n. It follows that if Mi = Mj , ∀(i, j),
then L = LT . In general, however, each machine will
have distinct inertia as a result of which the symmetry
property does not hold. We, therefore, refer to M−1L as
the unsymmteric Laplacian matrix for the linearized swing
model. It is obvious from (8) that the coupling strengths pik
of the links are contained in this matrix, and will decide
the separation of areas depending on the differences in the
strengths. The inter-area coupling strengths between any pair
of areas can then be used to reduce the full-order network
into a dynamic equivalent system of n-equivalent machines
using the parameter identification methods outlined in [4].

A more concrete example is given by the 3-area power
system shown in Figure 2, where Area 1 and 3 consist
of two coherent machines each while Area 2 consists of
three coherent machines, and, therefore, reduced to a three-
machine equivalent interconnected through an equivalent
graph.1 Since our wide-area control method is based on
shaping the closed-loop response of the reduced-order system
followed by control inversion, this means that our first
task would be to design a distributed excitation control
system for each of the three equivalent machines GA1,
GA2 and GA3, using, for example, classical linear state-
feedback designs. None of these controllers, however, can
be implemented in practice as GA1, GA2 and GA3 do not
exist physically. Therefore, keeping the aggregate design as

1Construction of these equivalent connectivity structures is yet another
significant aspect of the model reduction step, and is currently being
investigated by us using stochastic graphical models.

a reference, we next need to design individual excitation
for each generator G1, G2, ..., G7 in the 13-bus system
of Figure 2, and tune them optimally until the interarea
responses for the 13-bus system coincide with the closed-
loop state responses of the 3-area system. Our approach for
this control distribution are based on various optimization
methods, inspired by different engineering applications. For
example, one potential direction of our analysis, as described
next, will be to distribute the feedback gains of the aggregate
controllers via continuous functions (for nonlinear control
design) or averaging coefficients (for linear control design),
and then to achieve interarea performance matching through
optimal tuning of the controller parameters. Starting from the
reduced-order system as in Figure 2, we consider the swing
model of the jth equivalent generator

δ̇j = ωj , Mjω̇j = Pmj −Djωj − Pej . (12)

We assume that the measurements available for feedback
for this jth aggregate generator, and their corresponding
feedback gains are:

(yj11 , kj11), (y
j1
2 , kj21), ..., (y

j2
1 , kj12), ..., (y

jn
m , kjmn)

where y
jp
i denotes the ith measured variable by the PMU

located at the jthp bus. The choices for yijp , for example, can
be voltage and current magnitudes, voltage and current phase
angles, bus frequency, and the active power (calculated from
the voltage and current phasors) measured by the PMU at
Bus jp. The index jp corresponds to a bus that is possibly
located in close neighborhood of this jth generator in the
reduced network. Assigning the mechanical power input
uj = Pmj as the control input, an state/output feedback
design can then be of the form:

uj = f(yj11 (t), yj12 (t), ..., yjnm (t), kj11, kj21, ..., kjmn),
(13)

where f(·) is a smooth function producing a desired closed-
loop inter-machine transient response. However, for imple-
mentation in the actual 13-bus system of Figure 2(a), uj

needs to be distributed to each local machine belonging to
the jth area. A plausible way of achieving this would be,
for example, to construct nonlinear functions ρ(·) mapping
each of the feedback gains (kj11, kj21, ..., kjmn) to each
individual machine in the area. The symbol l denotes the total
number of machines in the jth area. Stacking the functions
ρlmn(·) and the gains kjmn for all (j, l,m, n) into vectors
R and K, respectively, the problem that we must, therefore,
solve is:

min
R(K)

||xij(t,R(K))− x̄ij(t,K)||2 st. K ∈ K∗ (14)

for all (i, j), and for all t ≥ t∗ ≥ 0, where: xij is the
interarea state response (phase or frequency) between ith and
jth areas in the full-order system, x̄ij is the designed inter-
machine state response (phase or frequency, respectively) be-
tween ith and jth machines in the reduced-order system, and
K∗ denotes a constraint set for the feedback gains specifying
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Fig. 2. Network of 7 generator nodes divided into 3 coherent areas

their allowable upper and lower bounds. Equivalently, we
need to search for an optimal function set R∗(K) such that

||xij(t,R∗(K))− x̄ij(t,K)||2 ≤ ϵ (15)

for time t > t∗ > 0, K ∈ K∗, where ϵ > 0 is a chosen
tolerance for the performance matching between the two
responses.

However, when there are multiple inter-area modes in a
system, a fundamental concern for solving the optimization
problem (15) is the so-called non-uniqueness of the equiv-
alent model with respect to the choice of interarea modes.
This means that when the phase angle response at any bus
in the power system consists of more than one interarea
mode, then a specific mode needs to be extracted from
the signal via modal decomposition methods such as Prony
analysis [6], Eigenvalue Realization Algorithm [4], etc., and
the impulse response of this extracted mode needs to be
used for identifying the equivalent model of the system.
However, if a different interarea mode is extracted and
used for this identification, then there is no guarantee that
model will match with that obtained for the first mode. The
mathematical justification behind this is that the transfer
function of the full-order power system can be written in
the pole residue form as

G(s) =
∑
i∈Nl

σis+ µi

s2 + γis+ πi
+

∑
j,k∈Ij×Ik

σjks+ µjk

s2 + γjks+ πjk

(16)
where Nl is the set of local modes and Ni×Nj is the set of
interarea modes operating between the ith and the jth cluster
of the system. Since the residue parameter set (σjk, µjk)
for different pairs of (i, j) are not equal, this implies that
the participation of the different interarea modes on the
measured signal, as quantified by their participation factors,
are different, and, hence, the equivalent model computed
based on different pairs of clusters are disparate as well.
In terms of our inversion problem, this implies that the
optimization (15) needs to be performed for each equivalent
interarea model, with an obvious challenge being whether
the design of a single controller that can damp all interarea
modes at their corresponding frequencies, is feasible or not.
While the problem needs more introspection, in this paper

we bypass this obstacle by presenting our control designs
for a simplistic and yet highly important class of power
system, namely a two-area system, i.e., a system with a single
dominant interarea mode.

III. MODEL REFERENCE CONTROL FOR TWO-AREA
SYSTEMS

When the full-order transfer function (16) consists of only
one interarea mode, then there is only one participation factor
present in any measured state from this mode, as a result
of which the reduced-order system has a unique topology,
and, therefore, admits for a feasible control inversion. In
fact, given the simple Laplacian structure of such systems, as
already indicated in Section I, Model Reference Control can
be used as a helpful tool for the inversion problem instead
of using the generic optimization framework proposed in
Section II. Recalling the swing equation (8), the input and
output matrices for the linearized model of the two-area
system can be written as B = col(0, E), C = [C1 0], where
E is the unit vector with entry 1 at the index corresponding
to the control input 2, and C1 ∈ R1×(n1+n2) has all zero
entries except for the ith and the jth entries, each belonging
to one distinct area, which are +1 and −1 (or, vice versa),
where i and j are the indices of the nodes whose phase angle
difference is being regulated, and n1 and n2 are, respectively,
the number of nodes in Area 1 and 2. Denoting Ā = M−1L,
it can be easily shown that for this system,

CApB = 0, p ≥ 0 is even (17)
CA(2r+1)B = C1Ā

rE , r = 0, 1, 2, ... (18)

Furthermore, given that our objective is to track and control
the inter-area oscillations, we consider the observed output
as the phase angle difference between the boundary nodes,
and arrange the states as

δ = col(δ11, δ12, ..., δ1n1 , δ21, δ22 ..., δ2n2) (19)
ω = col(ω11, ω12, ..., ω1n1 , ω21, ω22, ..., ω2n2) (20)

where δij and ωij denote the phase and machine speed
for the jth machine in the ith area, the total number of

2For simplicity we consider only a scalar control input although the MRC
design can be easily extended to multiple control inputs as well
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machines in Area 1 and 2 are n1 and n2, respectively, and
the index pair (n1, n2) correspond to the boundary nodes of
the two respective areas. To ensure persistency of excitation
we apply the input at any of the boundary nodes so that it
the control effect will have maximum participation in the
inter-area mode [4], [7]. For example, considering the input
at the boundary node of Area 1, we get

C = [C1 0], C1 = [0 0...1 0 0 ...−1], B = col(0, En1) (21)

where the non-zero entries of C1 are at the nth
1 and nth

2

positions, and En1 is the unit vector with all entries zero
except the nth

1 entry which is 1. Rearranging (19)-(20) as

δa , col(δ11, δ12, ..., δ1n1), δb , col(δ21, δ22 ..., δ2n2)

ωa =, col(ω11, ω12, ..., ω1n1 , ωb , col(ω21, ω22, ..., ω2n2)

the state equation then takes the form
δ̇a
δ̇b
ω̇a

ω̇b

 =

[
0 I
L 0

]
︸ ︷︷ ︸

A


δa
δb
ωa

ωb

+


0
0

βEn1
0

u (22)

where β = M−1
n1

> 0 i.e., the reciprocal of the inertia
constant of the machine located at the boundary node of
Area 1, and the unsymmetric Laplacian matrix L is the of
the form

L =

[
L1 L2

L3 L4

]
, L2 =

[
0 0
0 γn1,n2

]
n1×(n1+n2)

(23)

L3 =

[
0 0
0 γn2,n1

]
n2×(n1+n2)

(24)

with γn1,n2
∈ R1×n2 , γn2,n1

∈ R1×n1 given as

γn1,n2 = col(0, 0, ...,
En1En2

Mn1 xn1,n2

cos(δn10 − δn20))
T

γn2,n1 = col(0, 0, ...,
En1En2

Mn2 xn1,n2

cos(δn10 − δn20))
T .

The RHS of the above expressions follow straight from (5)
with all line resistances assumed to be negligible compared
to the reactances. The expressions Enj , Mnj and δnj0

respectively denote the generator voltage, machine inertia
and phase angle at pre-disturbance equilibrium for the jth

boundary node, j = 1, 2. xn1,n2 denotes the reactance or the
edge weight of the transmission lines joining the two areas
connecting node n1 with node n2. Considering (19)-(24),
after a few calculations it can be easily shown that (17)-(18)
simple reduces to

CB = CAB = CA2B := 0, CA3B ̸= 0 (25)

implying that the relative-degree of the two-area system with
the chosen input-output pair is n∗ = 2. However, we must
recall that L contains both local and interarea couplings
implying that the output measurement will contain the modal
effects due to (n1 + n2 − 2) local modes and one interarea
mode of oscillation, say denoted as νa. Since our goal is to
dampen the interarea mode, the output y = δn1

− δn2
must

be passed through a band-pass filter (BPF) with bandwidth
frequency set to νa. Typically such values are learnt apriori
by power system operators from offline modal analysis [7].
If the BPF is designed as a relative-degree zero Butterworth
filter , then the open-loop transfer function of the two-area
system retains n∗ = 2.

The state-space model of the two-machine equivalent of
the two-area system, on the other hand, is given as

˙̄δa
˙̄δb
˙̄ωa

˙̄ωb


︸ ︷︷ ︸

x̄

=

[
0 I2×2

L̄ 0

]
4×4


δ̄a
δ̄b
ω̄a

ω̄b

+


0
0
β̄
0

 ū (26)

ȳ = = [1 − 1; 0 0] x̄, L =

[
−c̄ab c̄ab
c̄ab c̄ab

]
(27)

with c̄ab , (EaEb cos(δa0 − δb0)/xab. The bar sign denotes
that the corresponding variables are ‘equivalents’ while sub-
scripts a and b refer to Area 1 and 2, respectively. From
(26)-(27) it is clear that the reduced order system has relative
degree n̄∗ = 2 as well.

Summarizing the foregoing analysis, we write the reduced-
order, equivalent system as a reference model in the form

˙̄x = Āx̄+ B̄ū, ȳ = C̄x̄ (28)

where a state feedback design of the form ū = Kx̄(t)) ,
r(t) can be applied to achieve a desired transient response
ȳ∗(t) of the output3. The actual full-order system model,
however, has the form

ẋ = Ax+Bu, y = Cx, ym(t) = G(s)[y](t) (29)

where G(s) is a relative-degree zero filter transfer function
with Hurwitz zero dynamics [?]. The control objective,
therefore, is to design the input u via state feedback such
that all closed loop signals are bounded and the plant output
ym(t) tracks ȳ(t) asymptotically over time. The following
four assumptions hold true for our system:

(A1): Denoting

Gp(s) , kp
Zp(s)

Pp(s)
= G(s)[C(sI −A)−1Bu](t) (30)

the polynomial Z(s) is stable.
(A2): The degree n = 4 for Pp(s) is known and fixed.
(A3): Sign of the high frequency gain kp is known.
(A4): Relative degree of Gm(s) , [C̄(sI − Ā)−1B̄r](t)

is same as that of Gp(s), both being equal to 2.
The natural choice for designing the input u(t), therefore,

can be a model-reference controller with the following struc-
ture [8]:

u(t) = θT1 ϑ1(t) + θT2 ϑ2(t) + θ20ym(t) + θ3r(t) (31)

3Please refer to [4] for the reconstruction of states in the reduced model
that will the proposed state feedback design.
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where, θ’s are constant parameters, and

ϑ1(t) =
q(s)

Λ(s)
[u](t), ϑ2(t) =

q(s)

Λ(s)
[y](t), (32)

q(s) = [1, s, s2], ϑ1, ϑ2 ∈ R3, ϑ20 ∈ R (33)

and Λ(s) is a Hurwitz polynomial of degree 3. Following
standard MRC theory, the two filter variables ϑ1(t) and
ϑ2(t), in this case, can be designed simply as

ϑ̇1(t) = Aλϑ1(t) +Bλu(t) (34)
ϑ̇2(t) = Aλϑ2(t) +Bλy(t) (35)

Aλ =

 0 1 0
0 0 1

−λ0 −λ1 −λ2

, Bλ =

 0
0
1

 (36)

where Λ(s) := λ0 + λ1s+ λ2s
2. The control parameters in

(31) can then be solved for from Diophantyne’s equation as
in Lemma 5.1 in [8] which states that constants θ1, θ2, θ20
and θ3 exist such that

θT1 q(s)Pp(s) + (θT2 q(s) + θ20Λ(s))kpZp(s)

= Λ(s)(Pp(s)− kpθ3Zp(s)Pm(s)) (37)

where Pm(s) is the characteristic polynomial of the reference
model (28).

As an example, we consider a three-machine cyclic power
system, where two generators G1 and G2 are connected
by a strong link, and, therefore, form one aggregate area,
while both machines are connected to a distance generator
G3 via long and, hence, weak tie-lines. The separation of
time-scales due to the difference in coupling strengths arises
due to the three line reactances and machine inertias, which,
for this example, we consider as (all in per unit): M1 =
1, M2 = 5, M3 = 10, x13 = x23 = 100x12. The three
modes (i.e., eigenvalues of the Laplacian matrix, i.e., the state
matrix for the double integrator dynamics) of the linearized
swing equation are given as λ1 = 0, λ1 = 3.407 and
λ1 = 0.2307, clearly indicating the DC mode, the local mode
and the interarea mode, respectively. We, therefore, design
a 2nd order Butterworth BPF with bandwidth frequency
ωs = 0.2307 (or, alternately with ωs = 3.4 followed by
subtracting the filter output from the original signal), and
pass the phase angle difference between G3 and G1 through
this filter to extract the interarea component. Figure 3 shows
the asymptotic convergence as well as transient matching of
the full-order system response with the reference model over
time t = 0 to t = 3 seconds for three different values of λ3

fixing λ1 = λ2 = 1. Finer matching can be achieved by an
iterative choice of the λ’s in (36).

IV. CONCLUSIONS

In this paper we presented a set of initial results on
the problem of damping interarea oscillations using model-
reference state-feedback control designs. The approach con-
sists of model reduction of large power systems into coherent
clusters using Synchrophasors, and designing linear state-
feedback controllers to achieve a desired damping between
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the clusters. The final step, thereafter, is to treat the closed-
loop response of the reduced system as a reference and
employ model-reference control to track this reference for
the full-order system. A natural question that may arise is on
our proposed approach of model reduction preceding control
design, i.e., why should one reduce a given network into
clusters first, and then invert its closed-loop responses to
the actual system? The answer follows from the size and
complexity of any realistic power system. The WECC, for
example, has roughly 2,000 generators, 11,000 transmission
lines, 6,000 transformers, and 6,500 loads. Designing a
distributed control mechanism to shape a desired set of
interarea responses starting from this entire model and
using PMU measurements from arbitrary locations would be
practically intractable. We believe that the proposed detour
of reducing such large systems into simpler chunks (even if
approximately), and then redistributing their control efforts
would give the problem a much more well-defined and less
chaotic formulation.
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