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Abstract— We study the problem of actuator and sensor place-
ment in a linear advection partial differential equation (PDE).
The problem is motivated by its application to actuator and sen-
sor placement in building systems for the control and detection
of a scalar quantity such as temperature and contaminants.
We propose a gramian based approach to the problem of
actuator and sensor placement. The special structure of the
advection PDE is exploited to provide an explicit formula for
the controllability and observability gramian in the form of a
multiplication operator. The explicit formula for the gramian,
as a function of actuator and sensor location, is used to provide
test criteria for the suitability of a given sensor and actuator
location. Furthermore, the solution obtained using gramian
based criteria is interpreted in terms of the flow of the advective
vector field. In particular, the almost everywhere uniform
stability property and ergodic properties of the advective vector
field are shown to play a crucial role in deciding the location
of actuators and sensors. Simulation results are performed to
support the main results of this paper.

I. INTRODUCTION

In this paper, we study the problem of actuator and sensor
placement in a linear advection partial differential equation.
The problem is motivated by its application to actuator
and sensor location in building systems for the purpose
of control of temperature and detection of contaminants.
Building systems in US account for 39 percent of total energy
consumption [1]. Design of efficient building systems not
only has a significant economic benefit but also social and
environmental benefits.
The governing equations for building system fluid flows
and scalar density are coupled nonlinear partial differential
equations subjected to disturbances, various sources of uncer-
tainties, and complicated geometry. Analysis of the building
system with the full scale complexity leads to a finite element
based computational approach to the actuator and sensor
placement problem [2]. Such a purely computational based
approach provides little insight into the obtained solution.
An alternate system theoretic and dynamical systems based
approach under some simplifying assumptions and physics
can also be pursued [3], [4]. Such an approach provides
useful insight and guidelines to the complex control problems
involved in building system applications. In this paper, we
pursue a similar approach for the location of actuator and
sensor placement problem in building systems.
Under some simplifying assumptions and physics [3], [4], the
system equations are modeled as a linear advection partial
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differential equation with inputs and outputs. We propose a
gramian based approach to the actuator and sensor location
problem. Because of the simplifying assumption made in the
modeling of system equations, further research is needed for
the application of the results to building systems. However,
the results are an important first step towards its application
to building systems. The main contribution of this paper
is in providing an explicit formula for the controllability
and observability gramians as a function of actuator and
sensor locations and the advection velocity field. Technical
conditions for the existence of infinite time gramians are also
provided.
For complex vector fields that arise in the context of fluid
flow problems, we use ergodic properties of the vector field
to provide guidelines for the minimum number of actuators
and sensors. Furthermore, local growth rate of the vector
field, as captured by finite time Lyapunov exponents, is
used to determine the areas of phase space from where the
system trajectories expand the most. We provide simulation
results using a two dimensional fluid flow vector field for the
computation of finite time controllability and observability
gramians.
The organization of the paper is as follows. In section II, we
describe the problem and some preliminaries from the theory
of partial differential equations. In section III, we present the
main results of the paper. Simulation results are presented in
section V followed by conclusion in section VI.

II. PRELIMINARIES

We study the problem of optimal location of actuators in a
linear advection partial differential equation. The motivation
for this problem comes from the optimal location of actuators
for the control of a scalar quantity, such as temperature, in a
room denoted by ρ(x, t). The evolution of ρ(x, t), is governed
by the velocity v(x, t) field of the fluid flow. This velocity
field is obtained as a solution of the following Navier Stokes
equation:

∂v(x,t)
∂ t + v(x, t) ·∇v(x, t) =−∇p(x, t)+ 1

Re4 v(x, t)

∇ · v(x, t) = 0, (1)

where x ∈ X ⊂ RN (with N = 3 or 2) is the domain of the
room, v(x, t) is the velocity field, p(x, t) is the pressure,
and Re is the Reynolds number. The evolution of the scalar
quantity ρ(x, t) is governed by following linear controlled
partial differential equation

∂ρ

∂ t
+ v(x, t) ·∇ρ(x, t) =

1
PrRe

4ρ(x, t)+
N

∑
k=1

χBk(x)uk(t)

yk(x, t) = χAk(x)ρ(x, t), k = 1, . . . ,M (2)
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where Pr is the Prandtl number, χAk(x) is the indicator
function on set Ak ⊂ Ω, and uk(t) ∈ R is the control input
for k = 1, . . . ,N. The form of control input χB(x)u(t) and
output measurement χA(x)ρ(x, t) is motivated by the fact that
the actuation and sensing can be exercised only on a small
region B and A of the physical space X respectively. The
objective is to determine the optimal location of actuators and
sensors and hence the determination of indicator functions
χBk(x) and χAk(x). The terms v(x, t) ·∇ρ(x, t) and 4ρ(x, t)
in (2) correspond to advection and diffusion respectively,
with D = 1

RePr being the diffusion constant. Note that the
advection diffusion equation (2) is decoupled from the Navier
Stokes equation (1). In the case where the scalar density is
temperature, this decoupling corresponds to the assumption
that buoyancy forces have negligible or no effect. Further-
more, for simplicity of presentation of the main results of
this paper, we now make the following assumptions.
Assumption 1: We replace the time varying velocity field
v(x, t) responsible for the advection of scalar density with
the mean velocity field f (x) i.e.,

f (x) :=
1
T

∫ T

0
v(x, t)dt.

Remark 2: Typically the velocity field information v(x, t)
is available over a finite time interval [0,T ] either from a
simulation or from an experiment. Assumption 1 corresponds
to linearizing the linear advection PDE along the mean flow
field f (x). It follows that if v(x, t) is volume preserving i.e.,
∇ · v(x, t) = 0, then ∇ · f (x) = 0 as well.
Assumption 3: We assume that the diffusion constant D in
the advection diffusion equation (2) is zero.
Remark 4: As we will see in the simulation section, the
assumption of zero diffusion constant is justified.
We next discuss a few preliminaries on semigroup theory of
partial differential equations. Consider the following ordinary
differential equation (ODE):

ẋ = f (x), x(0) = x0, (3)

where x ∈ X ⊂ RN a compact set. We denote by φt(x) the
solution of ODE (3) starting from the initial condition x.
ODE (3) is used to define two linear infinitesimal operators,
AK : L2(X)→ L2(X) and APF : L2(X)→ L2(X) defined as
follows:

AKρ = f ·∇ρ, APF ρ =−∇ · ( f ρ).

The domains of the above operators are given as follows:

D(AKρ) = {ρ ∈ H1(X) : ρ|Γo = 0},

D(APF ρ) = {ρ ∈ H1(X) : ρ|Γi = 0},

where Γo and Γi are the outflow and inflow portions of the
boundary ∂X defined as follows:

Γo = {x ∈ ∂X : f ·η > 0}, Γi = {x ∈ ∂X : f ·η < 0},

where η is the outward normal to the boundary ∂X . The
semigroups corresponding to the AK and APF are called as

Koopman (Ut) and Perron-Frobenius (Pt) operators respec-
tively. These operators are defined as follows:

Ut : L2(X)→ L2(X), (Utρ)(x) = ρ(φt(x))

Pt : L2(X)→ L2(X), (Ptρ)(x) = ρ(φ−t(x))
∣∣∣∣∂φt(x)

∂x

∣∣∣∣−1

where | · | denotes the determinant.

III. MAIN RESULTS

The gramian based approach is one of the systematic ap-
proaches available for optimal placement of actuators and
sensors. Using the gramian based approach, actuators and
sensors are placed at a location where the degree of con-
trollability and observability of the least controllable and
observable state is maximized [5], [6].

A. Controllability gramian

For the construction of the controllability gramian, the
advection-diffusion partial differential equation (2) using
assumptions (1) and (3) for a single input case can be written
as follows:

∂ρ

∂ t
+∇ · ( f (x)ρ) = χB(x)u(x, t); (4)

ρ|Γi = 0; ρ(x,0) = ρ0(x).

In equation (4), we are assuming that the control input u
is both a function of spatial variable x and time t. This
assumption will typically not be satisfied in the building
system application, however, making this assumption allows
us to use existing results from linear PDE theory in the
development of controllability gramian [5]. Since m(X)>>
m(B), where m is the Lebesgue measure, we expect the main
conclusions of this paper to hold even when u is assumed
to be only a function of time. The set B is the region of
control in the state space X , and u(x, t) ∈ L2([0,τ] : L2(B))
i.e., we have a control input that is square integrable in time
and space, acting on the set B. The solution to (4) is given
by the following:

ρ(x, t) = Ptρ0(x)+
∫ t

0
Pt−s(χB(x)u(x,s))ds.

We define the controllability operator Bτ : L2([0,τ] :
L2(B))→ L2(X) as follows:

Bτ u :=
∫ t

0
Pt−s(χB(x)u(x,s))ds. (5)

The adjoint of the controllability operator Bτ∗ : L2(X)→
L2([0,τ] : L2(B)) can be calculated and is given as follows:

(Bτ∗z)(s) = χB(x)U(τ−s)z(x). (6)

We have the following theorem on the controllability prop-
erty of the PDE (4).
Theorem 5: Let Rτ = ∪τ

t=0φt(B). The PDE (4) is exactly
controllable in a given time τ > 0 for all initial and terminal
states in the space L2(Rτ) i.e. given initial and terminal
states ρ0(x) and ρτ(x) in Rτ , there exists a control u(x, t) ∈
L2([0,τ] : L2(B)) such that ρ(x,0) = ρ0(x), and ρ(x,τ) =
ρτ(x), where ρ(x, t) is the solution of (4).
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We omit the proof for space constraint. Detailed proof could
be obtained in [7].
Definition 6: The finite time controllability gramian C τ

B :
L2(X)→ L2(X) for the PDE (4) is given by the following:

C τ
B z = BτBτ∗z =

∫
τ

0
P(τ−s)(χB(x)U(τ−s)z(x))ds. (7)

Furthermore, we have the following definition for the in-
duced two norm of the operator C τ

B :

||C τ
B ||22 = max

z∈L2(X),s.t.‖z‖L2(X)
=1
〈C τ

B z,z〉L2(X) .

Theorem 7: The controllability gramian C τ
B : L2(X)→ L2(X)

can be written as a multiplication operator as follows:

(C τ
B z)(x) =

(∫
τ

0
Pt χB(x)dt

)
z(x) (8)

Proof:

C τ
B z =

∫
τ

0
P(τ−s)(χB(x)U(τ−s)z(x))ds

=
∫

τ

0
Ps(χB(x)Usz(x))ds =

∫
τ

0
Ps(χB(x)z(φs(x)))ds

=
∫

τ

0
χB(φ−s(x)z(x)

∣∣∣∣∂φs(x)
∂x

∣∣∣∣−1

ds =
[∫

τ

0
(PsχB(x))ds

]
z(x).

The explicit formula for the controllability gramian from
equation (8) in terms of multiplication operator can be used
to provide an analytical expression for the minimum energy
control input.
Claim 8: ρτ

B(x) :=
∫

τ

0 Pt χB(x)dt is strictly positive on Rτ =
∪τ

t=0φt(B) and hence C τ
B is invertible on Rτ with the inverse

given by

(C τ
B )
−1z =

z
ρτ

B(x)
, ∀z ∈ L2(Rτ). (9)

Proof: Since m(B)> 0, and B evolves into φτ(B) in time
τ , for every x ∈Rτ , there exist times 0 ≤ t1(x) < t2(x) ≤ τ

such that x∈ φt(B) ∀t ∈ [t1(x), t2(x)]. Hence, by the positivity
of Pt we have that Pt(χB(x)) > 0 ∀t ∈ [t1(x), t2(x)] ⊆ [0,τ].
Hence we have the following:

ρ
τ
B(x) =

∫
τ

0
Pt χB(x)dt ≥

∫ t2(x)

t1(x)
Pt χB(x)dt > 0 ∀x ∈Rτ .

This proves the claim.
Theorem 9: Let ρτ(x) and ρ0(x) be the elements of L2(Rτ),
then the minimum energy control input that is required to
steer the system from initial state ρ0(x) to final state ρτ(x)
is given by following formula

uopt(x,s) = Bτ∗(C τ
B )
−1(ρτ(x)−Pτ ρ0(x))

= χB(x)Uτ−s

(
ρτ(x)−Pτ ρ0(x)

ρτ
B(x)

)
. (10)

The minimum energy required is given by

||uopt||2 (11)

=< (ρτ(x)−Pτ ρ0(x)),(C τ
B )
−1(ρτ(x)−Pτ ρ0(x))>L2(Rτ )

=
||(ρτ(x)−Pτ ρ0(x))||2L2(Rτ )

ρτ
B(x)

.

Proof: First, we note that controlling the initial
state ρ0(x) to ρτ(x) is equivalent to reaching the final
state (ρτ(x) − Pτ ρ0(x)) from the zero initial state i.e.
ρ0(x) ≡ 0. Hence, equivalently, we prove that ûopt(x,s) =
Bτ∗(C τ

B )
−1(ρτ(x)) is the control input with minimum norm

that reaches ρτ(x) in time τ . This, along with an explicit
calculation of Bτ∗(C τ

B )
−1(ρτ(x)) will prove the Theorem.

Next, we consider the following set of admissible control
inputs:

U = {u(x, t) ∈ L2([0,τ] : L2(B)) : Bτ u = ρτ}.

We have the following:

Bτ ûopt = BτBτ∗(C τ
B )
−1

ρτ = BτBτ∗(BτBτ∗)−1
ρτ = ρτ .

Hence, we have that ûopt(x,s) = Bτ∗(C τ
B )
−1(ρτ(x)) ∈ U .

Next, we define the following operator on L2([0,τ] : L2(B))
Pτ = Bτ∗(C τ

B )
−1Bτ . We observe the following:

(Pτ)2 = Bτ∗(C τ
B )
−1BτBτ∗(C τ

B )
−1Bτ = Bτ∗(C τ

B )
−1Bτ

= Pτ ,(Pτ)∗ = (Bτ∗(C τ
B )
−1Bτ)∗ = Pτ . (12)

Hence, the operator Pτ is a projection operator on the space
L2([0,τ] : L2(B)). Then, we have the following from Bessel’s
inequality:

||u||2 = ||(Pτ)u||2 + ||(I−Pτ)u||2 ≥ ||(Pτ)u||2,

where the norm is on the space L2([0,τ] : L2(B)). Now, let u∈
U be arbitrary. This means Bτ u= ρτ . Applying Bτ∗(C τ

B )
−1

on both sides, we get the following:

Pτ u = Bτ∗(C τ
B )
−1Bτ u = Bτ∗(C τ

B )
−1

ρτ = ûopt.

Hence, Bessel’s inequality above gives ||u||2 ≥ ||ûopt||2.
Next, (10) and (11) can be easily shown using by an explicit
calculation using (6) and (9).
Based on the formula for the controllability gramian, we
propose the following criteria for the selection of optimal
sensor location and hence the set B∗.
Actuator placement criteria

1) Maximizing the support of the controllability gramian
operator i.e.,

B∗ = argmax
B⊂X

supp
(∫

τ

0
Pt χB(x)dt

)
(13)

2) If the support of controllability gramian is maximized
or if more than one choice of set B leads to the
same support then the decision can be made based on
maximizing the 2-norm of the support i.e.,

B∗ = argmax
B⊂X

‖
∫

τ

0
Pt χB(x)dt ‖L2(X) .

Using the result of Theorem (5), it follows that criterion (1)
maximizes the controllability in the state space, so that the
control action in a small region B ⊂ X will have an impact
over larger portion of the state space. Furthermore, it follows
from the explicit formula for the minimum energy control
(10) from Theorem (9) that if the the actuator selection is
made based on criteria (2) then the amount of control effort
is minimized.
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B. Observability gramian

For the construction of observability gramian, we consider
the advection partial differential equation with output mea-
surement as follows:

∂ρ

∂ t
= ∇ · ( f ρ), ρ|Γi = 0, ρ(x,0) = ρ0(x)

y(x, t) = χA(x)ρ(x, t) (14)

The observability operator A τ : L2(X)→ L2([0,τ],L2(A)) for
(14) is defined as follows:

(A τ z)(x,τ) = χA(x)(Pτ z)(x).

The adjoint to the observability operator A τ∗ :
L2([0,τ],L2(A))→ L2(X) can be written as follows:

A τ∗w(x,τ))(x) =
∫

τ

0
(UsχA(x)w(x,s))ds

Definition 10 (Observability gramian): The finite time ob-
servability gramian Oτ

A : L2(X)→ L2(X) for the PDE (14) is
given by the following formula

(Oτ
Az)(x) = (A τ∗A τ z)(x) =

∫
τ

0
(UsχA(x)Psz(x))ds. (15)

The counterpart of Theorems (5) and (9) can be proved for
the observability of system (14) using a duality argument.
Theorem 11: The observability gramian for (14) can be
written as a multiplication operator as follows:

(Oτ
Az)(x) =

[∫
τ

0
(UsχA(x))ds

]
z(x). (16)

Proof: We omit the proof due to space constraint but
the proof follows along the lines of proof of theorem 7.
Following criteria can be used for the optimal location of
sensor.
Sensor placement criteria
The finite time observability gramian can be used to decide
the criteria for the optimal location of the sensor.

1) Maximizing the support of observability gramian op-
erator

A∗ = argmax
A⊂X

supp
(∫

τ

0
Ut χA(x)dt

)
.

2) If the support of observability gramian is maximized
or if more than one choice of set B leads to the
same support then the decision can be made based on
maximizing the 2-norm of the support i.e.,

A∗ = argmax
A⊂X

‖
∫

τ

0
Ut χA(x)dt ‖L2(X)

IV. ADVECTIVE VECTOR FIELD AND GRAMIAN

In this section, we provide an interpretation for the optimal
actuator and sensor location problem in terms of the flow of
the advection vector field. In particular, we observe that the
(almost everywhere) stability and ergodic properties of the
vector field play an important role in deciding the location
of actuators and sensors. In this section, we omit proof of
every individual theorem for space constraint. We refer the
readers to [7] for the proofs.

A. Infinite time Controllability gramian

The notion of almost everywhere stability is extensively
studied in [8] [9]. Furthermore, a PDE based approach is also
provided for the verification of almost everywhere stability
in [10]. We have the following theorem regarding the infinite
time controllability gramian for vector fields that are almost
everywhere uniformly stable:
Theorem 12: For vector fields that are stable in the almost
everywhere uniform sense, we have

(C ∞
B z)(x) =

∫
∞

0
Pt χB(x)dtz(x) = ρB(x)z(x). (17)

where ρB(x) is the positive solution of the following PDE

∇ · ( f (x)ρB(x)) = χB(x);ρ|Γi = 0. (18)
The integral

∫
X C ∞

B z(x)dx for the special case where z(x) =
χA(x), the indicator function for the set A, has the interesting
interpretation of residence time, which is defined as follows:
Definition 13: For an almost everywhere uniform stable vec-
tor field, consider any two measurable subsets A and B of
X \Bδ , then the residence time of set B in set A is defined
as the amount of time system trajectories starting from set
B will spend in set A before entering the δ neighborhood of
the equilibrium point x = 0. We denote this time by T A

B .
Theorem 14: The residence time T A

B for an almost every-
where stable vector field f (x) is given by following formula

T A
B =

∫
X

C ∞
B χA(x)dx.

B. Infinite time observability gramian

The infinite time observability gramian is defined under the
assumption that the vector field f (x) is globally asymp-
totically stable. First, we have the following Theorem that
characterizes global asymptotic stability:
Theorem 15: Let Bδ be a δ neigborhood of x= 0. Let v(x)∈
C1(X \ B̄δ ) denote the solution of the following steady state
transport equation:

AKv = f ·5v =−v0(x);v|∂ B̄δ
= 0, (19)

where v0(x) satisfies

v0(x) = 0 ∀x ∈ B̄δ . (20)

Then x = 0 is globally asymptotically stable for (3) if and
only if there exists a positive solution v(x) ∈C1(X/B̄δ ) for
(19) for all v0(x)> 0 ∈C1(X/B̄δ ) satisfying (20).
If x = 0 is globally asymptotically stable, then Γo ⊇ ∂ B̄δ .
Hence, by using a standard density argument of C1(X \ B̄δ )
in L2(X \Bδ ), and using trace operator theory [11] for point
values of H1 functions, we can show the following Theorem:
Theorem 16: Let v(x) ∈ D(AK) ∩ L2(X \ B̄δ ) denote the
solution of the following steady state transport equation:

AKv = f ·5v =−v0(x);v|Γo = 0, (21)

Then x = 0 is globally asymptotically stable for (3) if and
only if there exists a positive solution v(x) ∈ D(AK) ∩
L2(X/B̄δ ) for (19) and for all v0(x) ∈D(AK)∩L2(X/B̄δ ).
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Theorem 17: Let x= 0 be a globally stable equilibrium point
for ẋ = f (x), then the infinite time observability gramian is
well defined and we have

(O∞
A z)(x) =

[∫
∞

0
(Ut χA(x))dt

]
z(x) =V (x)z(x) (22)

where V (x) is the positive solution of following steady state
partial differential equation. f (x) ·∇V (x) =−χA(x).

C. Fluid flow vector field

Typically, the vector fields that arise in the context of fluid
flow will not be globally stable. Although the infinite time
gramian as defined in (17) cannot be defined for a typical
vector field that arises in the context of fluid flows, the finite
time gramians and the actuator and sensor placement criteria
as defined in section III can be used for fluid flow vector
fields. Asymptotic dynamics of a fluid flow vector field can
be defined using the following notion of physical invariant
measure from ergodic theory of dynamical systems.
Definition 18 (Physical invariant measure): Let M (X) be
the space of probability measures on X . The vector field
f (x) is said to have a physical invariant measure µ , if µ

is invariant under the flow generated by f i.e., µ(A) =
µ(φ−t(A)) for all sets A ∈B(X), the Borel sigma-algebra
on X , and

lim
t→∞

1
t

∫ t

0
g(φτ(x))dτ =

∫
X

g(x)dµ(x)

for all continuous functions g : X→R and positive Lebesgue
measure initial conditions x ∈ X .
We have following theorem using it.
Theorem 19: Let µi for i = 1,2 be two distinct physical
invariant measures for ẋ = f (x) and Xi ⊂ X for i = 1,2 be
such that m(Xi)> 0, Xi∩X j = /0 for i 6= j, and for all x∈Xi( j),
we have

lim
τ→∞

1
τ

∫
τ

0
g(φt(x))dt =

∫
X

g(x)dµi( j)(x) (23)

for all continuous functions g : X→R. Then for any two sets
Bi ⊂ Xi for i = 1,2, we have

φt(Bi)∩B j = /0, i 6= j. (24)
Remark 20: A trivial consequence of the above theorem is
that the minimum number of actuators required for control-
lability is equal to the number of invariant measures.
In order to achieve effective control over shorter duration of
time, it is essential that the actuator be placed at location
where system dynamics expands and spreads over a larger
region of the phase space. Finite time Lyapunov exponents
can be used to measure the rate of expansion from different
sets in the phase space [12]. Let us consider the ODE ẋ(t) =
f (x(t)) and let φt(x) be the trajectory generated by it.
The finite-time Lyapunov exponent στ(x) is defined as,

στ(x) =
1
τ

ln

(√
λmax

(
dφ T

τ

dx
dφτ

dx

))
, (25)

where λmax is the maximum eigenvalue. This is the maximum
finite time expansion rate for a given initial condition. FTLE
can be defined for a set B as,

Λτ(B) = max
x∈B

στ(x).

Remark 21: Naturally, in order to have a larger diameter for
the set Rτ , the actuator set should be selected where the
FTLE field has high value.
The ergodic average used in the definition of physical
invariant measure motivates us to consider the following
modification of observability gramian for a complex and
possibly unstable vector field.
Theorem 22: Let the vector field ẋ = f (x) have a unique
physical invariant measure µ , then

lim
τ→∞

1
τ
(Oτ

Az)(x) (26)

is well defined for Lebesgue almost all initial condition x∈X
and equals µ(A)z(x).
If we want to maximize the average gramian (26), then
among all sets with equal Lebesgue measure, the sensor
must be placed on the set A∗ where the system dynamics
spends most of the time. Furthermore, because of the ergodic
property of the attractor set (time average equal to space
average) the set A∗ will also have maximum value of physical
measure among all sets with equal Lebesgue measure.

V. SIMULATION

For the purpose of simulation, we only employ a two
dimensional slice of a three dimensional velocity field as
shown in Fig. 1a. The dimensions of the room are as follows:
0 ≤ x ≤ 1.52m and 0 ≤ y ≤ 1.68m. The order of magnitude
for the velocity field is O(1). The Reynolds number of the
flow is Re = 76725 and the Prandtl number Pr = 0.729. This
makes 1

PrRe ≈O(10−5), and hence the zero diffusion constant
assumption 3 made in this paper is justified. The Reynolds
number for the flow rate is in turbulent range. The k− ε

model, which is Reynolds Average Navier-Stokes (RANS)
model [13] is used to obtain the velocity field as shown
in Fig. 1. A commercial CFD software Fluent was used to
solve the coupled set of governing equations for pressure,
temperature, turbulent kinetic energy, turbulent dissipation
and velocity. No slip boundary condition was applied at
all the walls. For the purposes of computation, we employ
set oriented numerical methods for the approximation of
P-F semigroup Pt [14]. The computational results for this
section are obtained with actuators and sensors located at
three different sets B1,B2, and B3. The locations of these
three sets are shown in Fig. 1b.
In Fig. 2b and Fig. 3a, we show the plots for the sup-
port of the controllability gramian after 10000 time steps
corresponding to two different locations of actuator sets
B2 and B3 respectively. The support of the controllability
gramian corresponding to B2 and B3 locations of actuator
sets is approximately the same and equals 1.6. However the
2-norm of the gramian corresponding to actuator location
on set B2 is equal to 38, while for B3 it is equal to 35.
Comparing figures 2a, 2b, and 3a, we see that the support
of the gramian for actuator location at set B1 is considerably
smaller but it has considerably larger 2-norm compared to
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(a) (b)
Fig. 1. (a) Velocity field; b) Actuator locations on sets B1,B2 and B3.
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Fig. 2. Controllability gramian after 10000 time iterations for actuator
located at set a) B1; b) B2.

actuators locations at B2 and B3. The large value of gramian
with small support in Fig. 1b can be very effective if one
desires to perform localized control action. Comparing the
support and the 2-norm of the gramian function, one can
conclude that the actuator location corresponding to B2 is
optimal among B1,B2, and B3.

VI. CONCLUSION

In this paper, controllability and observability gramian based
test criteria is used to decide the suitability of given actua-
tors and sensor location. As compared to currently existing
purely computational based methods , our proposed approach
provides a systematic and insightful method for deciding
the sensors and actuators location in building system. In
particular the ergodic properties of the vector field are shown
to play an important role in actuator and sensor placement.
In our future research work, the explicit formula for the
gramians will be exploited to provide systematic algorithm
for determining the optimal location of sensors and actuators.
Furthermore some of the assumptions made in the derivation
of control equations will be removed in future.
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