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Abstract— For stochastic hybrid systems, safety verification
methods are very little supported mainly because of complexity
and difficulty of the associated mathematical problems. Stochas-
tic reachability problem can be treated as an exit problem for
a suitable class of Markov processes. Using Newtonian/Martin
capacities associated to the Green/Martin kernel of a Markov
process, we obtain upper bounds for the reach probabilities.
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I. INTRODUCTION

Hybrid systems form a class of systems with behaviors
characterized by a non-trivial interaction between discrete
and continuous dynamics. Their models are quite useful for
technical systems from automotive industry, aeronautics, air
traffic control, robotics, and nanotechnology. Hybrid models
are also used frequently in system biology and medicine,
where their features make controllability and verification
more difficult, mostly because of uncertainty, complex con-
tinuous nonlinear dynamics, partial information, etc. In the
case of systems evolving in dynamical environments, they
will exhibit random evolutions that increase the complexity
of the corresponding verification and control problems. To
address these issues, randomized models have been devel-
oped under the name of stochastic hybrid systems (SHS).
Mathematically, a stochastic hybrid system can be described
as an interleaving between a finite family of diffusion
processes (or, only deterministic dynamical systems) and a
Markov chain. Modeling and analysis of these systems have
been proved to be a challenging task, especially from foun-
dational point of view. For studying the SHS properties, we
need to handle the appropriate stochastic analysis apparatus
that combines purely probabilistic methods (probability dis-
tributions, expectations, moments, and so on) with concepts
from functional analysis and partial differential equations
(PDE). We can not base our study only on transition prob-
abilities as in the case of Markov chains, since the state
space of SHS is continuous. Moreover, this state space is
hybrid, i.e. the continuous states are ‘embedded’ in some
discrete states called modes or locations. Then, functional
analysis operators are needed to capture the continuous
transitions and their probabilistic evolution is described by
PDEs associated to these operators. The SHS study involves
the ability to combine tools available for diffusion processes
and jump processes, in order to characterize the executions
of such systems. The switching mechanism (governed by
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a Markov chain) between the continuous dynamics of the
modes, together with the interaction between trajectories
and the active boundaries, make the studying of the hybrid
processes that arise in this way even more complicated.

The reachability problem concept in the framework of
SHS was set up in [5]. Since then, different authors have
studied this problem for particular [17], or general [15]
classes of SHS. The mathematical foundations of this con-
cept have been addressed in connection with concepts like
hitting operators, occupation measures, first passage prob-
lems. Intuitively, the stochastic reachability analysis aims
to evaluate the probabilities of those trajectories that visit
a target set in finite/infinite horizon time.

In the literature, for deterministic hybrid systems there
exist different methods to deal with the reachability problem.
The most used methods are based on optimal control, as
Hamilton Jacobi Bellman (HJB) equations, such that the
computational issues are solved using dynamic program-
ming. As well, reachability problem for hybrid systems can
be thought of as an exit problem from a given domain. This
also involves solving a standard HJB equation over this set
and possibly pieces of its boundary with rather complicated
boundary conditions (see the discussions from [18]). In the
SHS framework, tackling stochastic reachability can have
many facets. We can base the stochastic reachability analysis
(SRA) only on probabilistic pillars. Then, it is compulsory
to find ways to approximate/abstract SHS by Markov chains,
only. In many papers [17], [16], the standard methodology
to approach this problem is to approximate the stochastic
process that corresponds to the given hybrid system by
Markov chains and then to derive convergence results for
the reach set probabilities. Also, from a computer science
perspective, Markov chain approximations are desirable for
probabilistic model checking. Due to the complexity of SHS
models, the Markov chain approximations suffer from state
space explosion (see [15] and discussions therein). Another
perspective on SRA is to employ stochastic control meth-
ods. Studying stochastic reachability as an optimal control
problem could be a very challenging and difficult task [1].
The main explanation for this difficulty can be found in
the structure of the stochastic processes that describe the
behaviour of SHS. These processes are Markov models with
piecewise continuous paths. Their discontinuities are de-
scribe by some Poisson like jumps (spontaneous jumps) and
forced jumps (dictated by some interface sets). The presence
of the forced transitions leads to some peculiarities of the
transition probabilities of the stochastic hybrid processes.
The main problem comes from the fact that the dynamic
programming theory for the Markov hybrid processes with
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predictable jumps is not fully understood and developed. In
most cases, dynamic programming methods are applied only
locally to these processes where their behavior is continuous
[15]. Then, in the stochastic control approach, the main
idea is to find the suitable ‘smooth’ approximations for
stochastic hybrid processes. Stochastic hybrid processes are
jump type processes. From the perspective of control theory
and stochastic analysis, it seems that such processes are
better studied using diffusion type approximations [12].

In this paper, we investigate how far stochastic analysis
methods can go to provide accurate estimation of the reach
probabilities for SRA. We start with known results for
Markov chains and Brownian motion. Then we give some
extensions for continuous Markov processes and stochas-
tic hybrid processes. These extensions will constitute the
basement for further developments and discussions. The
scope is to provide a short tutorial about advantages and
disadvantages of these approaches, and then to discuss novel
ideas that can circumvent the hindrances that appear when
we play only with the stochastic analysis tools.

II. PRELIMINARIES

This section provides the necessary background for
stochastic hybrid systems and their dynamics, and some
stochastic analysis that is used for studying SHS. The pre-
sentation is given in a hybrid automata framework. First we
present the main elements (the hybrid automaton structure)
that will be used then to describe the hybrid state space and
the hybrid dynamics. Then we provide the description of
the state space and the executions of the hybrid automaton.
Finally, under some standard assumptions, we point the
fact that the hybrid executions form of a stochastic hybrid
process, which is usually a Markov process. The transition
probabilities of such a process can be employed to construct
functional analysis operators like those that define the transi-
tion semigroup, resolvent and the infinitesimal generator of
the underlying Markov process. These operators represent
the main analysis tool to deal with Markov processes.

A. Stochastic Hybrid Systems

Formally, a stochastic hybrid automaton (SHA) is defined
as a tuple H = (Q,X , F,R, λ) where: (i) Q is a finite
set of discrete variables; (ii) X : Q → Rd(.) maps each
q ∈ Q into a mode (an open subset) Xq of Rd(q), where
d(q) is the Euclidean dimension of the corresponding mode;
(iii) F : Q → 2FSDE specifies the continuous evolution of
the automaton in terms of stochastic differential equations
(SDE) over the continuous state xq for each mode; (iv)
R = (Rq)q∈Q a family of stochastic kernels defined as
Rq : X

q× ∪
j∈Q\{q}

B(Xj) → [0, 1], where B(Xj) is the

Borel σ-algebra of Xj ; (v) λ : ∪
j∈Q

X
j → R+ is a transition

rate function, which gives the distributions of the jump times.
The hybrid state space is the set X(Q, d,X ) =

⋃
i∈Q{i}×

Xi, and the hybrid state is defined as x = (i, zi) ∈
X(Q, d,X ). The closure of the hybrid state space will be
X = X ∪ ∂X,where ∂X =

⋃
i∈Q{i} × ∂Xi.

The executions of an SHA, H , can be described as follows:
start with an initial point x0 ∈ Xq , follow a solution of the
SDE associated to Xq , jump when this trajectory hits the
boundary or according with the transition rate λ (the jump
time is the minimum of the boundary hitting time and the
time that is exponentially distributed with the transition rate
λ). Under standard assumptions [7], for each initial condition
x ∈ ∪

j∈Q
Xj , the possible trajectories starting from x, form

a stochastic process. The component diffusion processes
are Markov process and the SHA jumping times have the
memoryless property. Therefore, for all initial conditions x,
the realizations of an SHA can be thought of as a Markov
process in a general setting.

Let us consider the stochastic process M = (xt,Px),
which represents the realization of H , i.e. all its possible
trajectories. We can define in a standard way the probability
space Ω as the set of all trajectories of M. As well, for each
time t > 0, we may define the history of the process Ft in
the form of a σ-algebra [11]. Under mild assumptions on the
parameters of H , M can be viewed as a Markov process with
the state space (X,B), where X is the union of modes and
B is its Borel σ-algebra. Let Bb(X) be the Banach space of
bounded positive measurable functions on X with the norm
given by supremum. Here, (Px)x∈X represent the Wiener
probabilities on the trajectories, i.e. Px(x0 = x) = 1.

B. Hybrid Processes

Stochastic Analysis Elements: For the analysis of stochastic
hybrid systems, we need to use the different characteri-
zations of Markov processes. Briefly, in the following the
most important functional analysis operators associated to a
Markov process are presented. They represent the leveraging
to the continuous time, continuous space case of the similar
concepts that are popular when studying Markov chains.
Their presence in this paper is justified by the fact that
these operators are not standard in the theory of discrete
processes (like Markov chains), and the reader familiar only
with discrete processes might have difficulties in understand-
ing the stochastic analysis characterizations for stochastic
reachability developed in the continuous context.
Let us consider the Markov process M = (xt,Px) with
the state (topological) space X. The following mathematical
objects can be defined:
The transition probability function is given by a family of
stochastic kernels (pt)t>0: pt(x,A) = Px(xt ∈ A), A ∈ B.
The meaning of pt(x,A) is the probability that, if x0 = x,
xt will lie in the set A.
The operator semigroup or transition semigroup P =
(Pt)t>0 is obtained by integration on the space Bb(X)
(bounded measurable functions) w.r.t. pt(x, dy):

Ptf(x) :=
∫
f(y)pt(x, dy) = Exf(xt),∀x ∈ X (1)

where Ex is the expectation w.r.t. Px. The operator semi-
group (Pt)t>0 is, in fact, the collection of all first order
moments, which can be associated with the family of random
variables {xt|t > 0}.
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Taking the Laplace transform the transition semigroup
(Pt)t>0, we obtain the operator resolvent. The resolvent
V = (Vα)α≥0 associated with P is

Vαf(x) =
∫ ∞

0

e−αtPtf(x)dt, x ∈ X. (2)

Let denote by V the initial operator V0 of V , which is known
as the kernel operator of the Markov process M.
When we are dealing with continuous processes, the stochas-
tic matrix defined for Markov chains, becomes a linear
operator called the infinitesimal generator, denoted by L. L
is the derivative of Pt at t = 0. Let D(L) ⊂ Bb(X) be the
set of functions f for which limt↘0

1
t (Ptf − f) exists and

is denoted by Lf . D(L) is known as the domain of the gen-
erator. Traditionally, Markov processes have been described
by their generators and the corresponding evolutions by the
operator semigroups/resolvents..
Realization of a stochastic hybrid system: Suppose now M
represents the realization of a stochastic hybrid system H .
Under standard assumption M is a Borel right process [7],
i.e. (i) M is a strong Markov process with right-continuous
paths. (ii) X is a separable metric space homeomorphic to a
Borel subset of some compact metric space, equipped with
Borel σ-algebra B(X) or shortly B. That means X is a Lusin
state space. (iii) The operator semigroup of M, given by (1),
maps Bb(X) into itself. Moreover, the sample paths of M are
right continuous with left limit (RCLL), i.e. are cadlags (the
French abbreviation for RCLL). We can add to X a cemetery
point ∆ where the process is trapped when pt(x,X) < 1, and
define X∆ = X∪{∆}. One can take the sample space Ω for
M to be the set of all paths (0,∞) 3 t 7→ ω(t) ∈ X∆ and
the life time of the process as ζ(ω) := inf{s > 0|ω(s) = ∆}.
Assume also that M is transient, i.e. there exists a strictly
positive Borel function q such that V q is bounded. The
transience of M means that any trajectory which visits a
Borel set of the state space will leave it after a finite time.

For an appropriate domain, the infinitesimal generator
of a stochastic hybrid system has the following integro-
differential form

Lf(x) = Lcontf(x) + λ(x)
∫
X

(f(y)− f(x))R(x, dy) (3)

where Lcontf(x) has the standard form of the diffusion
infinitesimal operator. What makes this generator “special”
is its domain that contains at least the set of second order
differentiable functions that satisfy the following boundary
condition: f(x) =

∫
X f(y)R(x, dy), x ∈ ∂X.

III. STOCHASTIC REACHABILITY

Let us consider M being a Markov process that describes
the realization of a stochastic hybrid system H . For this
stochastic hybrid process, we address the stochastic reach-
ability problem as follows. Given a target set A ∈ B(X),
the objective of the reachability problem is to compute the
probability that the system trajectories from an arbitrary
initial state will reach the target set in finite (T > 0) or
infinite horizon time. Two sets of trajectories, which reach

the set A (the flow that enters A) in the interval of time
[0, T ] or [0,∞) can be defined:
ReachT (A) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A}
Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}.

The reachability problem consists of determining the proba-
bilities of such sets. The probabilities of reach events are

P(TA < T ) or P(TA < ζ) (4)

where TA is the first hitting time of A

TA = inf{t > 0|xt ∈ A}, (5)

and P is a probability on the measurable space (Ω,F) of the
elementary events associated to M. P can be chosen to be
Px (if we want to consider the trajectories that start in x).

When defining the stochastic reachability in this way,
it is clear that these definitions are related with the first
passage/exit problems studied in the literature for Markov
chains, diffusion processes, and jump processes. In the
following, we summarize classical results for such problems
available for Markov chains and diffusion processes.
First Passage Time Distributions for Markov chains:
Let {Xn : n ≥ 0} be a discrete time Markov chain
(DTMC) with state space S = {0, 1, 2, ...}, the transition
probability matrix P and the initial distribution p. Denote
T = inf{n ≥ 0|Xn = 0}. The random variable T is called
the first passage time into state 0 (or the first hitting time of
{0}). We can associate to T two probability distributions:
αi(n) = P(T = n|X0 = i); ui(n) = P(T ≤ n|X0 = i).
The following theorem provides a recursive method of
computing ui(n).

Theorem 1: ui(n) = pi0 +
∑∞
j=1 pijuj(n − 1), for all

i, n ≥ 1 with ui(0) = 0 for all i ≥ 1.

Consider a finite stationary time-homogeneous irreducible
continuous time Markov chain (CTMC) with n states
{1, 2, ..., n} and n × n generator matrix Q = (qij). The
chain is called irreducible if for any pair i, j of states we
have that pij(t) > 0 for some t. If X(t) denotes the state of
the CTMC at time t ≥ 0, then the first passage time from
a source state i into a different state j is Tj = inf{u > 0:
X(u) = j|X(0) = i}. Let S be the first time when the chain
leaves the state i. Recall that S is exponentially distributed,
i.e. S ∼ exp(−qii). Then, by the Markov property we have:

E(Tj |X(0) = i) = E(S|X(0) = i)+
+
∑
k 6=i,j E(Tj |X(0) = k)P(X(S) = k|X(0) = k).

The sum does not include i because the chain can not leave
i to arrive also in i, and it does not include j because
E(Tj |X(0) = j) = 0.
We know that E(S|X(0) = i) = 1/(−qii), and P(X(S) =
k|X(0) = k) = qik

(−qii)
, k 6= i. Then E(Tj |X(0) =

i) = {1+
∑
k 6=i,j

qikE(Tj |X(0) = k)}(−qii)−1. Using the

notation ui := E(Tj |X(0) = i),we obtain ui(−qii) =
1 +

∑
k 6=i,j qikuk, or 1 +

∑
k 6=,j qikuk = 0. Let us denote

the matrix by Q(j) obtained from Q by deleting the row
and column corresponding to state j. Then for all possible
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starting values i 6= j, the equation above can be written in
matrix form as

1 +Q(j)u = 0 (6)

where 1 = (1, 1, ..., 1)ᵀ and u = (u1, u2, ..., un)ᵀ. Then the
solution for (6) is u = [−Q(j)]−11. A very nice introductory
presentation for the first passage time for Markov chains can
be found in [20]. We have inserted here only the “classical”
methods available for DTMC and CTMC.

First Passage Time for Diffusions: The First Passage time
(FPT) problem has more than a century history starting with
Bachelier in 1900, who was examining the first passage of
the Wiener process to the constant boundary. For general
diffusion problems, such problems have been investigated for
first time in the work of A. Khinchine [13], A.N. Kolmogorov
[14] and I.G. Petrowsky [19]. Foundations of the general
theory of Markov processes were set up by Kolmogorov
[14], in 1931. His work clarified the deep connection between
probability theory and mathematical analysis and initiated the
partial differential equations approach to the FPT problem.
For diffusion processes, the main tools for dealing with the
first passage time problems are: partial differential equations
(PDE), space and time change, measure change and the
martingale approach via the optional sampling theorem. For
the FPT problem of diffusions, the most popular approach is
based on PDEs. The formulation in the PDE setting is done
using the (Fokker-Planck) Kolmogorov forward equation.

Suppose that A is a measurable target set in the state
space X of a diffusion process (xt). Note that the first
hitting time of A is equal with the first exit time from the
complementary set of A, E := Ac = X\A. Then, the
stochastic reachability problem can be formulated also as
an exit problem from E. In case of a continuous diffusion
with the infinitesimal generator L, for a closed target set
A, it is known that if the Dirichlet problem: ∂u

∂t = Lu on
E × (0, T ], with the boundary conditions u = 0 on E ×{0}
and u = 1∂E on ∂E × (0, T ], has a bounded solution,
then u(x, t) = Px{TA ≤ t, xTA

∈ ∂E}, 0 ≤ t ≤ T.
If we consider the infinite horizon time reachability, the
function u(x) = Px{TA < ∞, xTA

∈ ∂E} is solution for
the following boundary value problem: Lu = 0, on E; with
the boundary condition u = 1 on ∂E. In particular, for the
Brownian motion, the solutions of this problem are known
and they are connected with the Newtonian potential and
Newtonian capacity. If Px denote the probability when all
paths issued from the point x for the standard Wiener process
in R3; Λ is a compact set; TΛ(ω) is the first hitting time of
Λ by the path ω then, a classical result says that

Px(TΛ <∞) =
∫
∂Λ

g(x, β)µΛ(dβ) (7)

where ∂Λ is the boundary of Λ; g(x, y) is the associated
Green kernel g(x, y) = 1

2π||x−y|| ;and µΛ is called equi-
librium measure. On the other hand, the probability that
a Brownian motion will ever visit a given set Λ, which
appears in the left hand side of (7) can be estimated using
the capacity of Λ w.r.t. the Green kernel g(x, y). The right

hand side of (7) is known as Newtonian potential of Λ, i.e.
UΛ(x) :=

∫
∂Λ
g(x, β)µΛ(dβ), and its Newtonian capacity is

capΛ = µΛ(Λ) =
∫
UΛ(x)dµΛ(x). Similar results can be

stated for the Brownian motion in Rd, d > 3. This incursion
shows us that the reach probabilities are intimately related
with concepts like Green kernel, and Newtonian capacity. For
an arbitrary Markov process, the expression of the Green
kernel is not always available, but this kernel is closely
related with the infinitesimal generator of the process.

For a Markov process, the reach probabilities can be
expressed using the concept of hitting operator. For a target
set A, we denote by PA the hitting operator defined for
the underlying Markov process (xt), i.e. PAv = Ex{v ◦
xTA
|TA < ζ} and TA is given by (5).

Proposition 2: [8] For any x ∈ X and Borel set A ∈
B(X), we have Px[Reach∞(A)] = PA1(x).

The stochastic hybrid processes may be viewed as piece-
wise continuous jump diffusions, where the jumps are al-
lowed to be spontaneous, or forced (predictable). For contin-
uous pure diffusions processes, it is sufficient to consider the
time when the process hits the boundary of E or A. However,
when the stochastic processes also includes jumps, then it is
possible that the process overshoots the boundary and ends
up in the exterior of the domain E (i.e. in the interior of A).
Therefore, the Dirichlet problem becomes{

Lu = 0 on E
u = 1 on A = X\E; (8)

where L is the infinitesimal generator of the hybrid process.
Note that (8) is a Dirichlet problem corresponding to an
integro-differential operator. Then solving such an equation
would be a difficult task to accomplish, but numerical and
analytical methods are under development [2].

Our goal in this paper is to investigate deeper the con-
nections between reachability measures and capacities. We
will consider not only Newtonian type capacities, but also
capacities defined using some “pay-off” kernels.

IV. REACHABILITY ESTIMATION VIA MARTIN
CAPACITIES

In this section, we estimate reach set probabilities by
a capacity function with respect to a scale-invariant mod-
ification of the kernel operator. We start by defining the
Martin capacity, which is an imprecise probability measure
defined with respect to an energy form. Then we present
some classical results regarding the estimation of the hitting
probabilities for Markov chains and Brownian motion based
on the Martin capacity. This capacity is defined with respect
an energy form derived from the kernel operator. Finally,
we show how these results can be extended to more general
Markov processes, like stochastic hybrid processes.
Martin Capacity: Let Λ be a set and B a σ-algebra of Λ.
Given a measurable function F : Λ × Λ → [0,∞], and a
finite measure µ on (Λ,B), the F -energy of µ is F (µ) :=
F (µ, µ) =

∫
Λ

∫
Λ
F (α, β)dµ(α)dµ(β). F (µ) can be viewed
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as a ‘value function’ when we apply the strategy µ. The
Martin capacity w.r.t. F is

CapF (Λ) := [inf F (µ)]−1 (9)

where the infimum is over the probability measures µ on
(Λ,B) and by the convention, ∞−1 = 0. Then the capacity
CapF (Λ) can be interpreted as the inverse of an optimal
value function. If Λ is included in an Euclidean space, then
B can be taken as the Borel σ-algebra. If Λ is countable,
then B will be the σ-algebra of all its subset.
The Case of a Markov Chain: Let (Xn) be a DTMC with
the state space S = {0, 1, 2, 3, ...} and P = (pij)i,j∈S its
one-step transition matrix. Then its kernel operator (or Green
operator) is U(i, j) =

∑∞
n=0 p

(n)
ij =

∑∞
n=0 Pi[Xn = j],

where p(n)
ij are the n-step transition probabilities and Pi is

the law of the chain when the initial state is i.
We want to estimate the reach probability of a target set

Λ for the given DTMC. Assume that the Markov chain is
transient, i.e. U(i, j) <∞, for i, j ∈ S.

Proposition 3: [3] Let (Xn) be a DTMC with the state
space S with the initial state i0 and the transition probabilities
(pij). For any subset Λ of S, we have 1

2CapK(Λ) ≤
Pi0 [Reach∞(Λ)] ≤ CapK(Λ), where K is the Martin kernel
(w.r.t. the initial state i0) defined by K(i, j) := U(i,j)

U(i0,j)
.

The Case of the Brownian Motion: The results from the pre-
vious subsection can be easily extended to the case of the
Wiener process (Brownian motion) (Wt) defined on the
Euclidean space Rd, d ≥ 3. In this case, the Green operator
is given as U(x, y) = ||x− y||2−d; and the Martin kernel is
K(x, y) := ||y||d−2

||x−y||d−2 , for x 6= y, and K(x;x) = ∞.
In [3], it is shown that replacing the Green kernel by the

Martin kernel U(x, y)/U(0, y) yields improved estimates,
which are exact up a factor of 2.

Proposition 4: [3] Let Λ be any closed set in Rd,
d ≥ 3. Then the reach set probability corresponding to
(Wt) and Λ can be estimated as follows: 1

2CapK(Λ) ≤
P0[Reach∞(Λ)] ≤ CapK(Λ); where P0 is the law of the
Brownian motion under W0 = 0, and K is the associated
Martin kernel. Here, the constants 1/2 and 1 are sharp.
The Case of a Markov Process: Kai Lai Chung in [10] ex-
tended the formula (7) for temporally homogeneous transient
Markov processes {xt, t ≥ 0}, taking values in a topological
space X, which is locally compact and has a countable
base with its Borel σ-algebra B(X). The processes have
also the càdlàg property. It is natural to put the problem
of generalization of above Brownian motion result to more
general Markov processes, using the Kai Lai Chung’s result.

Throughout this section M = (xt,Px) will be a Borel
right Markov process on (X,B). In addition, we suppose
that M has the càdlàg property and that M is transient. Let
pt(x,B), t > 0, x ∈ X, B ∈ B(X) be the transition function
associated to the given Markov process. All the measures
pt(x, ·) are supposed to be absolutely continuous w.r.t. a
σ-finite measure µ on (X,B(X)). We denote the Radon-
Nycodim derivative of pt(x, ·) by ρt(x, ·), i.e. ρt(x, y) :=
pt(x, dy)/µ(dy). This can be chosen to be measurable in

x, y and to satisfy
∫
X
ρs(x, y)µ(dy)ρt(y, z) = ρt+s(x, z). A

σ-finite measure µ on (X,B(X)) is called reference measure
if µ(B) = 0 ⇔ pt(x,B) = 0 for all t and x. Throughout
this section we suppose that µ, in the absolutely continuity
assumption, is a reference measure. We define the Green
kernel as u(x, y) :=

∫∞
0
ρt(x, y)dt and the Martin kernel

(w.r.t. to an initial state x0)

K(x, y) =
u(x, y)
u(x0, y)

. (10)

It is clear that, if (Pt) is the transition semigroup and the
kernel operator associated to the given Markov process de-
fined in the standard way can expressed using the derivatives
ρt(x, y).

Assumption 1: i) y → u(x, y)−1 is finite continuous, for
y ∈ X; ii) u(x, y) = +∞ if and only if x = y.
For a target set A we define a random variable γA < ∞
(M is transient), called the last exit time from A as follows:
γA(ω) = sup{t > 0|xt(ω) ∈ A} if ω ∈ Reach∞(A), and
0 otherwise. Then, it follows that xγA− ∈ A almost sure.
The distribution of the last exit position xγA− is given by
LA(x,B) = Px(γA > 0;xγA− ∈ B), for all x ∈ X, B ∈
B(X). Under these assumptions, there exists an equilibrium
measure µA, which is σ−finite, concentrated in A such that
µA(dy) := LA(x, dy)u(x, y)−1 for all x ∈ X. For a transient
set A we have {0 ≤ TA < ∞} = {0 < γA < ∞}.
The final result is that Px(xγA− ∈ B) = LA(x,B) =∫
B
u(x, y)µA(dβ), for each Borel set A ⊂ E, and each

x ∈ X. In particular, Px(TA < ∞) = LA(x,A) =∫
A
u(x, y)µA(dy).

Theorem 5: Let x0 ∈ X be the initial state. For any closed
set A of X we have

Px0(TA <∞) ≤ CapK(A) (11)

where CapK is the capacity defined, using (9), w.r.t. the
Martin kernel K defined by (10).

Proof: To bound from above the probability of ever
hitting A, consider the distribution

νx(Λ) = LA(x,Λ) = Px(0 < γA|xγA− ∈ Λ); Λ ∈ B(X).

The Kai Lai Chung’s result says that

LA(x,Λ) =
∫

Λ

u(x, y)µA(dy); Λ ∈ B(X)

where µA is the equilibrium measure of A, given by

∀x ∈ X : µA(dy) = LA(x, dy)u(x, y)−1 = νx(dy)u(x, y)−1

in particular, for the initial state x0 ∈ X

µA(dy) = LA(x0, dy)u(x0, y)−1 = νx0(dy)u(x0, y)−1.

It follows that∫
A
K(x, y)νx0(dy) =

∫
A
K(x, y)u(x0, y)µA(dy) =

= Px(TA <∞).
Therefore K(νx0 , νx0) ≤ νx0(A) and thus

CapK(A) ≥ [K(νx0/νx0(A))]−1 ≥ νx0(A)

that yields the upper bound on the probability of hitting A.
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It is desired to obtain also a lower bound for the reach
probabilities, as for Markov chains and Brownian motion, but
the proof for these simple cases can not be modified directly
to accommodate the general case of Markov processes.

Computational Issues: Suppose we have given an SHS
H with the realization M. For applying the results of the
previous section, the main computational step that has to
be accomplished is the computation of the kernel operator
V. Using the connections between infinitesimal generator,
operator semigroup/resolvent, we can state the following
result.

Proposition 6: Let ϕ : X → R+ be a measurable
function. Suppose for each x ∈ X the function ϕ is integrable
on some interval [0, ε], ε > 0 over the hybrid trajectories,
and that the kernel operator V ϕ is bounded and satisfies the
following Poisson equation w.r.t. the infinitesimal generator
L {

LV ϕ(x) + ϕ(x) = 0, x ∈ X∫
X
V ϕ(y)R(x, dy) = V ϕ(x), x ∈ ∂X.

The Proposition 6 provides a quite insightful characteriza-
tion for the kernel operator V . V is solution for a Poisson-
type equation associated to L. Due to the complexity of
L, this can lead to the use of viscosity solutions for such
an equation. Then to simplify the approach, we may have
to use Markov chain approximations/abstractions for the
given stochastic hybrid process. These will provide us good
lower/upper bounds (remember that for Markov chains we
have also lower bounds) for the reach probabilities. However,
all the probabilistic methods are, in the end, grounded on
approximations. Then, it is difficult to evaluate if one is
better than another one. Therefore, here, we consider another
perspective on the problem. The kernel operator is, in fact,
the expectation of a cost function over the trajectories. If
ϕ := 1dy , we can define V (x, dy) :=

∫∞
0

Px(xt ∈ dy)dt
that represents the mean of the occupancy time of dy. Then
the Radon-Nycodim derivative w.r.t. µ provides the Green
kernel u(x, y). This kernel u can be thought of as a reward
for the case when the process starts in x and arrives in y.
Suppose that we have an ‘approximation’ of u by another
payoff kernel π : X×X→ R+ that is given a priori. Using
this payoff kernel, one can construct both (Newtonian and
Martin) capacities and derive the upper/lower bounds of the
reach probabilities. Moreover, we can consider a controlled
SHS, and take π : X ×U → R+, where U is the control
space. Then, the energy form has to be defined as sup inf ,
and the corresponding capacity would be the inverse of this
energy. This development will constitute the subject for a
follow-up paper.

V. CONCLUSIONS

This paper deals with stochastic reachability, only from
the perspective of stochastic analysis developed for Markov
processes using the operators derived from the transition
probabilities. In this framework, upper/lower bounds for
the reach probabilities can be obtained using some energy
distribution measures called capacities. For Markov chains,
and standard Wiener processes the results are at hand and

quite intuitive. For general processes, like stochastic hy-
brid processes, the above capacities should correspond to
some reward/cost functions. Then, the stochastic analysis
tools need to be augmented with optimal control methods.
Reachability methods based on other stochastic analysis tools
have been developed elsewhere: e.g. martingales methods
[5], [8]; Dirichlet forms methods [6]; approximation of the
reduite function [9]. All of these methods (inclusive the one
developed in this paper) provide only upper/lower bounds for
the reach probabilities with a certain degree of accuracy. It is
remarkable that such methods have quite intuitive standard
solutions for simpler processes (like the Markov chains and
Brownian motion), but these solutions can not be easily
extended for complex processes. Then, the natural conclusion
is that, in order to deal with the stochastic reachability
problem for SHS, we need to enrich the stochastic analysis
tools in a cross-fertilization manner with complementary
tools from stochastic control (like dynamic programming
techniques), and from numerical analysis (like model order
reduction techniques).
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