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Abstract—This paper deals with the problem of the loss of
performance of the pair observer-controller, when measurements
have a delay due to communication over networks. Here we
consider the case where the estimation of the states is carried
out using a moving horizon estimator (MHE), the control
actions are computed by using a centralized model predictive
controller (MPC), and the delay varies randomly and is n times
the sampling time (n ∈ N). In order to tackle the loss of
performance associated with the pair MHE-MPC, an MHE with
variable structure is proposed. The resulting pair MHE-MPC
was tested using the four tank process as a test bed showing an
improvement on the performance.

Index Terms—Variable delay, Model Predictive Controller,
Moving Horizon Estimator

I. INTRODUCTION

When measurements are transmitted from networked sen-

sors to the control system using communication networks, a

variable transport delay appears due to communication prob-

lems such as congestion, noisy environments, error correction

sequences, variable routing paths, etc. These delays can cause

deterioration on the control system performance. In some

cases these variable communication paths can cause that data

measured at time instant k are received after data measured at

k+d, with d > 0; it means that the data arrive to the controller

not only with delay but also in an incorrect sequence.

Dealing with such challenging situation demands the use

of a state observer capable of accommodating large data

sequences received at a non regular basis, in order to estimate

correctly the states despite of the delays. This problem can

be seen in a similar way as inferential sensors are used in

chemical applications, where variable delayed lab samples

are used together with regular samples to reconciliate model

based predictions. Nowadays this problem has been treated

with modified versions of Kalman filters [1], [2], but in this

work we show how the Moving Horizon Estimation (MHE)

observer can be modified to accommodate such irregular

sampling, and even improve the performance of the Kalman

filters.

The MHE is a well known model based technique used to

estimate the states and parameters of a wide variety of plants.
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It performs a nonlinear optimization to estimate the system

states including constraints on its formulation [3]–[5]. This

estimation technique has shown excellent results when used

in non-linear processes, where restricted control actions and

constrained states are enforced for guaranteeing stability [6],

[7].

The finite moving horizon of the MHE is a fixed-size

window observer that only takes into account the last N time

instants. The window size must guarantee enough information

to reconstruct the states. The size of the window is chosen

accordingly to the dynamics of the plant, roughly around the

settling time.

In order to deal with the variable transport delay conditions,

we propose to organize the incoming data from the sensors

into a stack assuming that each package with a measurement

includes the time stamp of the sample. Then the MHE esti-

mates the states with the available organized data at each time

instant, by updating the state covariance matrix penalizing

only the estimations where are data available. Finally it is

assumed that states are only modified if evidence coming

from the sensor is telling so. In order to verify the proposed

methodology, a quadruple tank process is implemented in

simulation with and without delay conditions on the state

measurements. As result, the performance of a pair MHE-

MPC was evaluated with and without the proposed variable

structure MHE, and compared with a estimation technique

based on Kalman filtering.

This paper is organized as follows: In Section II the

problem statement is presented, in Section III the simulation

results are shown, and in Section IV the conclusions and

future work are presented.

II. PROBLEM STATEMENT

The Moving Horizon Estimation (MHE) strategy was de-

veloped as a pair with the Model Predictive Control (MPC).

Despite the similarities among MPC and MHE, the MPC

was successfully developed and exploited in process industry,

whereas MHE theory remained to be a topic of study in

academia with few industrial applications [8].

The MHE technique is based on a quadratic estimation

problem using a moving, fixed-size estimation window. The

fixed-size window is needed to bind the computational effort

for solving an otherwise infinite sized problem. This is the

main difference of MHE with the batch estimation problem

(or full information estimator) [8]–[10]. After the window size
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is filled, when a new measurement is available the oldest one

is discarded using the concept of window shifting.

The main advantage of MHE in comparison with other

estimation schemes (like the Kalman Filter) is the straight-

forward constraint handling inside the optimization problem,

and the possibility to propose a cost function. However,

given that the MHE is a limited memory filter, stability and

convergence issues arise. A review on latest developments on

MHE procedures was published by Garcı́a and Espinosa in

[11].

Despite of the advantages of the MHE, when the measure-

ment delay is not properly handled the performance of the

estimation may fall. Consequently, a procedure or method to

handle the delay in this type of estimator should be developed.

Below, the MHE is introduced and a procedure for tackling

the problem of the delay in the measurements of the states is

presented.

A. Moving horizon estimator

Assume a system modeled by the following nonlinear differ-

ence equation:

x(k + 1) = f(x(k), u(k)) + w(k)

y(k) = h(x(k), u(k)) + v(k)
(1)

where some constraints are imposed over the state variables,

disturbances, and measurement noise as follows:

x ∈ X, w ∈W, and v ∈ V (2)

with x(k) and y(k) the states and output at k sample

respectively, w(k) is the disturbance or model uncertainty,

v(k) is the measurement noise, and X, W, V are the feasible

sets of the states, of the disturbances, and of the measurement

noise, respectively. Also, f : Rn → R
n, g : Rn × R

m → R
n

with g(·, 0) = 0, and h : Rn → R
p. Finally it is assumed that

X and W are closed with 0 ∈W.

A linear large-scale constrained system generating the mea-

surement sequence {y(k)} can be derived from a linearization

around each operating point of (1) as:

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) +G(k)w(k)

ŷ(k) = C(k)x̂(k) + v(k)
(3)

where for simplicity x̂(k) ∈ R
n and w(k) ∈ R

w are the

linearized states and uncertainty respectively, v(k) ∈ R
p is

the linearized measurement noise, and u(k) ∈ R
m denotes

the system input. Moreover, those variables are constrained

as it is shown in (2). Thus, the estimation of all the states in

(3) can be formulated as an MHE problem as follows:

Φ∗k = min
x0,{wj}

k−1

j=0

Φk(x0, {wj}
k−1
j=0 ) (4)

where x0 is the initial state. The problem is subject to the

following constraints:

xj ∈ X for j = 0, . . . , k, wj ∈W for j = 0, . . . , k − 1,

in which the cost function is of the form:

Φk(x0, {wj}
k−1
j=0 ) ,

k−1∑

j=0

‖y(j)− ŷ(j)‖2Q + ‖w(j)‖2R (5)

As the problem (4) gets more information as time goes, the

optimization becomes intractable because the computational

complexity increases at least as a linear function of time,

making difficult its treatment on-line. In order to avoid this

problem, a fixed dimension optimal problem by a moving

horizon approximation is proposed in [5], [8], [10], [12]. With

this approach, the cost function (5) can be rewritten as

ΦT (xT−N , {wk}
T−1
k=T−N ) =

T−1∑

k=T−N

‖y(k)− ŷ(k)‖2Q + ‖w(k)‖2R (6)

where N is the horizon of the MHE. Considering (6) as a cost

function in the original MHE problem, the complexity of the

MHE increases at least as a linear function of time until the

horizon N is reached. When the horizon N is reached the

complexity of the MHE problem remains constant.

B. Moving horizon estimator with variable structure

In Subsection II-A, the MHE problem was introduced. In

this subsection it is assumed that the measurements of the

states arrive once they are taken. However, in real applications

there are delays associated with the communication network

used to transmit the data from the sensors to the MHE;

this may affect the performance of the estimator. Figure 1

shows a block diagram considering the delay on the states

measurements transmission. If there exists a delay d(k) on

��� �����

��	 

��
�

Fig. 1: Block diagram of a control system considering the

delay on the states measurements transmission.

the measurement of the states the estimation is made based

on (3), which does not represent the dynamical behavior of the

system (1), especially if the delay varies randomly because

it is possible that future measurements of the states arrive

before previous ones. Then, the estimator may not be able to

calculate the real value of the states, affecting the performance

of the pair MHE-controller, and thus of the entire system.

Therefore, it is necessary to make a correction of this

problem for guaranteeing that the estimator calculates the

appropriate value of the states. With this purpose, a variant

of the MHE is presented on Subsection II-A. It consists on

using a time variant weighting matrix Q, for computing the

term ‖y(k)− ŷ(k)‖2Q in (6).
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Consider a system of Figure 1. Let ỹ(k) denote the se-

quence of available measurements at time step k. Let d̃(k)
denote the sequence containing the delay associated to each

measurement in ỹ(k). The sequence ỹ(k) does not contains

all the information on the window of the MHE, because some

data may have not arrived yet due to the delay.

Assume that the delay of each measurement belonging to

ỹ(k) is known (this is possible by using tags for identifying

the sending time of each measurement). Also, assume that the

delays are randomly distributed, and that
d(k)
Ts

∈ N, with Ts

the sample time. Then the real position of each measurement

in ỹ(k) can be identified and organized accordingly to the

real positions of the measurements. Also, with the sequence

of delays it is possible to identify which blocks of the

weighting matrix Q should be set to 0 (or neglected), because

there is not data available to compare the estimated and

the measured values. With this approach the MHE problem

becomes a variable structure problem, in which the length

of the sequence of available measurements and the blocks

different of 0 of the weighting matrix Q depends on the time

step k.

So, the expression for computing the estimated output ȳ(k)
becomes

ȳ(k) =



ΓN−d1

...

ΓN−dn


x(k −N) +



ΞN−d1

...

ΞN−dn


 ũ(k) (7)

where {d1, . . . , dn} is the sequence of the delays, Γa = CAa,

Ξa = [CAa−1B, . . . , CB], ũ(k) = [uT (k −N), . . . , uT (k −
1)]T . Hence the cost function (6) becomes:

ΦT (x(k − N)) = ‖ỹ(k) − ȳ(k)‖2Q + ‖w̃(k)‖2R (8)

where w̃(k), denote the disturbance vector at time step k.

In order to implement the proposed MHE, the following

steps are suggested:

1) Given the sequence of measurements

{ỹ(k − N), . . . , ỹ(k − 1)}, and the sequence of

delays {d(k − N), . . . , d(k − 1)}, arrange the vector

of measurements, where each measurement position is

given by
d(k−l)

Ts

, with Ts the sample time.

2) With the arranged vector of measurements identify

which inputs do not have data, the blocks of Q cor-

responding to these inputs should be set to 0 (or

neglected).

3) Estimate the states accordingly to the MHE (see section

II-A).

4) After computing the estimated value of the states, send

them to the controller and go back to step 1.

Note that the matrix Q varies when new data is received,

but its dimension remains constant. If a measurement arrives

at time stamp k and it belongs to the window N , then the

blocks of the matrix Q associated to that sample time change.

The matrix Q is also updated at each time stamp by moving

its blocks to their corresponding position accordingly to the

window N .

On the MHE design the convergence of the estimator is

not guaranteed, the MHE is based on a finite estimation hori-

zon that reduces the computational cost of the optimization

problem, but can fall in instabilities. In this case, in order

to include the cost out of the estimation window N , there is

included an arriving cost given by yT (k)Py(k), with k > 0.

In [12] the full demonstration of the MHE convergence is

presented.

In the following section the simulation results are pre-

sented.

III. SIMULATION RESULTS

In this section we compared the performance of the pair

MHE-MPC on a four tank process with and without con-

sidering the proposed variable structure in the MHE, when a

random delay on the measurements of the states is considered.

First, we performed a simulation without delay in order to

set a reference behavior. Then, we added a random delay on

the states measurements to show the loss of performance of

the system when a fixed MHE structure is used. Finally, the

proposed MHE with variable structure was implemented on

the same random delay conditions for allowing a comparison

with the fixed structure MHE. The performance of the pair

MHE-MPC on the three cases was determined with a time-

variant reference value of the controllable variables.

A. System description: the four plant process

The four-tank plant is designed for testing control tech-

niques using industrial instrumentation and control systems.

The plant consists on a hydraulic process of four inter-

connected tanks inspired by the educational quadruple-tank

process proposed by [13]. A schematic diagram of the process

is shown on Figure 2. The target in the system shown on

Figure 2 is to regulate the level of the tanks 1 and 2, by

modifying the flows qa and qb feeding the tanks. In this case

we considered as manipulated variables the flows qa and qb,

as controlled variables the levels h1 and h2, and as estimated

variables the levels h3 and h4.

From the mass balance and the Bernoulli flow equation,

the first principle model for the process is:

dh1

dt
= −

a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1qa

A1

dh2

dt
= −

a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

γ2qb

A2

dh3

dt
= −

a3

A3

√
2gh3 +

(1− γ2)qb
A3

dh4

dt
= −

a4

A4

√
2gh4 +

(1− γ1)qa
A4

(9)

where Ai is the cross-section area, ai is the cross-section

area of the outlet hole, and hi is the level of the tank

i, i = 1, . . . , 4. The parameters γ1, γ2 ∈ [0 1] are set prior

to the experiment. The flow to tank 1 is γ1qa and the flow

to tank 4 is (1 − γ1)qa (similarly for tanks 2 and 3). The

acceleration of gravity is denoted by g. For the control test

presented in this work, the plant parameters are shown in

Table I. The Linearized model at an operating point given

6680



Fig. 2: Four tank process used for validation of the proposed

variable structure MHE

by the equilibrium levels and flows is shown in Table I, and

by defining the deviation variables xi = hi − hi0, uj =
qj−qj0, i ∈ {1, 2, 3, 4}, j ∈ {a, b}, the resultant continuous-

time linear model is:

dx(t)

dt
=




−1
τ1

0 A3

A1τ3
0

0 −1
τ2

0 A4

A2τ4

0 0 −1
τ3

0

0 0 0 −1
τ4


x(t) + . . .

. . .




γ1

A1

0

0 γ1

A2

0 (1−γ2)
A3

(1−γ1)
A4

0


u(t)

y(t) =

[
1 0 0 0
0 1 0 0

]

(10)

where τi = Ai

ai

√
2hi0

g
≥ 0, i ∈ {1, 2, 3, 4} are the time

constants of the tank i. For the parameters chosen the linear

system shows four real stable poles and two non-minimum

phase multivariable zeros.

With the purpose of applying the proposed MHE, the model

(10) was discretized with a sample time Ts = 5 s. The

resulting model was also used for prediction in the MPC.

B. Simulation Results

For validation purposes, three different operation conditions

were simulated in order to compare the performance of the

proposed approach with the classical MHE structure:

TABLE I: Parameters used for the simulation of the four tank

system

Parameter Units Value

h1max [m] 1.36
h2max [m] 1.36
h3max [m] 1.30
h4max [m] 1.30
h1min [m] 0.20
h2min [m] 0.20
h3min [m] 0.20
h4min [m] 0.20

qamax [m3/h] 3.26

qbmax [m3/h] 4.00

qamin [m3/h] 0.00

qbmin [m3/h] 0.00

a1 [m2] 1.310 ∗ 10−4

a2 [m2] 1.507 ∗ 10−4

a3 [m2] 9.267 ∗ 10−5

a4 [m2] 8.816 ∗ 10−5

A1 [m2] 0.06

A2 [m2] 0.06

A3 [m2] 0.06

A4 [m2] 0.06
γ1 0.3
γ2 0.4

qa0 [m3/h] 1.63

qb0 [m3/h] 2.00
h10 [m] 0.6487
h20 [m] 0.6639
h30 [m] 0.6498
h40 [m] 0.6592

1. The measurements of the states were taken without

delay.

2. The measurements of the states were taken with delay

and a fixed structure MHE was implemented.

3. The measurements of the states were taken with delay

and the proposed MHE was implemented.

In these three cases the prediction horizon for the MPC

was 90 sample times, and the horizon for the MHE was

200 sample times for covering the transient response of the

system. For the cases 2 and 3, the delay was considered

normally distributed with mean µ = 12 times the sample

time, and variance σ2 = 12.

The values used for the estimation matrices were Q =
0.01I1 and R = 0.01I2. These values were selected after

preliminary tests. Figures 3 and 4 show the behavior of the

four-tank process when there was no delay in the measure-

ment of the states. Figure 3 shows how the estimated states

are coherent with the real variables. Figure 4 shows that the

pair MHE-MPC is able to lead the controlled variables of

the system to their desired values, and that the control inputs

have small amplitude changes before stabilizing. It is possible

to conclude that the values of the states given by the MHE

converge to their real values without delay. On Figure 3,

note that after the convergence of the MHE (and despite the

changes on the reference values of the controllable variables)

the values of the states estimated by the MHE are the same

than their real values. But, if a time delay is included in the

measurements of the states, the performance of the system

decreases, as shown on Figure 5. On Figure 5 is shown that

6681



0 1000 2000 3000 4000 5000 6000

0.6

0.7
h
[m

]

0 1000 2000 3000 4000 5000 6000

0.6

0.8

1

h
[m

]

0 1000 2000 3000 4000 5000 6000
0.5

1

h
[m

]

0 1000 2000 3000 4000 5000 6000
0.5

1

Time[s]

h
[m

]
h

1

h
1est

h
2

h
2est

h
3

h
3est

h
4

h
4est

Fig. 3: Evolution of the real and estimated levels. Without

delay both the estimated values for controlled tanks h1 and

h2 (top) and the feeding tanks h3 and h4 (bottom) converge

to their real values
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Fig. 4: Evolution of the controlled states corresponding to the

levels h1 and h2, and their reference values (firs two panels),

and of the levels h3 and h4 (third panel). On bottom it is

shown the evolution of the control inputs qa and qb.

despite of the convergence of the MHE, the pair MHE-MPC

is not able to lead the controllable variables to their set-point,

because of an oscillatory behavior induced by the delay.

In order to avoid the effects of the delay on the system

(which are displayed on Figure 5), the proposed MHE was

implemented for the four-tank process. Figures 6 and 7

show the behavior of the system when the random delay is

considered and the proposed MHE is implemented. Figure

6 shows that the estimated values achieved the real values

without oscillations despite of the random delay, and the

changes on the set-points of the controllable variables. Figure

7 presents the entire system behavior. In comparison with the

performance of the system without delay, on the initial set-

point it is observed an expected transient on the controlled

variables, due to the lack of available data for the state esti-

mation. On the second set-point change their behavior is quite

similar, the proposed variable structure MHE compensated the
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Fig. 5: Evolution of the real and estimated h1 and h2 levels

compared to their reference value (first two panels), of the

levels h3 and h4 (third panel), and of the control inputs qa
and qb (forth panel), when the delay is included. The states

show an oscillatory behavior produced by the delay which

effect is not included on the classical MHE approach.

random delay effects. However, the control actions computed

by the MPC under random delay conditions and with the

proposed variable structure MHE, were larger in amplitude

than the control actions without delay and fixed structure

MHE. In order to compare the controller performance in
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Fig. 6: Evolution of the real and estimated levels when the

proposed MHE is implemented. All states converge to their

set-point and an expected larger delay can be observed at the

beginning of the test.

each of three cases presented before, it was considered as a

comparison index the RMS value of the cost function φMPC .

Table II summarizes the results obtained for each case.

Case RMS

Fixed MHE without delay 11.4164
Fixed MHE with delay 60.2313

Variable MHE with delay 4.6017

TABLE II: RMS value of the cost function in the three cases

presented in this article
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Fig. 7: Evolution of the levels h1 and h2, and their reference

values (firs two panels), of the levels h3 and h4 (third panel),

and of the control inputs qa and qb, when the proposed MHE

is implemented. Larger control actions were observed but no

oscillation was present.

Tests of the same experiments with kalman filters did not

show large differences with the proposed variable structure

MHE (not shown here). But for uniform delay conditions

near the time constant of the plant (≈ 100 s) as shown on

Figure 8, the kalman filter-MPC pair presented oscillations

when changing the set point. On the same Figure are shown

the results of the proposed MHE for the same experiment

with similar results than those presented in Figures 6 and 7.
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Fig. 8: Large variable delay test on the four tank process

for the MPC with a Kalman filter based estimation (first two

panels), and a variable structure MHE (last two panels). Even

the Kalman filter-MPC can control the h1 and h2 levels, there

are oscillations not present on the variable structure MHE-

MPC

IV. CONCLUSIONS AND FUTURE WORK

In this work the problem of the random delay in the

measurements of the states was considered. Here, the delay

was assumed random, known, and n times the sample time

(n ∈ N). In order to handle this problem a variable structure

MHE was proposed, where the delayed measurements of the

states were arranged in a vector and placed on the equivalent

position of their true arriving time.

The four tank system was used for validation. A pair MHE-

MPC was implemented in order to control it, with two MHE

structures: fixed and variable. Variations on the reference

value of the controlled variables were made with the purpose

of testing the performance of the pair MHE-MPC. When a

random delay was included into the measurements of the

states, the pair MHE-MPC with fixed MHE structure fell

into an oscillatory behavior. Under the same conditions, the

proposed MHE improved the performance of the pair MHE-

MPC exhibiting a performance similar than the pair MHE-

MPC without delay. Then, it is concluded that the MHE

with variable structure proposed on this work compensates

the effect of the random delay on the state.
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