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Abstract— Robust dynamic optimization problems involving
adaptive decisions are computationally intractable in general.
Tractable upper bounding approximations can be obtained
by requiring the adaptive decisions to be representable as
linear decision rules (LDRs). In this paper we investigate
families of tractable lower bounding approximations, which
serve to estimate the degree of suboptimality of the best
LDR. These approximations are obtained either by solving
a dual version of the robust optimization problem in LDRs
or by utilizing an inclusion-wise discrete approximation of the
problem’s uncertainty set. The quality of the resulting lower
bounds depends on the distribution assigned to the uncertain
parameters or the choice of the discretization points within the
uncertainty set, respectively. We prove that identifying the best
possible lower bounds is generally intractable in both cases and
propose an efficient procedure to construct suboptimal lower
bounds. The resulting instance-wise bounds outperform known
worst-case bounds in the majority of our test cases.

I. INTRODUCTION

Robust optimization is a powerful modeling paradigm
for decision-making under uncertainty [1]. It is tailored to
decision problems in which the distribution of the uncertain
parameters is unknown except for its support. By definition,
the support represents the range of all possible parameter
realizations and is commonly referred to as the uncertainty
set. Robust optimization models are designed to find the best
decision in view of the worst-case realization of the uncertain
parameters within their uncertainty set.

Classical static robust optimization models involve only
design decisions, which are of here-and-now type and must
be selected before any of the uncertain parameters are ob-
served. Recently, dynamic robust optimization problems have
attracted considerable interest. Such problems incorporate
additional adaptive decisions, which are of wait-and-see type
and can be selected after the uncertain parameters have been
revealed. Thus, adaptive decisions are modeled as decision
rules, that is, functions of the uncertain parameters.

Robust optimization problems involving adaptive deci-
sions are generally computationally intractable [2], [3]. To
reduce their complexity, methods for restricting the space
of adaptive decision rules have been suggested, e.g. by
restricting the decision rules to those with linear [2], piece-
wise linear [4], [5] or polynomial [6] structure. Because
of their desirable scalability properties, LDRs enjoy the
widest popularity. Indeed, the best LDR for a given robust
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optimization problem can typically be computed by solving
a tractable linear or second-order cone program.

Unfortunately, LDRs may be severely suboptimal or even
infeasible in the original optimization problem. In order
to assess the appropriateness of LDRs, one thus needs to
estimate their loss of optimality. We distinguish two com-
plementary approaches for this purpose: a priori methods
evaluate the worst-case approximation ratio of LDRs over
a whole class of problems, while a posteriori methods
estimate the approximation error for each problem instance
individually.

We first review the existing a priori methods. Linear
decision rules have been shown to be optimal for two-
stage minmax problems with simplicial uncertainty sets and
for certain one-dimensional robust control problems [7].
However, instances satisfying these idealized conditions are
rarely encountered in practice. Under restrictive nonnegativ-
ity conditions on the problem data, it has also been shown
that the worst-case approximation ratio of LDRs in two-
stage minmax problems with m linear constraints is of the
order Ω(

√
m) [3]. Even though it is occasionally tight, this

worst-case performance bound is too pessimistic for the vast
majority of problem instances.

Thus, there is considerable merit in developing good a
posteriori methods. Instance-wise upper and lower bounds on
multi-stage stochastic programs can be obtained by solving
both the original problem and its dual in LDRs; see [8]. The
gap between the bounds provides an a posteriori measure
for the suboptimality of LDRs. This approach is directly
applicable to robust optimization problems if a probability
distribution is assigned to the uncertain parameters. However,
in this case the dual (lower) bound becomes non-unique as
it depends on that distribution (which can be chosen freely
from amongst distributions with appropriate support).

In this paper we demonstrate that the quality of the dual
LDR bound for robust problems is highly sensitive to the
choice of the distribution governing the uncertain parameters.
We show that the best (maximum) lower bound can be
achieved by a discrete distribution. However, we further show
that finding this distribution is as hard as solving the original
(intractable) problem. A different class of tractable lower
bounds is obtained by replacing the original uncertainty
set with a finite scenario set of a prescribed cardinality.
Again, finding the best scenario set is generically hard. We
therefore propose an efficient method in which scenarios
are constructed from the Lagrange multipliers associated
with the primal LDR problem. Next, we establish a link
between the dual LDR method and the scenario approach.
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This analysis allows us to identify new problem classes for
which LDRs are optimal. Extensive numerical experiments
demonstrate that our scenario-based lower bound consis-
tently outperforms the known a priori bounds as well as the
dual LDR bound associated with naive distributional choices.

This paper is structured as follows. Section II introduces
the problem formulation and reviews an approximate solu-
tion method based on LDRs. Sections III and IV describe
bounding techniques for estimating the suboptimality of
LDRs by using dual LDRs and a discrete approximation
of the uncertainty set, respectively. The performance of
the resulting bounds is analyzed in Section V on a set of
randomly generated test problems.

Notation: The optimal value of any optimization prob-
lem P is denoted by P∗. For matrices S,T ∈R(k+1)×l and
a proper cone K ⊆ Rk+1, the relation S �K T (S �K T )
indicates that the columns of S−T (T−S) are included in the
cone K . The dual cone of K is denoted by K ∗. Moreover,
the kernel of a matrix A is denoted ker(A). Finally, we let
A(i) be the i-th row and A(i) the i-th column of A.

II. PROBLEM STATEMENT

We study linear two-stage robust optimization problems
with affine right hand side uncertainty and a minmax objec-
tive. Such problems can be represented as

inf c>x + sup
ξ∈Ξ

d>y(ξ )

s.t. Ax + By(ξ )≤Cξ ∀ξ ∈ Ξ,
(P)

where Ξ⊆Rk+1 represents the uncertainty set. The first-stage
decision x ∈ Rn1 is a rigid design decision, and the second-
stage decision y is a fully adaptive decision rule, that is, a
continuous function from Rk+1 to Rn2 . We denote by m the
number of constraints. Without much loss of generality, we
assume that P∗ is finite and that the minimum is attained by
an optimal decision (x∗,y∗). Moreover, we assume that the
uncertainty set Ξ is defined as Ξ :=

{
ξ ∈K : e>0 ξ = 1

}
,

where K ⊆Rk+1 is a proper cone and e0 is the first canonical
basis vector in Rk+1. We also assume that Ξ is non-empty
and bounded.

Remark 1: Introducing a degenerate uncertain variable ξ0
that is equal to 1 on Ξ allows us to express any affine function
of the non-degenerate uncertain parameters (ξ1, . . . ,ξm) on Ξ

in a compact way as a linear function of ξ = (ξ0, . . . ,ξm).
Problem P is computationally intractable [2, Theorem

2.2], involving an infinite number of constraints and decision
variables. Therefore, finding a suboptimal solution necessi-
tates a trade-off between accuracy and tractability, usually
in the form of a restriction on the structure of the adaptive
decision rules in P . In this paper, we investigate such an
approximation where the second-stage adaptive decision rule
y is restricted to be a linear function of ξ , i.e., y(ξ ) = Y ξ

for some matrix Y ∈ Rn2×(k+1). The problem of identifying
an optimal LDR can be represented as

inf c>x + sup
ξ∈Ξ

d>Y ξ

s.t. Ax + BY ξ ≤Cξ ∀ξ ∈ Ξ,
(U )

where the second-stage decision is now encoded by the
matrix Y instead of the continuous function y. Problem
U constitutes a linear robust optimization problem with
semi-infinite constraints. By using robust optimization tech-
niques [2], it can be reformulated as a conic optimization
problem of the form

inf c>x+ t
s.t.

(
d>Y − te>0

)> �K ∗ 0(
Axe>0 +BY −C

)> �K ∗ 0.
(Ũ )

Problem U and its equivalent conic reformulation Ũ are
derived via a restriction of the set of admissible second-
stage decisions in P . In general, an optimal fully adaptive
decision rule y∗ is continuous piecewise linear in ξ , with a
possibly exponential number of pieces [9]. Restricting y to
be linear in ξ introduces an optimality gap between P and
U with P∗ ≤U ∗ = Ũ ∗. The loss of performance due to
the use of LDRs varies greatly according to the problem
data. Identifying a bound on this optimality gap requires
the derivation of a lower bound for P∗ tailored to the
specific problem instance. In the remainder of this paper we
demonstrate how one can derive such problem-specific lower
bounds in an efficient manner.

Dual variables and the robust counterpart Ũ

Before we discuss the first lower bound, we comment on
the relationship between the semi-infinite problem U and its
conic equivalent Ũ and demonstrate how one can derive Ũ
from U using two distinct approaches. The first approach
relies on the following lemma, which captures the essence
of robust optimization:

Lemma 2.1 ([10]): For any σ ∈ Rk+1 we have

σ
>

ξ ≥ 0 ∀ξ ∈ Ξ ⇐⇒ σ ∈K ∗,

where K is the cone generated by Ξ, and K ∗ its dual cone.
Problem Ũ can be derived from U via application of
Lemma 2.1, which has the effect of replacing the semi-
infinite linear inequality constraints in U with a set of finite
dimensional K ∗-conic constraints.

We suggest now an alternative derivation based on La-
grangian functions, which provides a different insight into
the relationship between U and Ũ . Let M d

+ be the space of
all d-dimensional nonnegative Borel measures on Ξ. Let f
be any continuous function from Rk+1 to Rd . Then we have

sup
ψ∈M d

+

∫
Ξ

f (ξ )>ψ(dξ ) =

{
∞ if ∃ξ ∈ Ξ : f (ξ )> 0,
0 otherwise.

(1)
Let q ∈ M m

+ and z ∈ M+ be m-dimensional and one-
dimensional non-negative Borel measures on Ξ, respectively.
By using (1), we can derive the Lagrangian of U using q
and z as the dual variables for the semi-infinite inequality
constraints, i.e.,

LU (x,Y, t;q,z) = c>x+ t +
(
d>Y − te>0

)∫
Ξ

ξ z(dξ )
+ tr

[
(Axe>0 +BY −C)

∫
Ξ

ξ q>(dξ )
]
.
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The emergence of Borel measures as dual variables in the
Lagrangian is a consequence of the semi-infinite nature of the
constraints in P . However, these dual Borel measures only
affect the Lagrangian through their first moments. Consider
therefore the variable substitution Λ =

∫
Ξ

ξ q>(dξ ) and λ =∫
Ξ

ξ z(dξ ), where the new variables Λ and λ are the first
moments of the Borel measures q and z, respectively. The
non-negativity constraints q ∈M m

+ and z ∈M+ translate to
the new variables as (λ ,Λ) �K 0. Substituting these new
variables into LU yields:

LU = c>x+ t +
(
d>Y − te>0

)
λ + tr

[
(Axe>0 +BY −C)Λ

]
= L

Ũ
(x,Y, t;λ ,Λ) , (2)

which is precisely the Lagrangian of Ũ , where Λ and λ are
the dual variables of the conic inequality constraints.

The preceding line of argument provides an alternate
perspective on how the conic problem Ũ relates to the semi-
infinite problem U . The established interpretation dictates
that problem Ũ is derived from its semi-infinite equiva-
lent via a manipulation of the constraints of U that uti-
lizes convex duality arguments, through the mechanism of
Lemma 2.1. This alternative derivation can be interpreted
as a simple variable substitution in the Lagrangians, where
the dual Borel measures in LU are substituted by their
respective moments to obtain the Lagrangian L

Ũ
.

III. DUAL LDR BOUND

The problem of deriving a lower bound for two-stage de-
cision problems was addressed successfully in the stochastic
programming setting [8], where a lower bound was proposed
for linear problems similar to P , but with expectation
objective and a prescribed probability distribution for ξ .
The bound derived in [8] employed a dualization of the
original (infinite) problem, followed by a restriction of the
dual variables to be linear in ξ . The resulting semi-infinite
problem is a relaxation of P with expectation constraints
depending on a probability distribution P [8]:

inf c>x+ t
s.t. EP

[(
d>y(ξ )− t

)
ξ>
]
≤ 0

EP
[
(Ax+By(ξ )−Cξ )ξ>

]
≤ 0.

(L (P))

Even though L (P) involves functional decision variables
and is therefore seemingly intractable, it has been shown
that under a mild strict feasibility condition, L (P) can be
reformulated as a tractable conic optimization problem [8].
Let C be the set of all probability distributions supported on
Ξ. One can immediately verify that L (P) provides a lower
bound on P for any possible distribution P ∈ C :

Proposition 3.1: For any probability distribution P ∈ C ,
we have L ∗(P)≤P∗ ≤U ∗.
Any solution that is feasible in P will of course also
satisfy the less restrictive expectation constraints in L (P),
regardless of the probability distribution used. However,
the choice of a distribution P has a central role in the
performance of the bound L ∗(P).

Constraints in the original problem P corresponding to
uncertainties with higher probability mass under P are more

likely to be satisfied by the optimal solution of L (P). In the
absence of any information about the distribution P, as is the
case with P , we are free to select any distribution from C
to be used in L (P).

In the extreme case, one can adopt a Dirac distribution
from C that concentrates probability mass on a single
uncertainty realization ξ ∈ Ξ. A solution to L (P) will
then only need to satisfy the constraints corresponding to
that single uncertainty realization, i.e., the problem becomes
deterministic. In the event that such constraints are not
binding, the optimal value of L (P) is −∞, and the lower
bound is trivial.

Consequently, if one wishes to obtain a useful lower bound
from L (P), then the distribution P must be carefully chosen,
ideally from the set of worst-case distributions

Cw := argmax
P∈C

L (P),

which can be shown to be non-empty. Selecting any distri-
bution Pw ∈ Cw ensures that L ∗(Pw) gives the best possible
lower bound for P among all dual LDR bounds. Unfortu-
nately, finding an element Pw ∈ Cw and evaluating L ∗(Pw)
is no less difficult than computing the optimal value of P:

Theorem 3.2: The set Cw is non-empty, and for any worst-
case distribution Pw ∈ Cw, the lower bounding problem
L (Pw) satisfies L ∗(Pw) = P∗. Thus, computing the best
possible dual LDR bound is as hard as computing the optimal
value of P .

Proof: First define the optimal second-stage cost of
P , which depends parametrically on the first-stage decision
x and the uncertainty realization ξ , i.e.,

Q(x,ξ ) := miny d>y
s.t. Ax+By≤Cξ .

(3)

The optimal value function Q is known to be convex and
continuous on its effective domain. Problem P can now be
expressed as the following minmax problem:

P = inf

[
c>x + sup

ξ∈Ξ

Q(x,ξ )

]
.

Let x∗ be an optimal first-stage decision and Ξw be the set of
worst-case scenarios for the corresponding optimal second-
stage parametric cost,

Ξw := argmax
ξ∈Ξ

Q(x∗,ξ ). (4)

Note that Ξw is non-empty since Q is continuous on its
effective domain and Ξ is compact. For any scenario ξw ∈Ξw
and any x ∈ Rn1 , we have Q(x,ξw)≥ Q(x∗,ξw). Now let δw
be any Dirac distribution concentrating mass on a single
element ξw ∈ Ξw. Then, we find

L ∗(δw) = infx c>x + Q(x,ξw)
= c>x∗ + Q(x∗,ξw) = P∗.

Thus, Cw is non-empty, and any Pw ∈ Cw results in an exact
lower bound L ∗(Pw) =P∗. Additionally, since the problem
L (δw) is actually finite and therefore a tractable convex cone
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program, finding a Dirac distribution δw ∈ Cw has the same
complexity as finding the optimal value of P .
Theorem 3.2 has two important implications. First, finding
the best dual LDR bound is actually as hard as deriving the
optimal value of the original problem P . Using any lower
bound L ∗(P) associated with a distribution P /∈Cw will give
only a conservative estimate of the suboptimality of LDRs.

Second, the proof of Theorem 3.2 illustrates that there
exist specific uncertainty realizations, namely the elements
of Ξw, from which Dirac distributions Pw can be constructed
that provide tight lower bounds L ∗(Pw) = P∗.

As a result, a different method of bounding P can be
designed, which is inspired by the existence of the set Ξw
and relies on a discrete approximation of the uncertainty set.

IV. SCENARIO BASED BOUNDS

We propose a procedure in which we identify a finite
discrete subset Z ⊂ Ξ and solve P(Z), a variant of the
problem P in which the uncertainty set Ξ is replaced by
Z. This results in a solution that is robust only with respect
to a subset of all scenarios ξ ∈ Ξ, namely the elements of
Z. Problem P(Z) is thus finite, and its solution provides a
lower bound on P∗.

Theorem 4.1: For any finite subset Z ⊂ Ξ, problem P(Z)
provides a lower bound on P that can be obtained via the
solution of a finite linear program. Moreover, for any distri-
bution Pz ∈C supported on Z, P(Z) provides a tighter lower
bound on P than L (Pz), i.e., L ∗(Pz)≤P∗(Z)≤P∗.
We omit the proof of this theorem for the sake of brevity.
The quality of this lower bound depends on the choice of
Z, in a manner equivalent to the dependence of L (P) on
the choice of P. The next result follows from the preceding
discussion and is a generalization of Theorem 3.2.

Theorem 4.2: There exists a non-empty set Ξw ⊆ Ξ, so
that for any Z ⊆ Ξ with Z

⋂
Ξw 6= /0, we have P∗(Z) = P∗.

We note that Theorem 4.2 is reminiscent of Theorem 3.2.
While Theorem 3.2 relates to the existence of worst-case
discrete distributions that maximize the dual LDR bound
L ∗(P), Theorem 4.2 guarantees the existence of finite worst-
case scenario sets Z that maximize the discrete approxima-
tion bound P∗(Z). Of course, finding a worst-case scenario
set, or equivalently an element of Ξw is at least as hard as
computing P∗ and thus is itself intractable. Thus, one must
resort to other methods for choosing the set Z.

A naı̈ve approach is to let Z be the set of all extreme
points of Ξ. It is known that Ξw contains at least one of
these extreme points [3], and therefore such Z is guaranteed
to yield a tight bound.

Proposition 4.3: Let Zv := ext(Ξ) be the set of extreme
points of Ξ. Then Ξw

⋂
Zv 6= /0 and P∗(Zv) =P∗.

If Ξ is strictly convex, then Zv has infinite cardinality, and
P(Zv) remains an infinite problem. In the particular case
where Zv is finite, e.g. for polyhedral uncertainty sets, it is
in principle possible to enumerate the vertices of Ξ. However,
P(Zv) is still generally intractable.

Remark 2: It is also possible to generate the discrete set
Z by drawing finitely many samples from any distribution

P∈C supported on Ξ. The resulting scenario problem P(Z)
yields a stochastic lower bound for P whose quality depends
on the number of samples and the choice of P. Scenario
problems of this type have been investigated in [11], [12].

The Critical Set ∆

Theorem 4.2 guarantees that pruning the uncertainty set
from Ξ to any non-empty subset of Ξw does not alter the
optimal value of P , even though such a reduction amounts
to a relaxation of the constraints in P . However, finding
such a subset is hard.

We therefore turn to the binding uncertainty realizations
in the LDR problem U as a proxy, i.e., we propose to use
a finite scenario set ∆, which is derived from U in a similar
way as Ξw is derived from P . Such a set can be constructed
efficiently and enjoys properties with respect to the LDR
problem U similar to those of Ξw with respect to the original
problem P .

Theorem 4.4: There exists a non-empty set D⊆ 2Ξ, where
each ∆ ∈ D is a finite subset of Ξ with |∆| ≤ m + 1 and
satisfies U ∗(∆) = U ∗. Here, U (Z) denotes a variant of
problem U in which Ξ is replaced by Z. One particular
set ∆ ∈ D can be constructed efficiently via the solution of
the dual of the problem Ũ .

Proof: See Appendix.
We propose to use P∗(∆) for some ∆ ∈ D as a lower

bound on P∗. The motivation for this choice is predicated
on the reasonable expectation that there may exist at least
one worst-case uncertainty realization for P that is also a
worst-case realization for U , i.e., that there exists ∆ ∈ D
such that ∆

⋂
Ξw 6= /0.

In cases where the above assumption holds and ∆ ∈ D is
chosen correctly, P∗(∆) will be equal to the true optimal
value of P , and the optimality gap U ∗−P∗(∆) will be an
exact characterization of the suboptimality of LDRs. On the
other hand, our approach can return a conservative optimality
gap for one of two reasons:

i) There does not exist any ∆ ∈D with ∆
⋂

Ξw 6= /0. Such
a situation is illustrated in Example V-A.

ii) There does exist some ∆ ∈ D with ∆
⋂

Ξw 6= /0, but
|D| ≥ 2 and there is no mechanism of selecting the right
one. In the numerical examples of V-B, we encountered
several problem instances for which P∗(∆) <U ∗

when in fact P∗ =U ∗.
Despite this limitation, we have found the approach to
perform well in practice and to reliably identify problem
instances for which LDRs are optimal.

Furthermore, properties of a given set ∆∈D can in certain
circumstances be used to identify immediately that LDRs are
optimal without computing a lower bound.

Theorem 4.5 (Optimality of LDRs): If there exists a ∆ ∈
D whose elements are linearly independent, then LDRs are
optimal for the associated instance of P , and the optimality
gap derived from such a ∆ is zero, i.e.,

P∗(∆) = P∗ = U ∗(∆) = U ∗.
Proof: The rightmost equality follows from Theo-

rem 4.4. The remainder of the proof relies on the fact
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that LDRs are optimal for simplicial uncertainty sets [3].
If there exists a ∆ with linearly independent elements, then
the convex hull ∆c of ∆ constitutes a (maybe degenerate)
simplex. As ∆ contains all the extreme points of ∆c, we have
U ∗(∆c) = U ∗(∆) and P∗(∆c) = P∗(∆). Since LDRs are
optimal for ∆c, it follows that U ∗(∆c) =P∗(∆c).

Remark 3: Theorems 4.4 and 4.5 together provide a con-
venient method for establishing the optimality of LDRs for a
specific instance of P without explicitly calculating a lower
bound. One only needs to construct ∆ via the solution of
the dual of Ũ and check whether its elements are linearly
independent.

Corollary 4.6: Let P∆ be any probability distribution sup-
ported on ∆. Under the assumptions of Theorem 4.5, we find

L ∗(P∆) = P∗(∆) = P∗ = U ∗(∆).

Thus, the lower bound L ∗(P∆) also certifies the optimality
of LDRs in these situations.

Efficient Identification of Worst-Case Scenarios

Despite the general intractability result of Theorem 3.2, it
is sometimes possible to compute an element of Ξw.

Theorem 4.7: Suppose that ker(B>)⊆ ker(C>). Then,

Ξw = argmax
ξ∈Ξ

−µ
>Cξ , (5)

where µ is any vector satisfying µ ≥ 0 and B>µ =−d.
Proof: Consider the optimal second-stage cost Q(x,ξ )

defined in (3). By linear programming duality, we obtain

Q(x,ξ ) = µ>(Ax−Cξ ) + maxp p>(Ax−Cξ )
s.t. B>p = 0

p≥−µ.
(6)

Whenever the kernel condition holds, the maximization term
in the above expression is independent of ξ . Recalling the
definition (4) of Ξw we have

Ξw = argmax
ξ∈Ξ

Q(x∗,ξ ) = argmax
ξ∈Ξ

µ
>Cξ ,

and thus an element of Ξw can be found by solving a convex
optimization problem.
Similar results can be obtained whereby alternative assump-
tions to those in Theorem 4.7 ensure that solutions to (5)
are contained in Ξw, and consequently that P is efficiently
solvable. For example one can replace the assumption that
ker(B>)⊆ ker(C>) with the assumption that both A = 0 and
C> ker(B>)⊆K ∗; in this case the maximization term in (6)
vanishes for all possible x and ξ ∈ Ξ, and thus Theorem 4.7
still holds. Such a situation occurs in Example V-A.

V. NUMERICAL RESULTS

Throughout this section, we compute lower bounds on P
by solving P(Z) where: Z = ∆ is the set defined in Theorem
4.4; Z = {ξm} is a single scenario set where ξm is chosen
via a solution of (5); and Z = Zv is the set of vertices of
the support.1 For completeness, we also provide a set of

1Recall from Proposition 4.3 that P∗(Zv) =P∗, so that U ∗−P∗(Zv)
measures the true degree of suboptimality of LDRs.

TABLE I
BOUND COMPARISON FOR TEMPORAL NETWORK EXAMPLE

Problem Opt. Value Gap % Gap

Ũ 2.00 - -
P 1.71 0.29 16%

P({ξm}) 1.71 0.29 16%
P(∆) 1.50 0.50 33%
L (P∆) 1.40 0.60 43%
L (PΞ) 1.25 0.75 60%

dual LDR bounds L ∗(P), parametrized by three different
uncertainty distributions: P= PΞ is the uniform distribution
on the support Ξ; P= P∆ is the uniform distribution on the
set ∆; and P = PZv is the uniform distribution on the set
of vertices Zv of the support. The estimated optimality gaps
provided by each bound are then calculated as the difference
between Ũ ∗ and the different lower bounds described above,
whilst the percentage gaps correspond to that difference
divided by the respective lower bound.

A. Temporal Networks Example

We investigate a specific instance of a temporal network
problem [13], for which LDRs are known to be suboptimal.

inf sup
ξ∈Ξ

y2(ξ )

s.t. y1(ξ )≥max(ξ1,1−ξ1)

−y2(ξ )≥ y1(ξ )+max(ξ2,1−ξ2)

}
∀ξ ∈ Ξ

(7)

There are two fully adaptive one-dimensional decisions y1
and y2 but no design decisions. The uncertainty set is
Ξ :=

{
ξ ∈ R3 : ξ1 = 1, (ξ1− 1

2 )
2 +(ξ2− 1

2 )
2 ≤ ( 1

2 )
2
}

. The
optimal value of (7) can be calculated analytically [13].
Furthermore, one can find a worst-case scenario in Ξw by
solving (5). The results for the various bounds are shown in
Table I.

B. Randomly Generated Instances

We assess the performance of the different lower bounds
based on a sample of randomly generated instances of P
with fixed dimensions k = 16, m = 16, n1 = 3 and n2 = 5.
The instances are generated to adhere to the assumptions
described in [3], where it has been shown that U ∗/P∗ is
bounded below by Ω(

√
m) = 4 in the worst case. This means

that LDRs can incur a percentage gap of up to 300%. The
problem instances are generated as follows:
• A constant symmetric uncertainty set Ξ is defined as

Ξ :=
{
(1,ξ )> ∈ Rk+1 : ‖ξ‖p ≤ 1

}
for p ∈ {1,2,∞}.

• The elements of the matrices A and B are uniformly
distributed on the interval [−5,5].

• The matrix C is randomly generated so that C> �K ∗ 0,
which guarantees that Cξ ≥ 0 for all ξ ∈ Ξ.

• A vector µ ∈ Rm is randomly generated according to a
uniform distribution on [0,1]m. The vector µ is used to
construct the cost vectors c = −A>µ and d = −B>µ ,
ensuring that c≥ 0 and d ≥ 0. The nonnegativity restric-
tions are necessitated by the assumptions in [3]. The
existence of a µ satisfying the above is required by the
postulated dual feasibility of the original problem P .
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TABLE II
BOUND COMPARISON FOR POLYHEDRAL UNCERTAINTY SETS

Problem Average % Gap % Tight Inst. % Opt. Detections

P(Zv) 7.05 100 100
P(∆) 10.27 49.75 99.6

P({ξw}) 27.21 2.15 4.317
L (PZv ) 39.39 0 0
L (P∆) 22.77 3.95 8.032
L (PΞ) 45.61 0 0

TABLE III
BOUND COMPARISON FOR SPHERICAL UNCERTAINTY SETS

Problem: P(∆) P({ξm}) L (P∆) L (PΞ)

% Gap: 18.76 34.43 37.17 47.73

We use this recipe to generate 1000 instances of P for each
p ∈ {1,2,∞}. The statistics for instances with box (p = ∞)
and diamond (p = 1) uncertainty sets are shown in Table II.
In these cases, the vertices of Ξ can be enumerated. Thus, we
can count how often any particular bound coincides with the
true optimal value of P (tight instances), and how often the
bound detects the optimality of LDRs among all instances
for which LDRs are optimal (opt. detection). The results for
the spherical uncertainty set (p = 2) are shown in Table III.

APPENDIX

Proof of Theorem 4.4. We first derive an explicit for-
mulation of problem U (∆). Let [∆] be the matrix whose
columns are the elements of the critical set ∆ ⊂ Ξ. Recall
that |∆| ≤ m+ 1. Thus, the matrix [∆] has at most m+ 1
columns of dimension k+1. We can write U (∆) as

inf c>x+ t
s.t. d>Y [∆]− te>0 [∆]≤ 0

Axe>0 [∆]+BY [∆]−C [∆]≤ 0.
(U (∆))

We construct the set ∆ in a particular manner, such that
any solution (x∗,Y ∗, t∗) of Ũ will also be optimal in U (∆),
yielding the relation U ∗(∆) =Ũ ∗ =U ∗.

a) KKT conditions for Ũ : Consider the Lagrangian
function of Ũ described in (2), where λ ∈ Rk+1 and Λ ∈
R(k+1)×m are the dual multipliers for the conic inequality
constraints. From (2), we derive the KKT conditions of Ũ :

Primal Feasibility:
{

(d>Y − te>0 )
> �K ∗ 0

(Axe>0 +BY −C)> �K ∗ 0

Dual Feasibility:


1− e>0 λ = 0,
ΛB+λd> = 0
e>0 ΛA+ c> = 0
(λ ,Λ)�K 0

Complementarity:
{ (

d>Y − te>0
)

λ = 0
tr(
(
Axe>0 +BY −C

)
Λ) = 0.

(8)

Let (x∗,Y ∗, t∗;λ ∗,Λ∗) be a KKT point of Ũ . We can obtain
(λ ∗,Λ∗) by solving the dual of Ũ . From the KKT conditions
we have that (λ ∗,Λ∗) �K 0 and λ ∗ ∈ Ξ. For each column
Λ∗(i), i = 1, . . . ,m, there are two possibilities:

1) Λ∗(i) 6= 0. As Λ∗(i) 6= 0 and Λ∗(i) ∈ K, then e>0 Λ∗(i) > 0
(since Ξ is compact). Thus, there exists a positive

scalar si so that ξi = siΛ
∗
(i) ∈ Ξ. Note that ξi makes the

i-th constraint binding, i.e., A(i)x∗+B(i)Y ∗ξi =C(i)ξi.
2) Λ∗(i) = 0. As Λ∗(i) is vanishing, the i-th constraint does

not bind the optimal LDR and can be omitted from (2)
without affecting the remaining KKT point.

Furthermore, ξ0 = λ ∗ ∈ Ξ is a worst-case realization for
the optimal LDR, meaning that d>Y ∗ξ0 = t∗. We can now
construct the critical set as ∆ = {ξi : i ∈ I}

⋃
{ξ0}, where I is

the index set of the nonzero columns of Λ∗.
b) KKT conditions for U (∆): Let v ∈ Rm+1 and V ∈

R(m+1)×m be the dual multipliers for the linear inequality
constraints of U (∆). The KKT conditions of U (∆) are:

Primal Feasibility:
{

d>Y [∆]− te>0 [∆]≤ 0
Axe>0 [∆]+BY [∆]−C [∆]≤ 0

Dual Feasibility:


1− e>0 [∆]v = 0
[∆]V B+[∆]vd> = 0
e>0 [∆]VA+ c> = 0
(v,V )≥ 0

Complementarity:
{ (

d>Y − te>0
)
[∆]v = 0

tr
(
(Axe>0 +BY −C) [∆]V

)
= 0.

(9)

When ∆ is defined as before, it is easy to show that there
exists (v∗,V ∗) ≥ 0, so that [∆]v∗ = λ ∗ and [∆]V ∗ = Λ∗. As
a result, the dual feasibility and complementarity conditions
in (9) become identical to those in (8). Furthermore, any
solution of Ũ will satisfy the primal feasibility conditions
in (9) since U (∆) is a relaxation of Ũ . Thus, the optimal
solution (x∗,Y ∗, t∗) of Ũ is also optimal in U (∆).
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